Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 25(7): 3040-3063, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849673

ABSTRACT

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.


Subject(s)
Carrier Proteins , Cilia , Discs Large Homolog 1 Protein , TRPP Cation Channels , Animals , Cilia/metabolism , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Mice , Discs Large Homolog 1 Protein/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Humans , Protein Transport , Mice, Knockout , Kidney/metabolism , Epithelial Cells/metabolism , Protein Binding , Vesico-Ureteral Reflux/metabolism , Vesico-Ureteral Reflux/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Urogenital Abnormalities
2.
J Cell Sci ; 136(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37288673

ABSTRACT

Gap junction channels, composed of connexins, allow direct cell-to-cell communication. Connexin 43 (Cx43; also known as GJA1) is widely expressed in tissues, including the epidermis. In a previous study of human papillomavirus-positive cervical epithelial tumour cells, we identified Cx43 as a binding partner of the human homologue of Drosophila Discs large (Dlg1; also known as SAP97). Dlg1 is a member of the membrane associated-guanylate kinase (MAGUK) scaffolding protein family, which is known to control cell shape and polarity. Here, we show that Cx43 also interacts with Dlg1 in uninfected keratinocytes in vitro and in keratinocytes, dermal cells and adipocytes in normal human epidermis in vivo. Depletion of Dlg1 in keratinocytes did not alter Cx43 transcription but was associated with a reduction in Cx43 protein levels. Reduced Dlg1 levels in keratinocytes resulted in a reduction in Cx43 at the plasma membrane with a concomitant reduction in gap junctional intercellular communication and relocation of Cx43 to the Golgi compartment. Our data suggest a key role for Dlg1 in maintaining Cx43 at the plasma membrane in keratinocytes.


Subject(s)
Connexin 43 , Discs Large Homolog 1 Protein , Keratinocytes , Humans , Cell Communication , Cell Membrane/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Gap Junctions/metabolism , Guanylate Kinases/metabolism , Keratinocytes/metabolism , Discs Large Homolog 1 Protein/genetics , Discs Large Homolog 1 Protein/metabolism
3.
J Virol ; 97(12): e0150123, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37982618

ABSTRACT

IMPORTANCE: The type-I interferon (IFN-I) signaling pathway is the first line of antiviral innate immunity. It must be precisely regulated against virus-induced damage. The tightly regulated mechanisms of action of host genes in the antiviral innate immune signaling pathway are still worth studying. Here, we report a novel role of DLG1 in positively regulating the IκB kinase epsilon (IKKε)-mediated IFN-I signaling response against negative-stranded RNA virus replication, whereas the RNA virus inhibits the expression of DLG1 for immune escape. Importantly, the E3 ligase March2 interacts with and promotes K27-linked polyubiquitination of IKKε, and p62 is a cargo receptor that recognizes ubiquitinated IKKε for eventual autophagic degradation. Together, the current findings elucidate the role of DLG1 in the antiviral IFN-I signaling pathway and viral infection repression.


Subject(s)
Autophagy , Discs Large Homolog 1 Protein , I-kappa B Kinase , Immunity, Innate , Negative-Sense RNA Viruses , Sequestosome-1 Protein , Virus Diseases , Humans , Discs Large Homolog 1 Protein/metabolism , I-kappa B Kinase/metabolism , Immunity, Innate/immunology , Negative-Sense RNA Viruses/growth & development , Negative-Sense RNA Viruses/immunology , Polyubiquitin/metabolism , Sequestosome-1 Protein/antagonists & inhibitors , Signal Transduction , Virus Diseases/immunology , Animals , Cell Line
4.
J Biol Chem ; 298(10): 102475, 2022 10.
Article in English | MEDLINE | ID: mdl-36089063

ABSTRACT

The adhesion family of G protein-coupled receptors (GPCRs) is defined by an N-terminal large extracellular region that contains various adhesion-related domains and a highly-conserved GPCR-autoproteolysis-inducing (GAIN) domain, the latter of which is located immediately before a canonical seven-transmembrane domain. These receptors are expressed widely and involved in various functions including development, angiogenesis, synapse formation, and tumorigenesis. GPR125 (ADGRA3), an orphan adhesion GPCR, has been shown to modulate planar cell polarity in gastrulating zebrafish, but its biochemical properties and role in mammalian cells have remained largely unknown. Here, we show that human GPR125 likely undergoes cis-autoproteolysis when expressed in canine kidney epithelial MDCK cells and human embryonic kidney HEK293 cells. The cleavage appears to occur at an atypical GPCR proteolysis site within the GAIN domain during an early stage of receptor biosynthesis. The products, i.e., the N-terminal and C-terminal fragments, seem to remain associated after self-proteolysis, as observed in other adhesion GPCRs. Furthermore, in polarized MDCK cells, GPR125 is exclusively recruited to the basolateral domain of the plasma membrane. The recruitment likely requires the C-terminal PDZ-domain-binding motif of GPR125 and its interaction with the cell polarity protein Dlg1. Knockdown of GPR125 as well as that of Dlg1 results in formation of aberrant cysts with multiple lumens in Matrigel 3D culture of MDCK cells. Consistent with the multilumen phenotype, mitotic spindles are incorrectly oriented during cystogenesis in GPR125-KO MDCK cells. Thus, the basolateral protein GPR125, an autocleavable adhesion GPCR, appears to play a crucial role in apicobasal polarization in epithelial cells.


Subject(s)
Receptors, G-Protein-Coupled , Zebrafish , Animals , Dogs , Humans , Cell Adhesion , Cell Membrane/metabolism , Cell Polarity , Discs Large Homolog 1 Protein/metabolism , HEK293 Cells , Mammals/metabolism , Protein Binding , Receptors, G-Protein-Coupled/metabolism , Zebrafish/metabolism , Cell Line , Gene Knockdown Techniques , Amino Acid Motifs
5.
BMC Psychiatry ; 23(1): 630, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644438

ABSTRACT

Our previous study data suggested that the synapse-associated protein 97 (SAP97) rs3915512 polymorphism is significantly related to clinical performance in schizophrenia. The cerebellum exhibits abundant expression of SAP97, which is involved with negative symptoms, cognition and emotion in schizophrenia. As functional dysconnectivity with the cortical-subcortical-cerebellar circuitry has been widely shown in patients with schizophrenia, cortical-subcortical-cerebellar dysconnectivity can therefore be considered a possible intermediate phenotype that connects risk genes with schizophrenia. In this study, resting-state functional magnetic resonance imaging (fMRI) was applied to evaluate whether the SAP97 rs3915512 polymorphism changes cortical/subcortical-cerebellar resting-state functional connectivity (RSFC) in 104 Han Chinese subjects (52 first-episode schizophrenia (FES) patients and 52 matched healthy controls (HCs)). To examine RSFC between cortical/subcortical regions and the cerebellum, a ROI (region of interest)-wise functional connectivity analysis was conducted. The association between abnormal cortical/subcortical-cerebellar connectivity and clinical manifestation was further assessed in FES patients with different genotypes. The interactive effect of disease and genotype on RSFC was found between the frontal gyrus (rectus) and cerebellum. A positive correlation was suggested between RSFC in the cerebellum and the hostility scores in FES patients with the A allele, and no correlation was found in FES patients with the TT genotype. The current findings identified that SAP97 may be involved in the process of mental symptoms in FES patients via cerebellar connectivity depending on the rs3915512 polymorphism genotype.


Subject(s)
Discs Large Homolog 1 Protein , Schizophrenia , Humans , Alleles , Asian People , Cerebellum/diagnostic imaging , Discs Large Homolog 1 Protein/genetics , Schizophrenia/diagnostic imaging , Schizophrenia/genetics
6.
Circ Res ; 127(6): 796-810, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32507058

ABSTRACT

RATIONALE: Cardiotoxic ß1 adrenergic receptor (ß1AR)-CaMKII (calmodulin-dependent kinase II) signaling is a major and critical feature associated with development of heart failure. SAP97 (synapse-associated protein 97) is a multifunctional scaffold protein that binds directly to the C-terminus of ß1AR and organizes a receptor signalosome. OBJECTIVE: We aim to elucidate the dynamics of ß1AR-SAP97 signalosome and its potential role in chronic cardiotoxic ß1AR-CaMKII signaling that contributes to development of heart failure. METHODS AND RESULTS: The integrity of cardiac ß1AR-SAP97 complex was examined in heart failure. Cardiac-specific deletion of SAP97 was developed to examine ß1AR signaling in aging mice, after chronic adrenergic stimulation, and in pressure overload hypertrophic heart failure. We show that the ß1AR-SAP97 signaling complex is reduced in heart failure. Cardiac-specific deletion of SAP97 yields an aging-dependent cardiomyopathy and exacerbates cardiac dysfunction induced by chronic adrenergic stimulation and pressure overload, which are associated with elevated CaMKII activity. Loss of SAP97 promotes PKA (protein kinase A)-dependent association of ß1AR with arrestin2 and CaMKII and turns on an Epac (exchange protein directly activated by cAMP)-dependent activation of CaMKII, which drives detrimental functional and structural remodeling in myocardium. Moreover, we have identified that GRK5 (G-protein receptor kinase-5) is necessary to promote agonist-induced dissociation of SAP97 from ß1AR. Cardiac deletion of GRK5 prevents adrenergic-induced dissociation of ß1AR-SAP97 complex and increases in CaMKII activity in hearts. CONCLUSIONS: These data reveal a critical role of SAP97 in maintaining the integrity of cardiac ß1AR signaling and a detrimental cardiac GRK5-CaMKII axis that can be potentially targeted in heart failure therapy. Graphical Abstract: A graphical abstract is available for this article.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Discs Large Homolog 1 Protein/metabolism , G-Protein-Coupled Receptor Kinase 5/metabolism , Heart Failure/enzymology , Myocytes, Cardiac/enzymology , Receptors, Adrenergic, beta-1/metabolism , Animals , Apoptosis , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Discs Large Homolog 1 Protein/genetics , Disease Models, Animal , Excitation Contraction Coupling , G-Protein-Coupled Receptor Kinase 5/genetics , Guanine Nucleotide Exchange Factors/metabolism , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , Myocytes, Cardiac/pathology , beta-Arrestin 1/metabolism
7.
Exp Cell Res ; 406(1): 112737, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34324864

ABSTRACT

The retina is the innermost part of the eye of most vertebrates and it is essential for vision. The development, maintenance, and function of this laminated structure is tightly regulated by numerous genes. Deficiencies in the expression of these genes as well as deregulation of various molecular mechanisms can cause retinopathies and blindness. MicroRNAs (miRNAs) are one of the most important and effective molecular regulatory mechanisms that underlie the biology of the retina. miRNAs have specific functional roles in the development and maintenance of different retinal layers and retinal cell types. While previous studies have reported a large number of miRNAs linked to development, maintenance and diseases of the retina, no comprehensive study has properly discussed and integrated data from these studies. Given the particular importance of miR-204 in retinal biology, we intend to critically discuss the expression and functional significance of this miRNA in the development, maintenance, and pathologies of the retina. Moreover, we explore biological processes through which miR-204 influences retinal pathophysiology. This review highlights the crucial functions of miR-204 in the retina and suggests the putative mechanism of miR-204 action in retinal biology.


Subject(s)
Diabetic Retinopathy/genetics , Glaucoma/genetics , Macular Degeneration/genetics , MicroRNAs/genetics , Optic Nerve Injuries/genetics , Retinoblastoma/genetics , Animals , Base Sequence , Conserved Sequence , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Discs Large Homolog 1 Protein/genetics , Discs Large Homolog 1 Protein/metabolism , Disease Models, Animal , Gene Expression Regulation , Glaucoma/metabolism , Glaucoma/pathology , Humans , Macular Degeneration/metabolism , Macular Degeneration/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/metabolism , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Retina/metabolism , Retina/pathology , Retinoblastoma/metabolism , Retinoblastoma/pathology , Signal Transduction
8.
J Obstet Gynaecol Res ; 48(7): 1836-1847, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35388952

ABSTRACT

AIM: To investigate the long non-coding RNA DLG1 Antisense RNA 1 (lncRNA DLG1-AS1) mechanism in cervical cancer cells with gemcitabine (GEM) resistance. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect DLG1-AS1, miR-16-5p, and hepatoma-derived growth factor (HDGF) expression in cervical cancer cells. The effects of DLG1-AS1 knockdown on cell viability, proliferation, and apoptosis were investigated in GEM-resistant cervical cancer cells. The binding of DLG1-AS1 with miR-16-5p and of miR-16-5p with HDGF was confirmed through dual-luciferase reporter assays. HDGF expression was detected through Western blotting. A xenograft model was established using stably transfected GEM-resistant cervical cancer cells to detect the role of DLG1-AS1 in tumorigenesis in vivo. RESULTS: DLG1-AS1 expression was significantly elevated in HeLa/GEM and SiHa/GEM cells. DLG1-AS1 silencing significantly reduced the viability and proliferation of GEM-resistant cervical cancer cells. DLG1-AS1 also promoted GEM sensitivity in cervical cancer cells by inhibiting miR-16-5p. Moreover, the tumor volume in nude mice in the DLG1-AS1 knockdown group decreased after GEM treatment. In addition, DLG1-AS1 targeted miR-16-5p, and miR-16-5p targeted HDGF. The miR-16-5p inhibitor reversed the DLG1-AS1 knockdown effect in GEM-resistant cervical cancer cells. CONCLUSION: Knockdown of DLG1-AS1 promoted GEM sensitivity in cervical cancer cells by regulating miR-16-5p/HDGF.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Uterine Cervical Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Deoxycytidine/analogs & derivatives , Discs Large Homolog 1 Protein/genetics , Discs Large Homolog 1 Protein/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Intercellular Signaling Peptides and Proteins , Mice , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Gemcitabine
9.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163460

ABSTRACT

Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin-binding protein cyclase-associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post-mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non-psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson's and Alzheimer's disease. Interestingly, also in Parkinson's disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies.


Subject(s)
ADAM10 Protein/genetics , Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/genetics , Discs Large Homolog 1 Protein/genetics , Membrane Proteins/genetics , Parkinson Disease/genetics , Schizophrenia/genetics , ADAM10 Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Autopsy , Case-Control Studies , Discs Large Homolog 1 Protein/metabolism , Dorsolateral Prefrontal Cortex/metabolism , Female , Gene Expression Regulation , Hippocampus/metabolism , Humans , Male , Membrane Proteins/metabolism , Middle Aged , Parkinson Disease/metabolism , Schizophrenia/metabolism
10.
Mol Cancer ; 20(1): 166, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911533

ABSTRACT

BACKGROUND: Dysregulation of circular RNAs (circRNAs) plays an important role in the development of gastric cancer; thus, revealing the biological and molecular mechanisms of abnormally expressed circRNAs is critical for identifying novel therapeutic targets in gastric cancer. METHODS: A circRNA microarray was performed to identify differentially expressed circRNAs between primary and distant metastatic tissues and between gastric cancer tissues sensitive or resistant to anti-programmed cell death 1 (PD-1) therapy. The expression of circRNA discs large homolog 1 (DLG1) was determined in a larger cohort of primary and distant metastatic gastric cancer tissues. The role of circDLG1 in gastric cancer progression was evaluated both in vivo and in vitro, and the effect of circDLG1 on the antitumor activity of anti-PD-1 was evaluated in vivo. The interaction between circDLG1 and miR-141-3p was assessed by RNA immunoprecipitation and luciferase assays. RESULTS: circDLG1 was significantly upregulated in distant metastatic lesions and gastric cancer tissues resistant to anti-PD-1 therapy and was associated with an aggressive tumor phenotype and adverse prognosis in gastric cancer patients treated with anti-PD-1 therapy. Ectopic circDLG1 expression promoted the proliferation, migration, invasion, and immune evasion of gastric cancer cells. Mechanistically, circDLG1 interacted with miR-141-3p and acted as a miRNA sponge to increase the expression of CXCL12, which promoted gastric cancer progression and resistance to anti-PD-1-based therapy. CONCLUSIONS: Overall, our findings demonstrate how circDLG1 promotes gastric cancer cell proliferation, migration, invasion and immune evasion and provide a new perspective on the role of circRNAs during gastric cancer progression.


Subject(s)
Chemokine CXCL12/genetics , Discs Large Homolog 1 Protein/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA Interference , RNA, Circular , Stomach Neoplasms/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Drug Resistance, Neoplasm , Gene Knockdown Techniques , Humans , Immune Checkpoint Inhibitors , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Tumor Escape , Xenograft Model Antitumor Assays
11.
J Cell Sci ; 132(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31289196

ABSTRACT

Oriented cell divisions are important for the formation of normal epithelial structures. Dlg1, a tumour suppressor, is required for mitotic spindle orientation in Drosophila epithelia and chick neuroepithelia, but how Dlg1 is localised to the membrane and its importance in mammalian epithelia are unknown. We show that Dlg1 is required in non-transformed mammalian epithelial cells for oriented cell divisions and normal lumen formation. We demonstrate that the MAGUK protein CASK, a membrane-associated scaffold, is the factor responsible for Dlg1 membrane localisation during spindle orientation, thereby identifying a new cellular function for CASK. Depletion of CASK leads to misoriented divisions in 3D, and to the formation of multilumen structures in cultured kidney and breast epithelial cells. Blocking the CASK-Dlg1 interaction with an interfering peptide, or by deletion of the CASK-interaction domain of Dlg1, disrupts spindle orientation and causes multilumen formation. We show that the CASK-Dlg1 interaction is important for localisation of the canonical LGN-NuMA complex known to be required for spindle orientation. These results establish the importance of the CASK-Dlg1 interaction in oriented cell division and epithelial integrity.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Discs Large Homolog 1 Protein/metabolism , Epithelium/metabolism , Guanylate Kinases/metabolism , Mitosis , Spindle Apparatus/metabolism , Animals , Cell Membrane/metabolism , Dogs , Madin Darby Canine Kidney Cells , Mammals , Protein Binding
12.
J Immunol ; 202(11): 3187-3197, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31028120

ABSTRACT

Dendritic cells (DCs) play key roles in Ab responses by presenting Ags to lymphocytes and by producing proinflammatory cytokines. In this study, we reported that DC-specific knockout of discs large homologue 1 (Dlg1) resulted in a significantly reduced capacity to mediate Ab responses to both thymus-independent and thymus-dependent Ags in Dlg1 fl/flCd11c-Cre-GFP mice. Mechanistically, Dlg1-deficient DCs showed severely impaired endocytosis and phagocytosis capacities upon Ag exposure. In parallel, loss of Dlg1 significantly jeopardized the proinflammatory cytokine production by DCs upon TLR stimulation. Thus, Dlg1-deficient DCs lost their functions to support innate and adaptive immunities. At a cellular level, Dlg1 exhibited an indispensable function to maintain membrane potential changes by securing potassium ion (K+) efflux and subsequent calcium ion (Ca2+) influx events in DCs upon stimulation, both of which are known to be required for proper function of DCs. At a molecular level, Dlg1 did so by retaining the integrity of voltage-gated K+ channels (including Kv1.3) in DCs. The loss of Dlg1 led to a decreased expression of K+ channels, resulting in impaired membrane potential changes and, as a consequence, reduced proinflammatory cytokine production, compromised Ag endocytosis, and phagocytosis. In conclusion, this study provided, to our knowledge, a novel insight into Dlg1 and the voltage-gated K+ channels axis in DC functions.


Subject(s)
Dendritic Cells/immunology , Discs Large Homolog 1 Protein/metabolism , Potassium Channels, Voltage-Gated/metabolism , Animals , Antibody Formation/genetics , Antigen Presentation , Calcium Signaling , Cells, Cultured , Cytokines/metabolism , Discs Large Homolog 1 Protein/genetics , Endocytosis/genetics , Gene Expression Regulation , Membrane Potentials , Mice , Mice, Inbred C57BL , Mice, Knockout , Potassium Channels, Voltage-Gated/genetics
13.
Proc Natl Acad Sci U S A ; 115(46): E10859-E10868, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30377270

ABSTRACT

Vertebrate embryogenesis and organogenesis are driven by cell biological processes, ranging from mitosis and migration to changes in cell size and polarity, but their control and causal relationships are not fully defined. Here, we use the developing limb skeleton to better define the relationships between mitosis and cell polarity. We combine protein-tagging and -perturbation reagents with advanced in vivo imaging to assess the role of Discs large 1 (Dlg1), a membrane-associated scaffolding protein, in mediating the spatiotemporal relationship between cytokinesis and cell polarity. Our results reveal that Dlg1 is enriched at the midbody during cytokinesis and that its multimerization is essential for the normal polarity of daughter cells. Defects in this process alter tissue dimensions without impacting other cellular processes. Our results extend the conventional view that division orientation is established at metaphase and anaphase and suggest that multiple mechanisms act at distinct phases of the cell cycle to transmit cell polarity. The approach employed can be used in other systems, as it offers a robust means to follow and to eliminate protein function and extends the Phasor approach for studying in vivo protein interactions by frequency-domain fluorescence lifetime imaging microscopy of Förster resonance energy transfer (FLIM-FRET) to organotypic explant culture.


Subject(s)
Cell Polarity/physiology , Cytokinesis/physiology , Discs Large Homolog 1 Protein/metabolism , Anaphase , Animals , Cartilage/metabolism , Cartilage/physiology , Cell Cycle , Chick Embryo , Chondrocytes/metabolism , Discs Large Homolog 1 Protein/physiology , Embryonic Development , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , Humans , Metaphase , Mice , Mice, Knockout , Microscopy, Fluorescence/methods , Mitosis/physiology , Morphogenesis/physiology , Vertebrates/metabolism
14.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34768945

ABSTRACT

CRAC, which plays important role in Ca2+-dependent T-lymphocyte activation, is composed of the ER-resident STIM1 and the plasma membrane Orai1 pore-forming subunit. Both accumulate at the immunological synapse (IS) between a T cell and an antigen-presenting cell (APC). We hypothesized that adapter/interacting proteins regulate Orai1 residence in the IS. We could show that mGFP-tagged Orai1-Full channels expressed in Jurkat cells had a biphasic IS-accumulation kinetics peaked at 15 min. To understand the background of Orai1 IS-redistribution we knocked down STIM1 and SAP97 (adaptor protein with a short IS-residency (15 min) and ability to bind Orai1 N-terminus): the mGFP-Orai1-Full channels kept on accumulating in the IS up to the 60th minute in the STIM1- and SAP97-lacking Jurkat cells. Deletion of Orai1 N terminus (mGFP-Orai1-Δ72) resulted in the same time course as described for STIM1/SAP97 knock-down cells. Ca2+-imaging of IS-engaged T-cells revealed that of Orai1 residency modifies the Ca2+-response: cells expressing mGFP-Orai1-Δ72 construct or mGFP-Orai1-Full in SAP-97 knock-down cells showed higher number of Ca2+-oscillation up to the 90th minute after IS formation. Overall, these data suggest that SAP97 may contribute to the short-lived IS-residency of Orai1 and binding of STIM1 to Orai1 N-terminus is necessary for SAP97-Orai1 interaction.


Subject(s)
Calcium Signaling/immunology , Immunological Synapses/metabolism , ORAI1 Protein/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adaptive Immunity , Discs Large Homolog 1 Protein/antagonists & inhibitors , Discs Large Homolog 1 Protein/genetics , Discs Large Homolog 1 Protein/metabolism , Endoplasmic Reticulum/metabolism , Gene Knockdown Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Immunological Synapses/genetics , Immunological Synapses/immunology , Jurkat Cells , Kinetics , Lymphocyte Activation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/chemistry , ORAI1 Protein/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Deletion , Stromal Interaction Molecule 1/antagonists & inhibitors , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
15.
J Gen Virol ; 101(9): 954-962, 2020 09.
Article in English | MEDLINE | ID: mdl-30810519

ABSTRACT

All cancer-causing human papillomavirus (HPV) E6 oncoproteins have a C-terminal PDZ-binding motif (PBM), which correlates with oncogenic potential. Nonetheless, several HPVs with little or no oncogenic potential also have an E6 PBM, with minor sequence differences affecting PDZ protein selectivity. Furthermore, certain HPV types have a phospho-acceptor site embedded within the PBM. We therefore compared HPV-18, HPV-66 and HPV-40 E6 proteins to examine the possible link between the ability to target multiple PDZ proteins and the acquisition of a phospho-acceptor site. The mutation of essential residues in HPV-18E6 reduces its phosphorylation, and fewer PDZ substrates are bound. In contrast, the generation of consensus phospho-acceptor sites in HPV-66 and HPV-40 E6 PBMs increases the PDZ proteins recognized. Thus, although phosphorylation of the E6 PBM and PDZ protein recognition are mutually exclusive, they are closely linked, with the acquisition of a phospho-acceptor site also contributing to an expansion in the number of PDZ proteins bound.


Subject(s)
Alphapapillomavirus/metabolism , DNA-Binding Proteins/metabolism , Human papillomavirus 18/metabolism , Oncogene Proteins, Viral/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Alphapapillomavirus/pathogenicity , Amino Acid Motifs , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Discs Large Homolog 1 Protein/chemistry , Discs Large Homolog 1 Protein/metabolism , Guanylate Kinases/chemistry , Guanylate Kinases/metabolism , HEK293 Cells , Human papillomavirus 18/pathogenicity , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/genetics , PDZ Domains , Phosphorylation , Protein Binding , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism
16.
Am J Physiol Heart Circ Physiol ; 318(6): H1357-H1370, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32196358

ABSTRACT

Synapse-associated protein 97 (SAP97) is a scaffolding protein crucial for the functional expression of several cardiac ion channels and therefore proper cardiac excitability. Alterations in the functional expression of SAP97 can modify the ionic currents underlying the cardiac action potential and consequently confer susceptibility for arrhythmogenesis. In this study, we generated a murine model for inducible, cardiac-targeted Sap97 ablation to investigate arrhythmia susceptibility and the underlying molecular mechanisms. Furthermore, we sought to identify human SAP97 (DLG1) variants that were associated with inherited arrhythmogenic disease. The murine model of cardiac-specific Sap97 ablation demonstrated several ECG abnormalities, pronounced action potential prolongation subject to high incidence of arrhythmogenic afterdepolarizations and notable alterations in the activity of the main cardiac ion channels. However, no DLG1 mutations were found in 40 unrelated cases of genetically elusive long QT syndrome (LQTS). Instead, we provide the first evidence implicating a gain of function in human DLG1 mutation resulting in an increase in Kv4.3 current (Ito) as a novel, potentially pathogenic substrate for Brugada syndrome (BrS). In conclusion, DLG1 joins a growing list of genes encoding ion channel interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. Dysfunction in these critical components of cardiac excitability can potentially result in fatal cardiac disease.NEW & NOTEWORTHY The gene encoding SAP97 (DLG1) joins a growing list of genes encoding ion channel-interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. In this study we provide the first data supporting DLG1-encoded SAP97's candidacy as a minor Brugada syndrome susceptibility gene.


Subject(s)
Arrhythmias, Cardiac/metabolism , Discs Large Homolog 1 Protein/metabolism , Heart/physiopathology , Myocardium/metabolism , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Discs Large Homolog 1 Protein/genetics , Humans , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism
17.
Int Immunol ; 31(12): 759-770, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31169885

ABSTRACT

Antibody production results from B-cell activation and proliferation upon antigen binding. Discs large homolog 1 (Dlg1), a scaffold protein from the membrane-associated guanylate kinase family, has been shown to regulate the antigen receptor signaling and cell polarity in lymphocytes; however, the physiological function of Dlg1 in humoral responses is not completely clear. Here, we addressed this question using a conditional knockout (KO) mouse model with Dlg1 deficiency in different B-cell subsets by crossing dlg1fl/fl mice with either mb1cre/+ or aicdacre/+ mice, respectively. In both mouse models, we observed that Dlg1 deficiency in B cells (Dlg1-KO B cells) led to obvious hyper-antibody responses upon immunization, the effect of which was more obvious in antigen-recall responses. Mechanistically, we found that Dlg1-KO B cells exhibited hyper-proliferation compared with wild-type B cells upon antigen stimulation, suggesting that the hyper-antibody responses are likely induced by the hyper-proliferation of Dlg1-KO B cells. Indeed, further studies demonstrated that Dlg1 deficiency in B cells led to the down-regulation of a tumor suppressor, FoxO1. Thus, all these results reveal an unexpected function of Dlg1 in restraining hyper-antibody responses through the inhibition of FoxO1 and thus antigen-binding-induced proliferation in B cells.


Subject(s)
Antibody Formation/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Discs Large Homolog 1 Protein/immunology , Animals , Cell Proliferation , Discs Large Homolog 1 Protein/deficiency , Forkhead Box Protein O1/antagonists & inhibitors , Forkhead Box Protein O1/immunology , Mice , Mice, Knockout
18.
BMC Cancer ; 20(1): 293, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32264889

ABSTRACT

BACKGROUND: Persistent infection with high-risk Human Papillomavirus (HPVs) is associated with the development of cervical cancer. The transforming capacity of these viruses relies on the cooperative action of the E6 and E7 viral oncoproteins. Among the oncogenic activities of E6, the interaction and interference with cell polarity PDZ proteins have been well established. One of the most characterized PDZ targets of HPV E6 is human Disc large 1 (DLG1), a scaffolding protein involved in the control of cell polarity and proliferation. Interestingly, in cervical squamous intraepithelial lesions, alterations in DLG1 expression were observed in association to tumour progression. Moreover, the expression of both HPV E6 and E7 proteins may be responsible for the changes in DLG1 abundance and cell localization observed in the HPV-associated lesions. METHODS: Due to the relevance of DLG1 deregulation in tumour development, we have performed an in-depth investigation of the expression of DLG1 in the presence of the HPV oncoproteins in epithelial cultured cells. The effects of HPV E6 and E7 proteins on DLG1 abundance and subcellular localization were assessed by western blot and confocal fluorescence microscopy, respectively. RESULTS: We demonstrated that the relative abundance of HPV-18 E6 and DLG1 is a key factor that contributes to defining the expression abundance of both proteins. We also show here that a high expression level of DLG1 may negatively affect HPV-18 E6 nuclear expression. Moreover, the co-expression of HPV-18 E6 and E7 produces a striking effect on DLG1 subcellular localization and a co-distribution in the cytoplasmic region. Interestingly, HPV-18 E7 is also able to increase DLG1 levels, likely by rescuing it from the E6-mediated proteasomal degradation. CONCLUSIONS: In general, the data suggest that HPV-18 E6 and E7 may have opposing activities in regards to the regulation of DLG1 levels and may cooperatively contribute to its subcellular redistribution in the HPV context. These findings constitute a step forward in understanding the differential expression of DLG1 during tumour progression in an HPV-associated model.


Subject(s)
DNA-Binding Proteins/metabolism , Discs Large Homolog 1 Protein/genetics , Epithelial Cells/virology , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/genetics , A549 Cells , Cell Polarity , Cell Proliferation , DNA-Binding Proteins/genetics , Epithelial Cells/metabolism , Epithelial Cells/physiology , Gene Expression Regulation , HEK293 Cells , Humans , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/metabolism
19.
Am J Physiol Renal Physiol ; 317(2): F375-F387, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31141395

ABSTRACT

Arginine-vasopressin (AVP)-mediated translocation of aquaporin-2 (AQP2) protein-forming water channels from storage vesicles to the membrane of renal collecting ducts is critical for the renal conservation of water. The type-1 PDZ-binding motif (PBM) in AQP2, "GTKA," is a critical barcode for its translocation, but its precise role and that of its interacting protein partners in this process remain obscure. We determined that synapse-associated protein-97 (SAP97), a membrane-associated guanylate kinase protein involved in establishing epithelial cell polarity, was an avid binding partner to the PBM of AQP2. The role of PBM and SAP97 on AQP2 redistribution in response to AVP was assessed in LLC-PK1 renal collecting cells by confocal microscopy and cell surface biotinylation techniques. These experiments indicated that distribution of AQP2 and SAP97 overlapped in the kidneys and LLC-PK1 cells and that knockdown of SAP97 inhibited the translocation of AQP2 in response to AVP. Binding between AQP2 and SAP97 was mediated by specific interactions between the second PDZ of SAP97 and PBM of AQP2. Mechanistically, inactivation of the PBM of AQP2, global delocalization of PKA, or knockdown of SAP97 inhibited AQP2 translocation as well as AVP- and forskolin-mediated phosphorylation of Ser256 in AQP2, which serves as the major translocation barcode of AQP2. These results suggest that the targeting of PKA to the microdomain of AQP2 via SAP97-AQP2 interactions in association with cross-talk between two barcodes in AQP2, namely, the PBM and phospho-Ser256, plays an important role in the translocation of AQP2 in the kidney.


Subject(s)
Aquaporin 2/metabolism , Arginine Vasopressin/pharmacology , Discs Large Homolog 1 Protein/metabolism , Epithelial Cells/drug effects , Kidney Tubules, Proximal/drug effects , PDZ Domains , Animals , Aquaporin 2/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Discs Large Homolog 1 Protein/genetics , Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , LLC-PK1 Cells , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protein Transport , Serine , Swine
20.
Biol Chem ; 400(6): 699-710, 2019 05 27.
Article in English | MEDLINE | ID: mdl-30517074

ABSTRACT

Human disc large (DLG1) is a scaffolding protein that through the interaction with diverse cell partners participates in the control of key cellular processes such as polarity, proliferation and migration. Experimental data have mainly identified DLG1 as a tumor suppressor. An outstanding point for DLG1 protein is that altered DLG1 expression and DLG1 gene mutations were observed in different pathologies, including cancer and neurological and immunological disorders. Evident changes in DLG1 abundance and/or cell localization were identified in a number of studies suggesting its participation in molecular mechanisms responsible for the development of such illnesses. In this review, we focus on some of the latest findings regarding DLG1 alterations in different diseases as well as its potential use as a biomarker for pathological progression. We further address the current knowledge on the molecular mechanisms regulating DLG1 expression and the posttranslational modifications that may affect DLG1 cell localization and functions. Despite the advances in this field, there are still open questions about the precise molecular link between alterations in DLG1 expression and the development of each specific pathology. The complete understanding of this concern will give us new scenarios for the design of promising diagnosis and therapeutic tools.


Subject(s)
Discs Large Homolog 1 Protein/genetics , Disease , Humans , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL