Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.011
Filter
Add more filters

Publication year range
1.
Nat Rev Mol Cell Biol ; 21(10): 568-569, 2020 10.
Article in English | MEDLINE | ID: mdl-32860012

Subject(s)
Elastin , Elastin/genetics
2.
Mol Cell ; 75(1): 66-75.e5, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31175012

ABSTRACT

Liquid granules rich in intrinsically disordered proteins and RNA play key roles in critical cellular functions such as RNA processing and translation. Many details of the mechanism via which this occurs remain to be elucidated. Motivated by the lacuna in the field and by the prospects of developing de novo artificial granules that provide extrinsic control of translation, we report a bottom-up approach to engineer ribonucleoprotein granules composed of a recombinant RNA-binding IDP that exhibits phase behavior in water. We developed a kinetic model to illustrate that these granules inhibit translation through reversible or irreversible sequestration of mRNA. Within monodisperse droplets capable of transcription and translation, we experimentally demonstrate temporal inhibition of translation by using designer IDPs that exhibit tunable phase behavior. This work lays the foundation for developing artificial granules that promise to further our mechanistic understanding of their naturally occurring counterparts.


Subject(s)
Artificial Cells/metabolism , Cytoplasmic Granules/genetics , Intrinsically Disordered Proteins/genetics , Peptidomimetics/metabolism , RNA, Messenger/genetics , Ribonucleoproteins/genetics , Amino Acid Sequence , Artificial Cells/cytology , Cytoplasmic Granules/chemistry , Cytoplasmic Granules/metabolism , Elastin/chemistry , Elastin/genetics , Elastin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Models, Biological , Peptidomimetics/chemistry , Phase Transition , Plasmids/genetics , Plasmids/metabolism , Protein Biosynthesis , Protein Engineering/methods , RNA/genetics , RNA/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism
3.
Hum Mol Genet ; 32(20): 2950-2965, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37498175

ABSTRACT

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.


Subject(s)
Motor Neurons , Muscular Atrophy, Spinal , Humans , Mice , Animals , Motor Neurons/metabolism , Desmin/genetics , Desmin/metabolism , Elastin/genetics , Lamin Type A/genetics , Lamin Type A/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Muscular Atrophy, Spinal/pathology , Genetic Therapy , Disease Models, Animal , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism
4.
Chemistry ; 30(30): e202400582, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38501912

ABSTRACT

The unique biophysical and biochemical properties of intrinsically disordered proteins (IDPs) and their recombinant derivatives, intrinsically disordered protein polymers (IDPPs) offer opportunities for producing multistimuli-responsive materials; their sequence-encoded disorder and tendency for phase separation facilitate the development of multifunctional materials. This review highlights the strategies for enhancing the structural diversity of elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs), and their self-assembled structures via genetic fusion to ordered motifs such as helical or beta sheet domains. In particular, this review describes approaches that harness the synergistic interplay between order-promoting and thermoresponsive building blocks to design hybrid biomaterials, resulting in well-structured, stimuli-responsive supramolecular materials ordered on the nanoscale.


Subject(s)
Biocompatible Materials , Elastin , Peptides , Biocompatible Materials/chemistry , Elastin/chemistry , Elastin/genetics , Peptides/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Temperature , Humans , Insect Proteins
5.
Exp Eye Res ; 240: 109813, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331016

ABSTRACT

Glaucoma is a multifactorial progressive ocular pathology that manifests clinically with damage to the optic nerve (ON) and the retina, ultimately leading to blindness. The optic nerve head (ONH) shows the earliest signs of glaucoma pathology, and therefore, is an attractive target for drug discovery. The goal of this study was to elucidate the effects of reactive astrocytosis on the elastin metabolism pathway in primary rat optic nerve head astrocytes (ONHA), the primary glial cell type in the unmyelinated ONH. Following exposure to static equibiaxial mechanical strain, we observed prototypic molecular and biochemical signatures of reactive astrocytosis that were associated with a decrease in lysyl oxidase like 1 (Loxl1) expression and a concomitant decrease in elastin (Eln) gene expression. We subsequently investigated the role of Loxl1 in reactive astrocytosis by generating primary rat ONHA cultures with ∼50% decreased Loxl1 expression. Our results suggest that reduced Loxl1 expression is sufficient to elicit molecular signatures of elastinopathy in ONHA. Astrocyte derived exosomes (ADE) significantly increased the length of primary neurites of primary neurons in vitro. In contrast, ADE from Loxl1-deficient ONHA were deficient of trophic effects on neurite outgrowth in vitro, positing that Loxl1 dysfunction and the ensuing impaired elastin synthesis during reactive astrocytosis in the ONH may contribute to impaired neuron-glia signaling in glaucoma. Our data support a role of dysregulated Loxl1 function in eliciting reactive astrocytosis in glaucoma subtypes associated with increased IOP, even in the absence of genetic polymorphisms in LOXL1 typically associated with exfoliation glaucoma. This suggests the need for a paradigm shift toward considering lysyl oxidase activity and elastin metabolism and signaling as contributors to an altered secretome of the ONH that may lead to the progression of glaucomatous changes. Future research is needed to investigate cargo of exosomes in the context of reactive astrocytosis and identify the pathways leading to the observed transcriptome changes during reactive astrocytosis.


Subject(s)
Exosomes , Glaucoma , Optic Disk , Rats , Animals , Optic Disk/metabolism , Protein-Lysine 6-Oxidase/genetics , Astrocytes/metabolism , Exosomes/metabolism , Gliosis/metabolism , Glaucoma/metabolism , Elastin/genetics , Inflammation/metabolism
6.
Transgenic Res ; 33(1-2): 21-33, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573429

ABSTRACT

Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.


Subject(s)
Elastin-Like Polypeptides , Silk , Silk/genetics , Arthropod Proteins , Elastin/genetics , Elastin/chemistry , Elastin/metabolism , Nicotiana/genetics , Recombinant Fusion Proteins/genetics
7.
Protein Expr Purif ; 224: 106578, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39153561

ABSTRACT

Current biological research requires simple protein bioseparation methods capable of purifying target proteins in a single step with high yields and purities. Conventional affinity tag-based approaches require specific affinity resins and expensive proteolytic enzymes for tag removal. Purification strategies based on self-cleaving aggregating tags have been previously developed to address these problems. However, these methods often utilize C-terminal cleaving contiguous inteins which suffer from premature cleavage, resulting in significant product loss during protein expression. In this work, we evaluate two novel mutants of the Mtu RecA ΔI-CM mini-intein obtained through yeast surface display for improved protein purification. When used with the elastin-like-polypeptide (ELP) precipitation tag, the novel mutants - ΔI-12 and ΔI-29 resulted in significantly higher precursor content, product purity and process yield compared to the original Mtu RecA ΔI-CM mini-intein. Product purities ranging from 68 % to 94 % were obtained in a single step for three model proteins - green fluorescent protein (GFP), maltose binding protein (MBP) and beta-galactosidase (beta-gal). Further, high cleaving efficiency was achieved after 5 h under most conditions. Overall, we have developed improved self-cleaving precipitation tags which can be used for purifying a wide range of proteins cheaply at laboratory scale.


Subject(s)
Inteins , Maltose-Binding Proteins , Rec A Recombinases , beta-Galactosidase , Inteins/genetics , beta-Galactosidase/genetics , beta-Galactosidase/chemistry , beta-Galactosidase/isolation & purification , beta-Galactosidase/metabolism , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/chemistry , Rec A Recombinases/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Elastin/chemistry , Elastin/genetics , Elastin/isolation & purification , Chemical Precipitation , Escherichia coli/genetics , Escherichia coli/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry
8.
Protein Expr Purif ; 222: 106521, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38852714

ABSTRACT

Plants are often seen as a potent tool in the recombinant protein production industry. However, unlike bacterial expression, it is not a popular method due to the low yield and difficulty of protein extraction and purification. Therefore, developing a new high efficient and easy to purify platform is crucial. One of the best approaches to make extraction easier is to utilize the Extensin Signal peptide (EXT) to translocate the recombinant protein to the outside of the cell, along with incorporating an Elastin-like polypeptide tag (ELP) to enhance purification and accumulation rates. In this research, we transiently expressed Shigella dysenteriae's IpaDSTxB fused to both NtEXT and ELP in both Nicotiana tabacum and Medicago sativa. Our results demonstrated that N. tabacum, with an average yield of 6.39 ng/µg TSP, outperforms M. sativa, which had an average yield of 3.58 ng/µg TSP. On the other hand, analyzing NtEXT signal peptide indicated that merging EXT to the constructs facilitates translocation of IpaDSTxB to the apoplast by 78.4% and 65.9% in N. tabacum and M. sativa, respectively. Conversely, the mean level for constructs without EXT was below 25% for both plants. Furthermore, investigation into the orientation of ELP showed that merging it to the C-terminal of IpaDSTxB leads to a higher accumulation rate in both N. tabacum and M. sativa by 1.39 and 1.28 times, respectively. It also facilitates purification rate by over 70% in comparison to 20% of the 6His tag. The results show a highly efficient and easy to purify platform for the expression of heterologous proteins in plant.


Subject(s)
Bacterial Proteins , Elastin , Nicotiana , Protein Sorting Signals , Recombinant Fusion Proteins , Shigella dysenteriae , Nicotiana/genetics , Nicotiana/metabolism , Protein Sorting Signals/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/biosynthesis , Bacterial Proteins/metabolism , Elastin/genetics , Elastin/chemistry , Elastin/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/metabolism , Shigella dysenteriae/genetics , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/chemistry , Medicago sativa/microbiology , Gene Expression , Plant Proteins/genetics , Plant Proteins/biosynthesis , Plant Proteins/isolation & purification , Plant Proteins/chemistry , Plant Proteins/metabolism , Glycoproteins/genetics , Glycoproteins/chemistry , Glycoproteins/isolation & purification , Glycoproteins/biosynthesis , Glycoproteins/metabolism , Elastin-Like Polypeptides
9.
Biomacromolecules ; 25(9): 6127-6134, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39105695

ABSTRACT

We present a straightforward strategy for constructing giant, multicompartmentalized vesicles using recombinant fusion proteins. Our method leverages the self-assembly of globule-zipper-elastin-like polypeptide fusion protein complexes in aqueous conditions, eliminating the need for organic solvents and chemical conjugation. By employing the thin-film rehydration method, we have successfully encapsulated a diverse range of bioactive macromolecules and engineered organelle-like compartments─ranging from soluble proteins and coacervate droplets to vesicles─within these protein-assembled giant vesicles. This approach also facilitates the integration of water-soluble block copolymers, enhancing the structural stability and functional versatility of the vesicles. Our results suggest that these multicompartment giant protein vesicles not only mimic the complex architecture of living cells but also support biochemically distinct reactions regulated by functionally folded proteins, providing a robust model for studying cellular processes and designing microreactor systems. This work highlights the transformative potential of self-assembling recombinant fusion proteins in artificial cell design.


Subject(s)
Recombinant Fusion Proteins , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Elastin/chemistry , Elastin/genetics , Peptides/chemistry
10.
Pediatr Cardiol ; 45(5): 1154-1156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38294523

ABSTRACT

Supravalvular aortic stenosis (SVAS) has been well described in Williams-Beuren Syndrome and non-syndromic elastin (ELN) mutations. Non-syndromic ELN mutations are inherited in an autosomal dominant pattern with incomplete penetrance and variable expressivity. ELN haploinsufficiency leads to progressive arteriopathy, typically affecting the aortic sinotubular junction. Multi-level pulmonary stenosis has also been reported and biventricular obstruction may portend a worse prognosis. Fetal presentation of ELN mutation with SVAS has not been previously reported in the literature. We present a case of fetal diagnosis of SVAS and multi-level pulmonary stenosis in a family with a known pathogenic ELN mutation (Exon 6, c.278del [p.Pro93Leufs*29]). On the fetus' initial fetal echo, there was only mild flow acceleration through the aortic outflow tract, however, she went on to develop progressive bilateral obstruction. In the early post-natal period, the child was clinically asymptomatic and showed similar mild SVAS and mild valvar and supravalvular pulmonary stenosis. Our case highlights the need for serial monitoring of fetuses with suspected or confirmed ELN arteriopathy.


Subject(s)
Aortic Stenosis, Supravalvular , Elastin , Mutation , Pulmonary Valve Stenosis , Adult , Female , Humans , Infant, Newborn , Pregnancy , Aortic Stenosis, Supravalvular/diagnostic imaging , Aortic Stenosis, Supravalvular/genetics , Elastin/genetics , Pulmonary Valve Stenosis/genetics , Pulmonary Valve Stenosis/diagnostic imaging , Ultrasonography, Prenatal
11.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125999

ABSTRACT

Elastin, a key structural protein essential for the elasticity of the skin and elastogenic tissues, degrades with age. Replenishing elastin holds promise for anti-aging cosmetics and the supplementation of elastic activities of the cardiovascular system. We employed RiboScreenTM, a technology for identifying molecules that enhance the production of specific proteins, to target the production of tropoelastin. We make use of RiboScreenTM in two crucial steps: first, to pinpoint a target ribosomal protein (TRP), which acts as a switch to increase the production of the protein of interest (POI), and second, to identify small molecules that activate this ribosomal protein switch. Using RiboScreenTM, we identified ribosomal protein L40, henceforth eL40, as a TRP switch to boost tropoelastin production. Drug discovery identified a small-molecule hit that binds to eL40. In-cell treatment demonstrated activity of the eL40 ligand and delivered increased tropoelastin production levels in a dose-dependent manner. Thus, we demonstrate that RiboScreenTM can successfully identify a small-molecule hit capable of selectively enhancing tropoelastin production. This compound has the potential to be developed for topical or systemic applications to promote skin rejuvenation and to supplement elastic functionality within the cardiovascular system.


Subject(s)
Elastin , Ribosomal Proteins , Ribosomes , Tropoelastin , Tropoelastin/metabolism , Tropoelastin/genetics , Humans , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Elastin/metabolism , Elastin/genetics , Ribosomes/metabolism , Ribosomes/drug effects , Ligands , Small Molecule Libraries/pharmacology
12.
Am J Physiol Cell Physiol ; 324(2): C327-C338, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36503240

ABSTRACT

Arterial calcification due to deficiency of CD73 (ACDC) is a rare genetic disease caused by a loss-of-function mutation in the NT5E gene encoding the ecto-5'-nucleotidase (cluster of differentiation 73, CD73) enzyme. Patients with ACDC develop vessel arteriomegaly, tortuosity, and vascular calcification in their lower extremity arteries. Histological analysis shows that patients with ACDC vessels exhibit fragmented elastin fibers similar to that seen in aneurysmal-like pathologies. It is known that alterations in transforming growth factor ß (TGFß) pathway signaling contribute to this elastin phenotype in several connective tissue diseases, as TGFß regulates extracellular matrix (ECM) remodeling. Our study investigates whether CD73-derived adenosine modifies TGFß signaling in vascular smooth muscle cells (SMCs). We show that Nt5e-/- SMCs have elevated contractile markers and elastin gene expression compared with Nt5e+/+ SMCs. Ecto-5'-nucleotidase (Nt5e)-deficient SMCs exhibit increased TGFß-2 and activation of small mothers against decapentaplegic (SMAD) signaling, elevated elastin transcript and protein, and potentiate SMC contraction. These effects were diminished when the A2b adenosine receptor was activated. Our results identify a novel link between adenosine and TGFß signaling, where adenosine signaling via the A2b adenosine receptor attenuates TGFß signaling to regulate SMC homeostasis. We discuss how disruption in adenosine signaling is implicated in ACDC vessel tortuosity and could potentially contribute to other aneurysmal pathogenesis.


Subject(s)
5'-Nucleotidase , Adenosine , Adenosine/metabolism , Elastin/genetics , Signal Transduction , Transforming Growth Factor beta
13.
Am J Med Genet A ; 191(4): 1059-1064, 2023 04.
Article in English | MEDLINE | ID: mdl-36541930

ABSTRACT

Cutis laxa (CL) is a rare, inherited or acquired connective tissue disorder characterized by abnormal elastic fibers causing loose and redundant skin and a prematurely aged appearance. The syndrome has been associated with hypertension, but cases with early-onset ischemic heart disease have never been described. Here, we report a 21-year-old Danish female with activity-related shortness of breath and oedema of the lower extremities. The patient had a clinical diagnosis of autosomal dominant CL, but no genotyping had been performed prior to the index admission. The patient was diagnosed with ischemic heart disease, based on results of non-invasive cardiovascular imaging (including MRI and PET-CT) followed by invasive treatment of a critical left main coronary artery stenosis. Subsequent referral to genetic testing revealed a likely pathogenic intronic variant in ELN. This case report includes the clinical findings and relates these to known molecular mechanisms of CL.


Subject(s)
Coronary Stenosis , Cutis Laxa , Elastin , Female , Humans , Young Adult , Coronary Stenosis/diagnosis , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/genetics , Cutis Laxa/diagnosis , Cutis Laxa/genetics , Elastin/genetics , Introns/genetics , Mutation , Pedigree
14.
Biotechnol Bioeng ; 120(5): 1423-1436, 2023 05.
Article in English | MEDLINE | ID: mdl-36621901

ABSTRACT

Elastic cartilage possesses many elastic fibers and has a high degree of elasticity. However, insufficient elastic fiber production remains unsolved in elastic cartilage tissue engineering. Exogenous elastin is difficult to degrade and violates cell proliferation and migration during cartilage regeneration. Moreover, exogenous elastic fibers are difficult to assemble with endogenous extracellular matrix components. We produced genetically engineered chondrocytes overexpressing elastin to boost endogenous elastic fiber production. After identifying that genetic manipulation hardly impacted the cell viability and chondrogenesis of chondrocytes, we co-cultured genetically engineered chondrocytes with untreated chondrocytes in a three-dimensional gelatin methacryloyl (GelMA) system. In vitro study showed that the co-culture system produced more elastic fibers and increased cell retention, resulting in strengthened mechanics than the control system with untreated chondrocytes. Moreover, in vivo implantation revealed that the co-culture GelMA system greatly resisted host tissue invasion by promoting elastic fiber production and cartilage tissue regeneration compared with the control system. In summary, our study indicated that genetically engineered chondrocytes overexpressing elastin are efficient and safe for promoting elastic fiber production and cartilage regeneration in elastic cartilage tissue engineering.


Subject(s)
Chondrocytes , Elastin , Elastin/genetics , Elastin/metabolism , Chondrogenesis/genetics , Cartilage , Tissue Engineering/methods , Cells, Cultured
15.
Proc Natl Acad Sci U S A ; 117(25): 14602-14608, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32522869

ABSTRACT

Bioinspired actuators with stimuli-responsive and deformable properties are being pursued in fields such as artificial tissues, medical devices and diagnostics, and intelligent biosensors. These applications require that actuator systems have biocompatibility, controlled deformability, biodegradability, mechanical durability, and stable reversibility. Herein, we report a bionic actuator system consisting of stimuli-responsive genetically engineered silk-elastin-like protein (SELP) hydrogels and wood-derived cellulose nanofibers (CNFs), which respond to temperature and ionic strength underwater by ecofriendly methods. Programmed site-selective actuation can be predicted and folded into three-dimensional (3D) origami-like shapes. The reversible deformation performance of the SELP/CNF actuators was quantified, and complex spatial transformations of multilayer actuators were demonstrated, including a biomimetic flower design with selective petal movements. Such actuators consisting entirely of biocompatible and biodegradable materials will offer an option toward constructing stimuli-responsive systems for in vivo biomedicine soft robotics and bionic research.


Subject(s)
Biocompatible Materials/chemistry , Biomimetic Materials/chemistry , Bionics/methods , Cellulose/chemistry , Elastin/chemistry , Elastin/genetics , Hydrogels/chemistry , Molecular Conformation , Nanofibers/chemistry , Protein Engineering , Robotics/methods , Silk/chemistry , Silk/genetics
16.
Pediatr Cardiol ; 44(4): 946-950, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36790509

ABSTRACT

Supravalvar aortic stenosis (SVAS) is a less common but clinically important form of left ventricular outflow tract obstruction, and commonly associated with Williams syndrome (WS). SVAS outside of WS may also occur sporadically or in a familial form, often with identifiable mutations in the elastin (ELN) gene. While risk of sudden cardiac death in patients with SVAS has been extensively described in the context of WS, less is known about risk in patients with isolated SVAS. We report a case of a nonsyndromic two-year-old boy with evolving manifestations of SVAS who developed sudden cardiac arrest and death during a sedated cardiac magnetic resonance imaging study. A strong family history of SVAS was present and targeted genetic testing identified an ELN gene mutation in the boy's affected father and other paternal relatives. We review risk factors found in the literature for SCA in SVAS patients and utilize this case to raise awareness of the risk of cardiac events in these individuals even in the absence of WS or severe disease. This case also underscores the importance of genetic testing, including targeted panels specifically looking for ELN gene mutations, in all patients with SVAS even in the absence of phenotypic concerns for WS or other genetic syndromes.


Subject(s)
Aortic Stenosis, Supravalvular , Williams Syndrome , Male , Humans , Child , Child, Preschool , Aortic Stenosis, Supravalvular/diagnostic imaging , Aortic Stenosis, Supravalvular/genetics , Aortic Stenosis, Supravalvular/complications , Elastin/genetics , Mutation , Williams Syndrome/complications , Williams Syndrome/genetics , Death, Sudden, Cardiac/etiology , Magnetic Resonance Spectroscopy
17.
Int J Mol Sci ; 24(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37373217

ABSTRACT

Williams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder that, together with a rather characteristic neurocognitive profile, presents a strong cardiovascular phenotype. The cardiovascular features of WBS are mainly related to a gene dosage effect due to hemizygosity of the elastin (ELN) gene; however, the phenotypic variability between WBS patients indicates the presence of important modulators of the clinical impact of elastin deficiency. Recently, two genes within the WBS region have been linked to mitochondrial dysfunction. Numerous cardiovascular diseases are related to mitochondrial dysfunction; therefore, it could be a modulator of the phenotype present in WBS. Here, we analyze mitochondrial function and dynamics in cardiac tissue from a WBS complete deletion (CD) model. Our research reveals that cardiac fiber mitochondria from CD animals have altered mitochondrial dynamics, accompanied by respiratory chain dysfunction with decreased ATP production, reproducing alterations observed in fibroblasts from WBS patients. Our results highlight two major factors: on the one hand, that mitochondrial dysfunction is probably a relevant mechanism underlying several risk factors associated with WBS disease; on the other, the CD murine model mimics the mitochondrial phenotype of WBS and could be a great model for carrying out preclinical tests on drugs targeting the mitochondria.


Subject(s)
Williams Syndrome , Animals , Mice , Williams Syndrome/genetics , Elastin/genetics , Disease Models, Animal , Phenotype , Mitochondria/genetics
18.
Am J Physiol Cell Physiol ; 322(5): C875-C886, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35196168

ABSTRACT

Elastin is a long-lived extracellular matrix protein that is organized into elastic fibers that provide elasticity to the arterial wall, allowing stretch and recoil with each cardiac cycle. By forming lamellar units with smooth muscle cells, elastic fibers transduce tissue-level mechanics to cell-level changes through mechanobiological signaling. Altered amounts or assembly of elastic fibers leads to changes in arterial structure and mechanical behavior that compromise cardiovascular function. In particular, genetic mutations in the elastin gene (ELN) that reduce elastin protein levels are associated with focal arterial stenosis, or narrowing of the arterial lumen, such as that seen in supravalvular aortic stenosis and Williams-Beuren syndrome. Global reduction of Eln levels in mice allows investigation of the tissue- and cell-level arterial mechanical changes and associated alterations in smooth muscle cell phenotype that may contribute to stenosis formation. A loxP-floxed Eln allele in mice highlights cell type- and developmental origin-specific mechanobiological effects of reduced elastin amounts. Eln production is required in distinct cell types for elastic layer formation in different parts of the mouse vasculature. Eln deletion in smooth muscle cells from different developmental origins in the ascending aorta leads to characteristic patterns of vascular stenosis and neointima. Dissecting the mechanobiological signaling associated with local Eln depletion and subsequent smooth muscle cell response may help develop new therapeutic interventions for elastin-related diseases.


Subject(s)
Arteries , Elastin , Animals , Aorta/metabolism , Arteries/metabolism , Constriction, Pathologic/metabolism , Elastin/genetics , Elastin/metabolism , Elastin/pharmacology , Mice , Myocytes, Smooth Muscle/metabolism
19.
Am J Physiol Cell Physiol ; 323(3): C666-C677, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35816641

ABSTRACT

Elastin provides recoil to tissues that stretch such as the lung, blood vessels, and skin. It is deposited in a brief window starting in the prenatal period and extending to adolescence in vertebrates, and then slowly turns over. Elastin insufficiency is seen in conditions such as Williams-Beuren syndrome and elastin-related supravalvar aortic stenosis, which are associated with a range of vascular and connective tissue manifestations. Regulation of the elastin (ELN) gene occurs at multiple levels including promoter activation/inhibition, mRNA stability, interaction with microRNAs, and alternative splicing. However, these mechanisms are incompletely understood. Better understanding of the processes controlling ELN gene expression may improve medicine's ability to intervene in these rare conditions, as well as to replace age-associated losses by re-initiating elastin production. This review describes what is known about the ELN gene promoter structure, transcriptional regulation by cytokines and transcription factors, and posttranscriptional regulation via mRNA stability and micro-RNA and highlights new approaches that may influence regenerative medicine.


Subject(s)
Aortic Stenosis, Supravalvular , MicroRNAs , Williams Syndrome , Animals , Aortic Stenosis, Supravalvular/genetics , Elastin/genetics , Elastin/metabolism , Gene Expression Regulation , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Williams Syndrome/genetics
20.
Hum Mol Genet ; 29(12): 2035-2050, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32412588

ABSTRACT

Supravalvular aortic stenosis (SVAS) is a narrowing of the aorta caused by elastin (ELN) haploinsufficiency. SVAS severity varies among patients with Williams-Beuren syndrome (WBS), a rare disorder that removes one copy of ELN and 25-27 other genes. Twenty percent of children with WBS require one or more invasive and often risky procedures to correct the defect while 30% have no appreciable stenosis, despite sharing the same basic genetic lesion. There is no known medical therapy. Consequently, identifying genes that modify SVAS offers the potential for novel modifier-based therapeutics. To improve statistical power in our rare-disease cohort (N = 104 exomes), we utilized extreme-phenotype cohorting, functional variant filtration and pathway-based analysis. Gene set enrichment analysis of exome-wide association data identified increased adaptive immune system variant burden among genes associated with SVAS severity. Additional enrichment, using only potentially pathogenic variants known to differ in frequency between the extreme phenotype subsets, identified significant association of SVAS severity with not only immune pathway genes, but also genes involved with the extracellular matrix, G protein-coupled receptor signaling and lipid metabolism using both SKAT-O and RQTest. Complementary studies in Eln+/-; Rag1-/- mice, which lack a functional adaptive immune system, showed improvement in cardiovascular features of ELN insufficiency. Similarly, studies in mixed background Eln+/- mice confirmed that variations in genes that increase elastic fiber deposition also had positive impact on aortic caliber. By using tools to improve statistical power in combination with orthogonal analyses in mice, we detected four main pathways that contribute to SVAS risk.


Subject(s)
Aortic Stenosis, Supravalvular/genetics , Elastin/genetics , Homeodomain Proteins/genetics , Williams Syndrome/genetics , Adolescent , Animals , Aortic Stenosis, Supravalvular/physiopathology , Child, Preschool , Constriction, Pathologic/genetics , Constriction, Pathologic/physiopathology , Disease Models, Animal , Haploinsufficiency/genetics , Humans , Male , Mice , Risk Factors , Exome Sequencing , Williams Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL