Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
Add more filters

Publication year range
1.
Cell ; 153(2): 438-48, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23562643

ABSTRACT

Dedicated AAA+ ATPases deposit hexameric ring-shaped helicases onto DNA to promote replication in cellular organisms. To understand how loading occurs, we used electron microscopy and small angle X-ray scattering (SAXS) to determine the ATP-bound structure of the intact E. coli DnaB⋅DnaC helicase/loader complex. The 480 kDa dodecamer forms a three-tiered assembly, in which DnaC adopts a spiral configuration that remodels N-terminal scaffolding and C-terminal motor regions of DnaB to produce a clear break in the helicase ring. Surprisingly, DnaC's AAA+ fold is dispensable for ring remodeling because the DnaC isolated helicase-binding domain can both load DnaB onto DNA and increase the efficiency by which the helicase acts on substrates in vitro. Our data demonstrate that DnaC opens DnaB by a mechanism akin to that of polymerase clamp loaders and indicate that bacterial replicative helicases, like their eukaryotic counterparts, possess autoregulatory elements that influence how hexameric motor domains are loaded onto and unwind DNA.


Subject(s)
DnaB Helicases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , DNA Replication , DnaB Helicases/chemistry , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Geobacillus stearothermophilus/chemistry , Microscopy, Electron , Models, Molecular , Protein Structure, Tertiary , Scattering, Small Angle
2.
Mol Cell ; 79(1): 140-154.e7, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32464091

ABSTRACT

Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.


Subject(s)
DNA Primase/metabolism , DNA Replication , DNA-Directed DNA Polymerase/metabolism , DnaB Helicases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Holoenzymes/chemistry , DNA Primase/genetics , DNA, Bacterial , DNA-Directed DNA Polymerase/genetics , DnaB Helicases/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Holoenzymes/genetics , Holoenzymes/metabolism , Molecular Conformation , Protein Binding , Protein Conformation
3.
Cell ; 151(2): 267-77, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23022319

ABSTRACT

DNA polymerases can only synthesize nascent DNA from single-stranded DNA (ssDNA) templates. In bacteria, the unwinding of parental duplex DNA is carried out by the replicative DNA helicase (DnaB) that couples NTP hydrolysis to 5' to 3' translocation. The crystal structure of the DnaB hexamer in complex with GDP-AlF(4) and ssDNA reported here reveals that DnaB adopts a closed spiral staircase quaternary structure around an A-form ssDNA with each C-terminal domain coordinating two nucleotides of ssDNA. The structure not only provides structural insights into the translocation mechanism of superfamily IV helicases but also suggests that members of this superfamily employ a translocation mechanism that is distinct from other helicase superfamilies. We propose a hand-over-hand mechanism in which sequential hydrolysis of NTP causes a sequential 5' to 3' movement of the subunits along the helical axis of the staircase, resulting in the unwinding of two nucleotides per subunit.


Subject(s)
DnaB Helicases/chemistry , Geobacillus stearothermophilus/enzymology , Catalytic Domain , Crystallography, X-Ray , DNA Replication , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , DnaB Helicases/metabolism , Models, Molecular , Nucleotides/metabolism , Protein Structure, Tertiary
4.
Mol Cell ; 74(1): 173-184.e4, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30797687

ABSTRACT

In cells, dedicated AAA+ ATPases deposit hexameric, ring-shaped helicases onto DNA to initiate chromosomal replication. To better understand the mechanisms by which helicase loading can occur, we used cryo-EM to determine sub-4-Å-resolution structures of the E. coli DnaB⋅DnaC helicase⋅loader complex with nucleotide in pre- and post-DNA engagement states. In the absence of DNA, six DnaC protomers latch onto and crack open a DnaB hexamer using an extended N-terminal domain, stabilizing this conformation through nucleotide-dependent ATPase interactions. Upon binding DNA, DnaC hydrolyzes ATP, allowing DnaB to isomerize into a topologically closed, pre-translocation state competent to bind primase. Our data show how DnaC opens the DnaB ring and represses the helicase prior to DNA binding and how DnaC ATPase activity is reciprocally regulated by DnaB and DNA. Comparative analyses reveal how the helicase loading mechanism of DnaC parallels and diverges from homologous AAA+ systems involved in DNA replication and transposition.


Subject(s)
DNA Replication , DNA, Bacterial/biosynthesis , DnaB Helicases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Adenosine Triphosphate/metabolism , Binding Sites , Cryoelectron Microscopy , DNA Primase/genetics , DNA Primase/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DnaB Helicases/chemistry , DnaB Helicases/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Hydrolysis , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Structure-Activity Relationship
5.
Proc Natl Acad Sci U S A ; 121(19): e2317954121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683976

ABSTRACT

Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.


Subject(s)
DNA Helicases , DNA Replication , Phylogeny , Vibrionaceae , Vibrionaceae/genetics , Vibrionaceae/enzymology , DNA Helicases/metabolism , DNA Helicases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/enzymology , Evolution, Molecular , Genome, Bacterial , DnaB Helicases/metabolism , DnaB Helicases/genetics , Vibrio/genetics , Vibrio/enzymology
6.
Trends Biochem Sci ; 47(7): 620-630, 2022 07.
Article in English | MEDLINE | ID: mdl-35351361

ABSTRACT

Dedicated loader proteins play essential roles in bacterial DNA replication by opening ring-shaped DnaB-family helicases and chaperoning single-stranded (ss)DNA into a central motor chamber as a prelude to DNA unwinding. Although unrelated in sequence, the Escherichia coli DnaC and bacteriophage λ P loaders feature a similar overall architecture: a globular domain linked to an extended lasso/grappling hook element, located at their N and C termini, respectively. Both loaders remodel a closed DnaB ring into nearly identical right-handed open conformations. The sole element shared by the loaders is a single alpha helix, which binds to the same site on the helicase. Physical features of the loaders establish that DnaC and λ P evolved independently to converge, through molecular mimicry, on a common helicase-opening mechanism.


Subject(s)
Escherichia coli Proteins , Bacterial Proteins/metabolism , DNA Helicases/metabolism , DNA Replication , DNA, Single-Stranded , DnaB Helicases/chemistry , DnaB Helicases/genetics , DnaB Helicases/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry
7.
Nucleic Acids Res ; 52(12): 6977-6993, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38808668

ABSTRACT

The replicative helicase, DnaB, is a central component of the replisome and unwinds duplex DNA coupled with immediate template-dependent DNA synthesis by the polymerase, Pol III. The rate of helicase unwinding is dynamically regulated through structural transitions in the DnaB hexamer between dilated and constricted states. Site-specific mutations in DnaB enforce a faster more constricted conformation that dysregulates unwinding dynamics, causing replisome decoupling that generates excess ssDNA and induces severe cellular stress. This surplus ssDNA can stimulate RecA recruitment to initiate recombinational repair, restart, or activation of the transcriptional SOS response. To better understand the consequences of dysregulated unwinding, we combined targeted genomic dnaB mutations with an inducible RecA filament inhibition strategy to examine the dependencies on RecA in mitigating replisome decoupling phenotypes. Without RecA filamentation, dnaB:mut strains had reduced growth rates, decreased mutagenesis, but a greater burden from endogenous damage. Interestingly, disruption of RecA filamentation in these dnaB:mut strains also reduced cellular filamentation but increased markers of double strand breaks and ssDNA gaps as detected by in situ fluorescence microscopy and FACS assays, TUNEL and PLUG, respectively. Overall, RecA plays a critical role in strain survival by protecting and processing ssDNA gaps caused by dysregulated helicase activity in vivo.


Subject(s)
DNA Replication , DNA, Single-Stranded , DnaB Helicases , Mutation , Rec A Recombinases , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , DNA, Single-Stranded/metabolism , DnaB Helicases/metabolism , DnaB Helicases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Polymerization , DNA-Binding Proteins
8.
J Biol Chem ; 300(5): 107275, 2024 May.
Article in English | MEDLINE | ID: mdl-38588814

ABSTRACT

DNA replication in Escherichia coli starts with loading of the replicative helicase, DnaB, onto DNA. This reaction requires the DnaC loader protein, which forms a 6:6 complex with DnaB and opens a channel in the DnaB hexamer through which single-stranded DNA is thought to pass. During replication, replisomes frequently encounter DNA damage and nucleoprotein complexes that can lead to replication fork collapse. Such events require DnaB re-loading onto DNA to allow replication to continue. Replication restart proteins mediate this process by recruiting DnaB6/DnaC6 to abandoned DNA replication forks. Several dnaC mutations that bypass the requirement for replication restart proteins or that block replication restart have been identified in E. coli. To better understand how these DnaC variants function, we have purified and characterized the protein products of several such alleles. Unlike wild-type DnaC, three of the variants (DnaC 809, DnaC 809,820, and DnaC 811) can load DnaB onto replication forks bound by single-stranded DNA-binding protein. DnaC 809 can also load DnaB onto double-stranded DNA. These results suggest that structural changes in the variant DnaB6/DnaC6 complexes expand the range of DNA substrates that can be used for DnaB loading, obviating the need for the existing replication restart pathways. The protein product of dnaC1331, which phenocopies deletion of the priB replication restart gene, blocks loading through the major restart pathway in vitro. Overall, the results of our study highlight the utility of bacterial DnaC variants as tools for probing the regulatory mechanisms that govern replicative helicase loading.


Subject(s)
DNA Replication , DnaB Helicases , Escherichia coli Proteins , Escherichia coli , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , DnaB Helicases/metabolism , DnaB Helicases/genetics , DnaB Helicases/chemistry , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Mutation
9.
Nucleic Acids Res ; 51(9): 4302-4321, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36416272

ABSTRACT

Bidirectional DNA replication from a chromosome origin requires the asymmetric loading of two helicases, one for each replisome. Our understanding of the molecular mechanisms underpinning helicase loading at bacterial chromosome origins is incomplete. Here we report both positive and negative mechanisms for directing helicase recruitment in the model organism Bacillus subtilis. Systematic characterization of the essential initiation protein DnaD revealed distinct protein interfaces required for homo-oligomerization, interaction with the master initiator protein DnaA, and interaction with the helicase co-loader protein DnaB. Informed by these properties of DnaD, we went on to find that the developmentally expressed repressor of DNA replication initiation, SirA, blocks the interaction between DnaD and DnaA, thereby restricting helicase recruitment from the origin during sporulation to inhibit further initiation events. These results advance our understanding of the mechanisms underpinning DNA replication initiation in B. subtilis, as well as guiding the search for essential cellular activities to target for antimicrobial drug design.


Subject(s)
Bacillus subtilis , Bacterial Proteins , DNA Helicases , Spores, Bacterial , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DnaB Helicases/genetics , DnaB Helicases/metabolism , Replication Origin , Spores, Bacterial/metabolism
10.
Nucleic Acids Res ; 50(22): 12896-12912, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36484102

ABSTRACT

The replicative DNA helicase translocates on single-stranded DNA to drive replication forks during chromosome replication. In most bacteria the ubiquitous replicative helicase, DnaB, co-evolved with the accessory subunit DciA, but how they function remains incompletely understood. Here, using the model bacterium Caulobacter crescentus, we demonstrate that DciA plays a prominent role in DNA replication fork maintenance. Cell cycle analyses using a synchronized Caulobacter cell population showed that cells devoid of DciA exhibit a severe delay in fork progression. Biochemical characterization revealed that the DnaB helicase in its default state forms a hexamer that inhibits self-loading onto single-stranded DNA. We found that upon binding to DciA, the DnaB hexamer undergoes conformational changes required for encircling single-stranded DNA, thereby establishing the replication fork. Further investigation of the functional structure of DciA revealed that the C-terminus of DciA includes conserved leucine residues responsible for DnaB binding and is essential for DciA in vivo functions. We propose that DciA stimulates loading of DnaB onto single strands through topological isomerization of the DnaB structure, thereby ensuring fork progression. Given that the DnaB-DciA modules are widespread among eubacterial species, our findings suggest that a common mechanism underlies chromosome replication.


Subject(s)
Bacterial Proteins , Caulobacter crescentus , Chromosomes, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Caulobacter crescentus/genetics , Caulobacter crescentus/metabolism , DNA Replication/genetics , DNA, Single-Stranded/metabolism , DnaB Helicases/metabolism , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism
11.
PLoS Genet ; 17(11): e1009886, 2021 11.
Article in English | MEDLINE | ID: mdl-34767550

ABSTRACT

Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork.


Subject(s)
Chromosomes, Bacterial , DnaB Helicases/metabolism , Escherichia coli/genetics , Genomic Instability , CRISPR-Cas Systems , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DnaB Helicases/chemistry , DnaB Helicases/genetics , Escherichia coli/enzymology , Mutation
12.
J Biol Chem ; 298(6): 102051, 2022 06.
Article in English | MEDLINE | ID: mdl-35598828

ABSTRACT

Unwinding of the replication origin and loading of DNA helicases underlie the initiation of chromosomal replication. In Escherichia coli, the minimal origin oriC contains a duplex unwinding element (DUE) region and three (Left, Middle, and Right) regions that bind the initiator protein DnaA. The Left/Right regions bear a set of DnaA-binding sequences, constituting the Left/Right-DnaA subcomplexes, while the Middle region has a single DnaA-binding site, which stimulates formation of the Left/Right-DnaA subcomplexes. In addition, a DUE-flanking AT-cluster element (TATTAAAAAGAA) is located just outside of the minimal oriC region. The Left-DnaA subcomplex promotes unwinding of the flanking DUE exposing TT[A/G]T(T) sequences that then bind to the Left-DnaA subcomplex, stabilizing the unwound state required for DnaB helicase loading. However, the role of the Right-DnaA subcomplex is largely unclear. Here, we show that DUE unwinding by both the Left/Right-DnaA subcomplexes, but not the Left-DnaA subcomplex only, was stimulated by a DUE-terminal subregion flanking the AT-cluster. Consistently, we found the Right-DnaA subcomplex-bound single-stranded DUE and AT-cluster regions. In addition, the Left/Right-DnaA subcomplexes bound DnaB helicase independently. For only the Left-DnaA subcomplex, we show the AT-cluster was crucial for DnaB loading. The role of unwound DNA binding of the Right-DnaA subcomplex was further supported by in vivo data. Taken together, we propose a model in which the Right-DnaA subcomplex dynamically interacts with the unwound DUE, assisting in DUE unwinding and efficient loading of DnaB helicases, while in the absence of the Right-DnaA subcomplex, the AT-cluster assists in those processes, supporting robustness of replication initiation.


Subject(s)
Bacterial Proteins , DNA-Binding Proteins , DnaB Helicases , Origin Recognition Complex , Replication Origin , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Replication , DNA, Bacterial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DnaB Helicases/genetics , DnaB Helicases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Origin Recognition Complex/genetics
13.
PLoS Pathog ; 17(1): e1009209, 2021 01.
Article in English | MEDLINE | ID: mdl-33465146

ABSTRACT

Salmonella Typhi is the primary causative agent of typhoid fever; an acute systemic infection that leads to chronic carriage in 3-5% of individuals. Chronic carriers are asymptomatic, difficult to treat and serve as reservoirs for typhoid outbreaks. Understanding the factors that contribute to chronic carriage is key to development of novel therapies to effectively resolve typhoid fever. Herein, although we observed no distinct clustering of chronic carriage isolates via phylogenetic analysis, we demonstrated that chronic isolates were phenotypically distinct from acute infection isolates. Chronic carriage isolates formed significantly thicker biofilms with greater biomass that correlated with significantly higher relative levels of extracellular DNA (eDNA) and DNABII proteins than biofilms formed by acute infection isolates. Importantly, extracellular DNABII proteins include integration host factor (IHF) and histone-like protein (HU) that are critical to the structural integrity of bacterial biofilms. In this study, we demonstrated that the biofilm formed by a chronic carriage isolate in vitro, was susceptible to disruption by a specific antibody against DNABII proteins, a successful first step in the development of a therapeutic to resolve chronic carriage.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , DnaB Helicases/metabolism , Extracellular Matrix/metabolism , Integration Host Factors/metabolism , Salmonella typhi/pathogenicity , Typhoid Fever/microbiology , Antibodies, Monoclonal/pharmacology , Bacterial Proteins/genetics , Biofilms/drug effects , DnaB Helicases/antagonists & inhibitors , DnaB Helicases/genetics , Humans , Integration Host Factors/genetics , Salmonella typhi/classification , Salmonella typhi/genetics , Typhoid Fever/drug therapy , Typhoid Fever/immunology
14.
Cell ; 135(4): 623-34, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-19013274

ABSTRACT

The loading of oligomeric helicases onto replication origins marks an essential step in replisome assembly. In cells, dedicated AAA+ ATPases regulate loading, however, the mechanism by which these factors recruit and deposit helicases has remained unclear. To better understand this process, we determined the structure of the ATPase region of the bacterial helicase loader DnaC from Aquifex aeolicus to 2.7 A resolution. The structure shows that DnaC is a close paralog of the bacterial replication initiator, DnaA, and unexpectedly shares an ability to form a helical assembly similar to that of ATP-bound DnaA. Complementation and ssDNA-binding assays validate the importance of homomeric DnaC interactions, while pull-down experiments show that the DnaC and DnaA AAA+ domains interact in a nucleotide-dependent manner. These findings implicate DnaC as a molecular adaptor that uses ATP-activated DnaA as a docking site for regulating the recruitment and correct spatial deposition of the DnaB helicase onto origins.


Subject(s)
Bacterial Proteins/chemistry , DNA Helicases/physiology , DNA Replication , DNA-Binding Proteins/chemistry , DnaB Helicases/chemistry , Escherichia coli Proteins/chemistry , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Bacteria/enzymology , Crystallography, X-Ray/methods , DNA Helicases/metabolism , DNA, Single-Stranded/chemistry , Models, Biological , Molecular Sequence Data , Protein Binding , Protein Conformation , Sequence Homology, Amino Acid
15.
Nucleic Acids Res ; 49(12): 6804-6816, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34139009

ABSTRACT

In Escherichia coli, the DnaB helicase forms the basis for the assembly of the DNA replication complex. The stability of DnaB at the replication fork is likely important for successful replication initiation and progression. Single-molecule experiments have significantly changed the classical model of highly stable replication machines by showing that components exchange with free molecules from the environment. However, due to technical limitations, accurate assessments of DnaB stability in the context of replication are lacking. Using in vitro fluorescence single-molecule imaging, we visualise DnaB loaded on forked DNA templates. That these helicases are highly stable at replication forks, indicated by their observed dwell time of ∼30 min. Addition of the remaining replication factors results in a single DnaB helicase integrated as part of an active replisome. In contrast to the dynamic behaviour of other replisome components, DnaB is maintained within the replisome for the entirety of the replication process. Interestingly, we observe a transient interaction of additional helicases with the replication fork. This interaction is dependent on the τ subunit of the clamp-loader complex. Collectively, our single-molecule observations solidify the role of the DnaB helicase as the stable anchor of the replisome, but also reveal its capacity for dynamic interactions.


Subject(s)
DNA Replication , DnaB Helicases/metabolism , DNA-Directed DNA Polymerase , Escherichia coli/genetics , Multienzyme Complexes , Single Molecule Imaging
16.
Nucleic Acids Res ; 49(11): 6569-6586, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34107018

ABSTRACT

Replicative helicases are essential proteins that unwind DNA in front of replication forks. Their loading depends on accessory proteins and in bacteria, DnaC and DnaI are well characterized loaders. However, most bacteria do not express either of these two proteins. Instead, they are proposed to rely on DciA, an ancestral protein unrelated to DnaC/I. While the DciA structure from Vibrio cholerae shares no homology with DnaC, it reveals similarities with DnaA and DnaX, two proteins involved during replication initiation. As other bacterial replicative helicases, VcDnaB adopts a toroid-shaped homo-hexameric structure, but with a slightly open dynamic conformation in the free state. We show that VcDnaB can load itself on DNA in vitro and that VcDciA stimulates this function, resulting in an increased DNA unwinding. VcDciA interacts with VcDnaB with a 3/6 stoichiometry and we show that a determinant residue, which discriminates DciA- and DnaC/I-helicases, is critical in vivo. Our work is the first step toward the understanding of the ancestral mode of loading of bacterial replicative helicases on DNA. It sheds light on the strategy employed by phage helicase loaders to hijack bacterial replicative helicases and may explain the recurrent domestication of dnaC/I through evolution in bacteria.


Subject(s)
Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , DnaB Helicases/chemistry , Vibrio cholerae/enzymology , Bacterial Proteins/metabolism , DNA/metabolism , DNA-Binding Proteins/metabolism , DnaB Helicases/metabolism , Models, Molecular , Protein Conformation , Serine/chemistry
17.
Proc Natl Acad Sci U S A ; 116(24): 11747-11753, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31127046

ABSTRACT

The replisome is a multiprotein machine that is responsible for replicating DNA. During active DNA synthesis, the replisome tightly associates with DNA. In contrast, after DNA damage, the replisome may disassemble, exposing DNA to breaks and threatening cell survival. Using live cell imaging, we studied the effect of UV light on the replisome of Escherichia coli Surprisingly, our results showed an increase in Pol III holoenzyme (Pol III HE) foci post-UV that do not colocalize with the DnaB helicase. Formation of these foci is independent of active replication forks and dependent on the presence of the χ subunit of the clamp loader, suggesting recruitment of Pol III HE at sites of DNA repair. Our results also showed a decrease of DnaB helicase foci per cell after UV, consistent with the disassembly of a fraction of the replisomes. By labeling newly synthesized DNA, we demonstrated that a drop in the rate of synthesis is not explained by replisome disassembly alone. Instead, we show that most replisomes continue synthesizing DNA at a slower rate after UV. We propose that the slowdown in replisome activity is a strategy to prevent clashes with engaged DNA repair proteins and preserve the integrity of the replication fork.


Subject(s)
DNA, Bacterial/genetics , Escherichia coli/genetics , Ultraviolet Rays/adverse effects , DNA Damage/genetics , DNA Repair/genetics , DNA Replication , DnaB Helicases/genetics
18.
Proc Natl Acad Sci U S A ; 116(20): 10064-10071, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30948634

ABSTRACT

Antimicrobial efficacy, which is central to many aspects of medicine, is being rapidly eroded by bacterial resistance. Since new resistance can be induced by antimicrobial action, highly lethal agents that rapidly reduce bacterial burden during infection should help restrict the emergence of resistance. To improve lethal activity, recent work has focused on toxic reactive oxygen species (ROS) as part of the bactericidal activity of diverse antimicrobials. We report that when Escherichia coli was subjected to antimicrobial stress and the stressor was subsequently removed, both ROS accumulation and cell death continued to occur. Blocking ROS accumulation by exogenous mitigating agents slowed or inhibited poststressor death. Similar results were obtained with a temperature-sensitive mutational inhibition of DNA replication. Thus, bacteria exposed to lethal stressors may not die during treatment, as has long been thought; instead, death can occur after plating on drug-free agar due to poststress ROS-mediated toxicity. Examples are described in which (i) primary stress-mediated damage was insufficient to kill bacteria due to repair; (ii) ROS overcame repair (i.e., protection from anti-ROS agents was reduced by repair deficiencies); and (iii) killing was reduced by anti-oxidative stress genes acting before stress exposure. Enzymatic suppression of poststress ROS-mediated lethality by exogenous catalase supports a causal rather than a coincidental role for ROS in stress-mediated lethality, thereby countering challenges to ROS involvement in antimicrobial killing. We conclude that for a variety of stressors, lethal action derives, at least in part, from stimulation of a self-amplifying accumulation of ROS that overwhelms the repair of primary damage.


Subject(s)
Cell Death , Escherichia coli/metabolism , Reactive Oxygen Species/metabolism , Stress, Physiological , Ampicillin , DnaB Helicases/genetics , Escherichia coli/genetics
19.
J Biol Chem ; 295(32): 11131-11143, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32540966

ABSTRACT

The DNA replication protein DnaA in Escherichia coli constructs higher-order complexes on the origin, oriC, to unwind this region. DnaB helicase is loaded onto unwound oriC via interactions with the DnaC loader and the DnaA complex. The DnaB-DnaC complex is recruited to the DnaA complex via stable binding of DnaB to DnaA domain I. The DnaB-DnaC complex is then directed to unwound oriC via a weak interaction between DnaB and DnaA domain III. Previously, we showed that Phe46 in DnaA domain I binds to DnaB. Here, we searched for the DnaA domain I-binding site in DnaB. The DnaB L160A variant was impaired in binding to DnaA complex on oriC but retained its DnaC-binding and helicase activities. DnaC binding moderately stimulated DnaA binding of DnaB L160A, and loading of DnaB L160A onto oriC was consistently and moderately inhibited. In a helicase assay with partly single-stranded DNA bearing a DnaA-binding site, DnaA stimulated DnaB loading, which was strongly inhibited in DnaB L160A even in the presence of DnaC. DnaB L160A was functionally impaired in vivo On the basis of these findings, we propose that DnaB Leu160 interacts with DnaA domain I Phe46 DnaB Leu160 is exposed on the lateral surface of the N-terminal domain, which can explain unobstructed interactions of DnaA domain I-bound DnaB with DnaC, DnaG primase, and DnaA domain III. We propose a probable structure for the DnaA-DnaB-DnaC complex, which could be relevant to the process of DnaB loading onto oriC.


Subject(s)
DnaB Helicases/metabolism , Escherichia coli Proteins/metabolism , Replication Origin , Amino Acid Sequence , Binding Sites , DnaB Helicases/chemistry , Escherichia coli Proteins/chemistry , Models, Molecular , Protein Domains
20.
Chemistry ; 27(28): 7745-7755, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33822417

ABSTRACT

Paramagnetic metal ions can be inserted into ATP-fueled motor proteins by exchanging the diamagnetic Mg2+ cofactor with Mn2+ or Co2+ . Then, paramagnetic relaxation enhancement (PRE) or pseudo-contact shifts (PCSs) can be measured to report on the localization of the metal ion within the protein. We determine the metal position in the oligomeric bacterial DnaB helicase from Helicobacter pylori complexed with the transition-state ATP-analogue ADP:AlF4 - and single-stranded DNA using solid-state NMR and a structure-calculation protocol employing CYANA. We discuss and compare the use of Mn2+ and Co2+ in localizing the ATP cofactor in large oligomeric protein assemblies. 31 P PCSs induced in the Co2+ -containing sample are then used to localize the DNA phosphate groups on the Co2+ PCS tensor surface enabling structural insights into DNA binding to the DnaB helicase.


Subject(s)
DNA, Single-Stranded , Helicobacter pylori , Bacterial Proteins , DnaB Helicases/metabolism , Ions , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL