Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add more filters

Publication year range
1.
Bioelectromagnetics ; 38(5): 329-338, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28426166

ABSTRACT

Due to its attributes, characteristics, and technological resources, the mobile phone (MP) has become one of the most commonly used communication devices. Historically, ample evidence has ruled out the substantial short-term impact of radiofrequency electromagnetic field (RF-EMF) emitted by MP on human cognitive performance. However, more recent evidence suggests potential harmful effects associated with MP EMF exposure. The aim of this review is to readdress the question of whether the effect of MP EMF exposure on brain function should be reopened. We strengthen our argument focusing on recent neuroimaging and electroencephalography studies, in order to present a more specific analysis of effects of MP EMF exposure on neurocognitive function. Several studies indicate an increase in cortical excitability and/or efficiency with EMF exposure, which appears to be more prominent in fronto-temporal regions and has been associated with faster reaction time. Cortical excitability might also underpin disruption to sleep. However, several inconsistent findings exist, and conclusions regarding adverse effects of EMF exposure are currently limited. It also should be noted that the crucial scientific question of the effect of longer-term MP EMF exposure on brain function remains unanswered and essentially unaddressed. Bioelectromagnetics. 38:329-338, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/physiology , Brain/radiation effects , Cell Phone , Electromagnetic Fields/adverse effects , Radio Waves/adverse effects , Brain/diagnostic imaging , Electroencephalography/radiation effects , Humans , Sleep/physiology , Sleep/radiation effects
2.
Electromagn Biol Med ; 36(2): 202-212, 2017.
Article in English | MEDLINE | ID: mdl-27874295

ABSTRACT

The aim of this study is to explain the mechanism of the effect of low-level modulated microwave radiation on brain bioelectrical oscillations. The proposed model of excitation by low-level microwave radiation bases on the influence of water polarization on hydrogen bonding forces between water molecules, caused by this the enhancement of diffusion and consequences on neurotransmitters transit time and neuron resting potential. Modulated microwave radiation causes periodic alteration of the neurophysiologic parameters and parametric excitation of brain bioelectric oscillations. The experiments to detect logical outcome of the mechanism on physiological level were carried out on 15 human volunteers. The 450-MHz microwave radiation modulated at 7, 40 and 1000 Hz frequencies was applied at the field power density of 0.16 mW/cm2. A relative change in the EEG power with and without radiation during 10 cycles was used as a quantitative measure. Experimental data demonstrated that modulated at 40 Hz microwave radiation enhanced EEG power in EEG alpha and beta frequency bands. No significant alterations were detected at 7 and 1000 Hz modulation frequencies. These results are in good agreement with the theory of parametric excitation of the brain bioelectric oscillations caused by the periodic alteration of neurophysiologic parameters and support the proposed mechanism. The proposed theoretical framework has been shown to predict the results of experimental study. The suggested mechanism, free of the restrictions related to field strength or time constant, is the first one providing explanation of low-level microwave radiation effects.


Subject(s)
Brain/physiology , Brain/radiation effects , Microwaves , Dose-Response Relationship, Radiation , Electroencephalography/radiation effects , Female , Humans , Male , Young Adult
3.
J Neurophysiol ; 113(7): 2753-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25695646

ABSTRACT

The aim of the present work was to investigate the effects of the radiofrequency (RF) electromagnetic fields (EMFs) on human resting EEG with a control of some parameters that are known to affect alpha band, such as electrode impedance, salivary cortisol, and caffeine. Eyes-open and eyes-closed resting EEG data were recorded in 26 healthy young subjects under two conditions: sham exposure and real exposure in double-blind, counterbalanced, crossover design. Spectral power of EEG rhythms was calculated for the alpha band (8-12 Hz). Saliva samples were collected before and after the study. Salivary cortisol and caffeine were assessed by ELISA and HPLC, respectively. The electrode impedance was recorded at the beginning of each run. Compared with the sham session, the exposure session showed a statistically significant (P < 0.0001) decrease of the alpha band spectral power during closed-eyes condition. This effect persisted in the postexposure session (P < 0.0001). No significant changes were detected in electrode impedance, salivary cortisol, and caffeine in the sham session compared with the exposure one. These results suggest that GSM-EMFs of a mobile phone affect the alpha band within spectral power of resting human EEG.


Subject(s)
Alpha Rhythm/physiology , Cell Phone , Electroencephalography/methods , Radio Waves , Rest/physiology , Saliva/metabolism , Adult , Alpha Rhythm/radiation effects , Caffeine/analysis , Electroencephalography/radiation effects , Female , Humans , Hydrocortisone/analysis , Male , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
4.
Bioelectromagnetics ; 36(3): 169-77, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25690404

ABSTRACT

Pulse-modulated radiofrequency electromagnetic fields (RF EMF) can alter brain activity during sleep; increases of electroencephalographic (EEG) power in the sleep spindle (13.75-15.25 Hz) and delta-theta (1.25-9 Hz) frequency range have been reported. These field effects show striking inter-individual differences. However, it is still unknown whether individual subjects react in a similar way when repeatedly exposed. Thus, our study aimed to investigate inter-individual variation and intra-individual stability of field effects. To do so, we exposed 20 young male subjects twice for 30 min prior to sleep to the same amplitude modulated 900 MHz (2 Hz pulse, 20 Hz Gaussian low-pass filter and a ratio of peak-to-average of 4) RF EMF (spatial peak absorption of 2 W/kg averaged over 10 g) 2 weeks apart. The topographical analysis of EEG power during all-night non-rapid eye movement sleep revealed: (1) exposure-related increases in delta-theta frequency range in several fronto-central electrodes; and (2) no differences in spindle frequency range. We did not observe reproducible within-subject RF EMF effects on sleep spindle and delta-theta activity in the sleep EEG and it remains unclear whether a biological trait of how the subjects' brains react to RF EMF exists.


Subject(s)
Electroencephalography/radiation effects , Electromagnetic Fields , Radiation Exposure , Radio Waves , Sleep/physiology , Sleep/radiation effects , Brain Waves/radiation effects , Humans , Male , Polysomnography/radiation effects , Young Adult
5.
Bioelectromagnetics ; 34(1): 31-42, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22674213

ABSTRACT

Potential effects of a 30 min exposure to third generation (3G) Universal Mobile Telecommunications System (UMTS) mobile phone-like electromagnetic fields (EMFs) were investigated on human brain electrical activity in two experiments. In the first experiment, spontaneous electroencephalography (sEEG) was analyzed (n = 17); in the second experiment, auditory event-related potentials (ERPs) and automatic deviance detection processes reflected by mismatch negativity (MMN) were investigated in a passive oddball paradigm (n = 26). Both sEEG and ERP experiments followed a double-blind protocol where subjects were exposed to either genuine or sham irradiation in two separate sessions. In both experiments, electroencephalograms (EEG) were recorded at midline electrode sites before and after exposure while subjects were watching a silent documentary. Spectral power of sEEG data was analyzed in the delta, theta, alpha, and beta frequency bands. In the ERP experiment, subjects were presented with a random series of standard (90%) and frequency-deviant (10%) tones in a passive binaural oddball paradigm. The amplitude and latency of the P50, N100, P200, MMN, and P3a components were analyzed. We found no measurable effects of a 30 min 3G mobile phone irradiation on the EEG spectral power in any frequency band studied. Also, we found no significant effects of EMF irradiation on the amplitude and latency of any of the ERP components. In summary, the present results do not support the notion that a 30 min unilateral 3G EMF exposure interferes with human sEEG activity, auditory evoked potentials or automatic deviance detection indexed by MMN.


Subject(s)
Brain/radiation effects , Cell Phone , Electroencephalography/radiation effects , Environmental Exposure/adverse effects , Evoked Potentials, Auditory/radiation effects , Radio Waves/adverse effects , Adult , Female , Humans , Male , Young Adult
6.
J Sleep Res ; 21(6): 620-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22724534

ABSTRACT

Studies have repeatedly shown that electroencephalographic power during sleep is enhanced in the spindle frequency range following radio frequency electromagnetic field exposures pulse-modulated with fundamental frequency components of 2, 8, 14 or 217 Hz and combinations of these. However, signals used in previous studies also had significant harmonic components above 20 Hz. The current study aimed: (i) to determine if modulation components above 20 Hz, in combination with radio frequency, are necessary to alter the electroencephalogram; and (ii) to test the demodulation hypothesis, if the same effects occur after magnetic field exposure with the same pulse sequence used in the pulse-modulated radio frequency exposure. In a randomized double-blind crossover design, 25 young healthy men were exposed at weekly intervals to three different conditions for 30 min before sleep. Cognitive tasks were also performed during exposure. The conditions were a 2-Hz pulse-modulated radio frequency field, a 2-Hz pulsed magnetic field, and sham. Radio frequency exposure increased electroencephalogram power in the spindle frequency range. Furthermore, delta and theta activity (non-rapid eye movement sleep), and alpha and delta activity (rapid eye movement sleep) were affected following both exposure conditions. No effect on sleep architecture and no clear impact of exposure on cognition was observed. These results demonstrate that both pulse-modulated radio frequency and pulsed magnetic fields affect brain physiology, and the presence of significant frequency components above 20 Hz are not fundamental for these effects to occur. Because responses were not identical for all exposures, the study does not support the hypothesis that effects of radio frequency exposure are based on demodulation of the signal only.


Subject(s)
Brain/radiation effects , Electroencephalography/radiation effects , Electromagnetic Fields/adverse effects , Sleep Stages/radiation effects , Adult , Brain/physiology , Cross-Over Studies , Double-Blind Method , Humans , Male , Neuropsychological Tests , Polysomnography/instrumentation , Polysomnography/methods , Sleep Stages/physiology , Time Factors , Young Adult
7.
J Sleep Res ; 21(1): 50-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21489004

ABSTRACT

Previous studies have observed increases in electroencephalographic power during sleep in the spindle frequency range (approximately 11-15 Hz) after exposure to mobile phone-like radio frequency electromagnetic fields (RF EMF). Results also suggest that pulse modulation of the signal is crucial to induce these effects. Nevertheless, it remains unclear which specific elements of the field are responsible for the observed changes. We investigated whether pulse-modulation frequency components in the range of sleep spindles may be involved in mediating these effects. Thirty young healthy men were exposed, at weekly intervals, to three different conditions for 30 min directly prior to an 8-h sleep period. Exposure consisted of a 900-MHz RF EMF, pulse modulated at 14 Hz or 217 Hz, and a sham control condition. Both active conditions had a peak spatial specific absorption rate of 2 W kg(-1) . During exposure subjects performed three different cognitive tasks (measuring attention, reaction speed and working memory), which were presented in a fixed order. Electroencephalographic power in the spindle frequency range was increased during non-rapid eye movement sleep (2nd episode) following the 14-Hz pulse-modulated condition. A similar but non-significant increase was also observed following the 217-Hz pulse-modulated condition. Importantly, this exposure-induced effect showed considerable individual variability. Regarding cognitive performance, no clear exposure-related effects were seen. Consistent with previous findings, our results provide further evidence that pulse-modulated RF EMF alter brain physiology, although the time-course of the effect remains variable across studies. Additionally, we demonstrated that modulation frequency components within a physiological range may be sufficient to induce these effects.


Subject(s)
Cognition/radiation effects , Electroencephalography , Electromagnetic Fields/adverse effects , Radio Waves/adverse effects , Sleep Stages/radiation effects , Adult , Attention/physiology , Attention/radiation effects , Cognition/physiology , Electroencephalography/radiation effects , Humans , Individuality , Male , Memory, Short-Term/physiology , Memory, Short-Term/radiation effects , Polysomnography , Reaction Time/physiology , Reaction Time/radiation effects , Sleep Stages/physiology , Time Factors , Young Adult
8.
Bioelectromagnetics ; 33(1): 86-93, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21812009

ABSTRACT

Mobile phone exposure-related effects on the human electroencephalogram (EEG) have been shown during both waking and sleep states, albeit with slight differences in the frequency affected. This discrepancy, combined with studies that failed to find effects, has led many to conclude that no consistent effects exist. We hypothesised that these differences might partly be due to individual variability in response, and that mobile phone emissions may in fact have large but differential effects on human brain activity. Twenty volunteers from our previous study underwent an adaptation night followed by two experimental nights in which they were randomly exposed to two conditions (Active and Sham), followed by a full-night sleep episode. The EEG spectral power was increased in the sleep spindle frequency range in the first 30 min of non-rapid eye movement (non-REM) sleep following Active exposure. This increase was more prominent in the participants that showed an increase in the original study. These results confirm previous findings of mobile phone-like emissions affecting the EEG during non-REM sleep. Importantly, this low-level effect was also shown to be sensitive to individual variability. Furthermore, this indicates that previous negative results are not strong evidence for a lack of an effect and, given the far-reaching implications of mobile phone research, we may need to rethink the interpretation of results and the manner in which research is conducted in this field.


Subject(s)
Cell Phone , Radio Waves/adverse effects , Sleep/radiation effects , Adult , Electroencephalography/radiation effects , Female , Humans , Male , Middle Aged , Young Adult
9.
Article in Zh | MEDLINE | ID: mdl-21485180

ABSTRACT

The present paper is aimed to study the processes of stress reaction and their judgment bases in rat induced by 35 GHz millimeter wave quantitatively. The relative change in the average energy of each EEG frequency band decomposed by wavelet analysis was calculated for extracting the stress indicator for the purpose. The rat would experience quiet period, guarding period, deadlock period and prostrating period in sequence. The judgment bases of different stress periods in rat induced by millimeter wave were obtained by analyzing the skin temperature, skin injury and changes of blood biochemical indexes during each stress period. The stress period changed from quiet period to guarding period when the skin temperature of irradiated area reached the thermal pain threshold. It was from guarding period to deadlock period when the skin had gotten serious injury. Then the rat reaction sensitivity decreased, and injury of its visceral organs occurred. The rat got to prostrating period when the sustained irradiation caused the rat's visceral organs to get more serious injury. The further sustained irradiation finally induced death of the rat.


Subject(s)
Electroencephalography/radiation effects , Electromagnetic Radiation , Stress, Physiological/radiation effects , Animals , Dose-Response Relationship, Radiation , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Skin/radiation effects , Skin Temperature/radiation effects
10.
J Alzheimers Dis ; 83(4): 1481-1498, 2021.
Article in English | MEDLINE | ID: mdl-34092636

ABSTRACT

BACKGROUND: Transcranial photobiomodulation (tPBM) has recently emerged as a potential cognitive enhancement technique and clinical treatment for various neuropsychiatric and neurodegenerative disorders by delivering invisible near-infrared light to the scalp and increasing energy metabolism in the brain. OBJECTIVE: We assessed whether transcranial photobiomodulation with near-infrared light modulates cerebral electrical activity through electroencephalogram (EEG) and cerebral blood flow (CBF). METHODS: We conducted a single-blind, sham-controlled pilot study to test the effect of continuous (c-tPBM), pulse (p-tPBM), and sham (s-tPBM) transcranial photobiomodulation on EEG oscillations and CBF using diffuse correlation spectroscopy (DCS) in a sample of ten healthy subjects [6F/4 M; mean age 28.6±12.9 years]. c-tPBM near-infrared radiation (NIR) (830 nm; 54.8 mW/cm2; 65.8 J/cm2; 2.3 kJ) and p-tPBM (830 nm; 10 Hz; 54.8 mW/cm2; 33%; 21.7 J/cm2; 0.8 kJ) were delivered concurrently to the frontal areas by four LED clusters. EEG and DCS recordings were performed weekly before, during, and after each tPBM session. RESULTS: c-tPBM significantly boosted gamma (t = 3.02, df = 7, p < 0.02) and beta (t = 2.91, df = 7, p < 0.03) EEG spectral powers in eyes-open recordings and gamma power (t = 3.61, df = 6, p < 0.015) in eyes-closed recordings, with a widespread increase over frontal-central scalp regions. There was no significant effect of tPBM on CBF compared to sham. CONCLUSION: Our data suggest a dose-dependent effect of tPBM with NIR on cerebral gamma and beta neuronal activity. Altogether, our findings support the neuromodulatory effect of transcranial NIR.


Subject(s)
Brain/radiation effects , Cerebrovascular Circulation , Electroencephalography/radiation effects , Healthy Volunteers , Adult , Alzheimer Disease/therapy , Female , Humans , Male , Neuropsychological Tests , Pilot Projects , Single-Blind Method , Spectrum Analysis
11.
Am J Hum Biol ; 22(5): 613-8, 2010.
Article in English | MEDLINE | ID: mdl-20737608

ABSTRACT

OBJECTIVES: The aim of the present double-blind, sham-controlled, balanced randomized cross-over study was to disentangle effects of electromagnetic fields (EMF) and non-EMF effects of mobile phone base stations on objective and subjective sleep quality. METHODS: In total 397 residents aged 18-81 years (50.9% female) from 10 German sites, where no mobile phone service was available, were exposed to sham and GSM (Global System for Mobile Communications, 900 MHz and 1,800 MHz) base station signals by an experimental base station while their sleep was monitored at their homes during 12 nights. Participants were randomly exposed to real (GSM) or sham exposure for five nights each. Individual measurement of EMF exposure, questionnaires on sleep disorders, overall sleep quality, attitude towards mobile communication, and on subjective sleep quality (morning and evening protocols) as well as objective sleep data (frontal EEG and EOG recordings) were gathered. RESULTS: Analysis of the subjective and objective sleep data did not reveal any significant differences between the real and sham condition. During sham exposure nights, objective and subjective sleep efficiency, wake after sleep onset, and subjective sleep latency were significantly worse in participants with concerns about possible health risks resulting from base stations than in participants who were not concerned. CONCLUSIONS: The study did not provide any evidence for short-term physiological effects of EMF emitted by mobile phone base stations on objective and subjective sleep quality. However, the results indicate that mobile phone base stations as such (not the electromagnetic fields) may have a significant negative impact on sleep quality.


Subject(s)
Cell Phone , Electromagnetic Fields/adverse effects , Radio Waves/adverse effects , Sleep/radiation effects , Adolescent , Adult , Aged , Aged, 80 and over , Cross-Over Studies , Double-Blind Method , Electroencephalography/radiation effects , Electrooculography/radiation effects , Female , Germany , Health Knowledge, Attitudes, Practice , Humans , Male , Middle Aged , Sleep/physiology , Sleep Wake Disorders/etiology , Statistics, Nonparametric , Surveys and Questionnaires , Young Adult
12.
Int J Radiat Biol ; 85(8): 680-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19637079

ABSTRACT

PURPOSE: Electromagnetic radiation (EMR) from wireless devices may affect biological systems by increasing free radicals. The present study was designed to determine the effects of 2.45 GHz EMR on the brain antioxidant redox system and electroencephalography (EEG) records in rat. The possible protective effects of selenium and L-carnitine were also tested and compared to untreated controls. MATERIALS AND METHODS: Thirty rats were equally divided into five different groups, namely Group A(1): Cage control, Group A(2): Sham control, group B: 2.45 GHz EMR, group C: 2.45 GHz EMR + selenium, group D: 2.45 GHz EMR + L-carnitine. Groups B, C and D were exposed to 2.45 GHz EMR during 60 min/day for 28 days. End of the experiments, EEG records and the brain cortex samples were taken. RESULTS: The cortex brain vitamin A (p < 0.05), vitamin C (p < 0.01) and vitamin E (p < 0.05) concentrations values were lower in group B than in group A1 and A2 although their concentrations were increased by selenium and L-carnitine supplementation. Lipid peroxidation, levels were lower in group C (p < 0.05) and D (p < 0.01) than in group B where as reduced glutathione levels were higher in group C (p < 0.05) than in group A1, A2 and B. However, B-carotene levels did not change in the five groups. CONCLUSIONS: L-carnitine and selenium seem to have protective effects on the 2.45 GHz-induced decrease of the vitamins by supporting antioxidant redox system. L-carnitine on the vitamin concentrations seems to more protective affect than in selenium.


Subject(s)
Carnitine/pharmacology , Electroencephalography/radiation effects , Oxidative Stress/radiation effects , Radiation-Protective Agents/pharmacology , Selenium/pharmacology , Animals , Electroencephalography/drug effects , Glutathione/analysis , Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Vitamin E/analysis
13.
Biomed Environ Sci ; 32(3): 189-198, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30987693

ABSTRACT

OBJECTIVE: To estimate the detrimental effects of shortwave exposure on rat hippocampal structure and function and explore the underlying mechanisms. METHODS: One hundred Wistar rats were randomly divided into four groups (25 rats per group) and exposed to 27 MHz continuous shortwave at a power density of 5, 10, or 30 mW/cm2 for 6 min once only or underwent sham exposure for the control. The spatial learning and memory, electroencephalogram (EEG), hippocampal structure and Nissl bodies were analysed. Furthermore, the expressions of N-methyl-D-aspartate receptor (NMDAR) subunits (NR1, NR2A, and NR2B), cAMP responsive element-binding protein (CREB) and phosphorylated CREB (p-CREB) in hippocampal tissue were analysed on 1, 7, and 14 days after exposure. RESULTS: The rats in the 10 and 30 mW/cm2 groups had poor learning and memory, disrupted EEG oscillations, and injured hippocampal structures, including hippocampal neurons degeneration, mitochondria cavitation and blood capillaries swelling. The Nissl body content was also reduced in the exposure groups. Moreover, the hippocampal tissue in the 30 mW/cm2 group had increased expressions of NR2A and NR2B and decreased levels of CREB and p-CREB. CONCLUSION: Shortwave exposure (27 MHz, with an average power density of 10 and 30 mW/cm2) impaired rats' spatial learning and memory and caused a series of dose-dependent pathophysiological changes. Moreover, NMDAR-related CREB pathway suppression might be involved in shortwave-induced structural and functional impairments in the rat hippocampus.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , Electroencephalography/radiation effects , Hippocampus/radiation effects , Memory/radiation effects , Nissl Bodies/radiation effects , Radio Waves/adverse effects , Spatial Learning/radiation effects , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Dose-Response Relationship, Radiation , Male , Nissl Bodies/physiology , Random Allocation , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
14.
Neuroscience ; 157(2): 453-62, 2008 Nov 19.
Article in English | MEDLINE | ID: mdl-18835335

ABSTRACT

We investigated the potential effects of 20 min irradiation from a new generation Universal Mobile Telecommunication System (UMTS) 3G mobile phone on human event related potentials (ERPs) in an auditory oddball paradigm. In a double-blind task design, subjects were exposed to either genuine or sham irradiation in two separate sessions. Before and after irradiation subjects were presented with a random series of 50 ms tone burst (frequent standards: 1 kHz, P=0.8, rare deviants: 1.5 kHz, P=0.2) at a mean repetition rate of 1500 ms while electroencephalogram (EEG) was recorded. The subjects' task was to silently count the appearance of targets. The amplitude and latency of the N100, N200, P200 and P300 components for targets and standards were analyzed in 29 subjects. We found no significant effects of electromagnetic field (EMF) irradiation on the amplitude and latency of the above ERP components. In order to study possible effects of EMF on attentional processes, we applied a wavelet-based time-frequency method to analyze the early gamma component of brain responses to auditory stimuli. We found that the early evoked gamma activity was insensitive to UMTS RF exposition. Our results support the notion, that a single 20 min irradiation from new generation 3G mobile phones does not induce measurable changes in latency or amplitude of ERP components or in oscillatory gamma-band activity in an auditory oddball paradigm.


Subject(s)
Cell Phone , Electroencephalography/methods , Evoked Potentials/physiology , Evoked Potentials/radiation effects , Radiation , Acoustic Stimulation/methods , Adult , Analysis of Variance , Dose-Response Relationship, Radiation , Double-Blind Method , Electroencephalography/radiation effects , Electromagnetic Fields , Female , Humans , Male , Psychoacoustics , Spectrum Analysis , Young Adult
15.
Neurosci Lett ; 441(2): 188-92, 2008 Aug 22.
Article in English | MEDLINE | ID: mdl-18577422

ABSTRACT

The present study introduces the concept of spectral power coherence (SPC), which reflects the pattern of coordination of the four basic EEG bands (delta, theta, alpha, and beta) at a specific location of the brain. The SPC was calculated for the pre-stimulus EEG signal during an auditory memory task under different electromagnetic field (EMF) conditions (900 MHz and 1800 MHz). The results showed that delta rhythm is less consequential in the overall cooperation between the bands than the higher frequency theta, alpha and beta rhythms. Additionally, it has been shown that the radiation effect on SPC is different for the two genders. In the absence of radiation males exhibit higher overall SPC than females. These differences disappear in the presence of 900 MHz and are reversed in the presence of 1800 MHz.


Subject(s)
Brain Mapping , Brain/radiation effects , Electroencephalography/radiation effects , Electromagnetic Fields , Adult , Brain/physiology , Dose-Response Relationship, Radiation , Female , Humans , Male , Memory, Short-Term/radiation effects , Neuropsychological Tests , Sex Factors
16.
Epilepsy Behav ; 13(1): 47-51, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18321784

ABSTRACT

The anticonvulsant effect of the nucleoside uridine has been studied for several decades with controversial results. One of its attractive properties is that as a natural endogenous molecule, it lacks the serious side effects of common antiepileptic drugs used today. In the current study, we examined the potential antiepileptogenic effect of uridine in the hippocampal kindling model, using once-daily stimulations. Uridine was administered once or three times daily; levetiracetam was administered as a positive control; and normal saline was used as a negative control. Rats receiving uridine or levetiracetam had slower kindling rates and shorter afterdischarge durations than the normal saline controls. These results are consistent with previous work using a rapid kindling model and suggest that uridine has antiepileptogenic properties. Because of its combination of low toxicity and efficacy, uridine is a possible candidate for the treatment of epilepsy.


Subject(s)
Anticonvulsants/administration & dosage , Kindling, Neurologic/drug effects , Uridine/administration & dosage , Analysis of Variance , Animals , Electric Stimulation/adverse effects , Electroencephalography/drug effects , Electroencephalography/radiation effects , Hippocampus/drug effects , Hippocampus/radiation effects , Levetiracetam , Male , Piracetam/administration & dosage , Piracetam/analogs & derivatives , Rats , Rats, Sprague-Dawley
17.
Bioelectromagnetics ; 29(7): 527-38, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18452168

ABSTRACT

The aim of this study was to evaluate the effect of modulated microwave exposure on human EEG of individual subjects. The experiments were carried out on four different groups of healthy volunteers. The 450 MHz microwave radiation modulated at 7 Hz (first group, 19 subjects), 14 and 21 Hz (second group, 13 subjects), 40 and 70 Hz (third group, 15 subjects), 217 and 1000 Hz (fourth group, 19 subjects) frequencies was applied. The field power density at the scalp was 0.16 mW/cm(2). The calculated spatial peak SAR averaged over 1 g was 0.303 W/kg. Ten cycles of the exposure (1 min off and 1 min on) at fixed modulation frequencies were applied. All subjects completed the experimental protocols with exposure and sham. The exposed and sham-exposed subjects were randomly assigned. A computer also randomly assigned the succession of modulation frequencies. Our results showed that microwave exposure increased the EEG energy. Relative changes in the EEG beta1 power in P3-P4 channels were selected for evaluation of individual sensitivity. The rate of subjects significantly affected is similar in all groups except for the 1000 Hz group: in first group 3 subjects (16%) at 7 Hz modulation; in second group 4 subjects (31%) at 14 Hz modulation and 3 subjects (23%) at 21 Hz modulation; in third group 3 subjects (20%) at 40 Hz and 2 subjects (13%) at 70 Hz modulation; in fourth group 3 subjects (16%) at 217 Hz and 0 subjects at 1000 Hz modulation frequency.


Subject(s)
Brain/physiology , Brain/radiation effects , Electroencephalography/radiation effects , Microwaves , Adult , Dose-Response Relationship, Radiation , Female , Humans , Male , Radiation Dosage , Sensitivity and Specificity
18.
Bioelectromagnetics ; 29(6): 479-87, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18431738

ABSTRACT

Modern mobile phones emit electromagnetic fields (EMFs) ranging from 900 to 2000 MHz which are suggested to have an influence on well-being, attention and neurological parameters in mobile phone users. To date most studies have investigated Global System for Mobile Communications (GSM)-EMF and only very few studies were concerned with Universal Mobile Telecommunications System (UMTS)-EMF. Consequently, we tested the effects of both types of EMF, 1950 MHz UMTS (SAR 0.1 and 1 W/kg) and pulsed 900 MHz GSM (1 W/kg), on well-being and vigilance-controlled resting electroencephalogram (eyes closed) in 15 healthy, right-handed subjects. A double-blind, randomised, crossover application of the test procedure was used. Neither the UMTS- nor the GSM-EMF produced any significant changes in the measured parameters compared to sham exposure. The results do not give any evidence for a deleterious effect of the EMF on normal healthy mobile phone users.


Subject(s)
Cell Phone , Electroencephalography/radiation effects , Emotions/radiation effects , Environmental Exposure/analysis , Adult , Body Burden , Cross-Over Studies , Electromagnetic Fields , Humans , Male , Radiation Dosage , Rest/physiology , Switzerland/epidemiology
19.
Bioelectromagnetics ; 29(6): 488-97, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18421712

ABSTRACT

Modern mobile phones emit electromagnetic fields (EMF) ranging from 900 to 2000 MHz which are suggested to have an influence on well-being, attention and neurological parameters in mobile phone users. Until now most studies have investigated Global System for Mobile Communications (GSM)-EMF and only very few studies have focused on Universal Mobile Telecommunications System (UMTS)-EMF. Therefore, we tested the effects of both types of unilaterally presented EMF, 1950 UMTS (0.1 and 1 W/kg) and pulsed 900 MHz GSM (1 W/kg), on visually evoked occipital P100, the P300 of a continuous performance test, auditory evoked central N100 and the P300 during an oddball task as well as on the respective behavioral parameters, reaction time and false reactions, in 15 healthy, right handed subjects. A double-blind, randomized, crossover application of the test procedure was used. Neither the UMTS- nor the GSM-EMF produced any significant changes in the measured parameters compared to sham exposure. The results do not give any evidence for a deleterious effect of the EMF on normal healthy mobile phone users.


Subject(s)
Cell Phone , Cognition/physiology , Cognition/radiation effects , Electroencephalography/radiation effects , Environmental Exposure/analysis , Evoked Potentials/physiology , Evoked Potentials/radiation effects , Adult , Body Burden , Cross-Over Studies , Electromagnetic Fields , Humans , Male , Radiation Dosage
20.
Span J Psychol ; 11(2): 363-73, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18988424

ABSTRACT

An electroencephalograph (EEG) study was carried out from 1990 to 2006, using power spectra, averaged coherence, and integral EEG coherence asymmetry coefficients to compare 189 clean-up workers of the Chernobyl accident with 63 age-matched healthy controls. Most of the Chernobyl workers showed three abnormal EEG patterns, as indicated by EEG power mapping. The higher power, most prominent in slow alpha and theta bands, or in fast alpha frequencies, were observed in persons 3-5 years after the clean-up works (the early stage). The lower EEG power in alpha band was found in Chernobyl workers 10 or more years after the accident (the late stage). EEG coherence analysis revealed the existence of two stages in EEG alterations following the Chernobyl clean-up. In the early stage, an increase of EEG coherence in the central brain areas was observed, whereas at the later stage, a decrease of EEG coherence, most prominent in the frontal brain areas, and reduced brain asymmetry prevailed. These results allow us to propose that the described EEG signs may be a reflection of radiation-induced brain dysfunction at the late period after the Chernobyl clean-up and were similar to the EEG markers of brain ageing. The results, in comparison to data of the literature, provide additional support to the premature brain ageing hypothesis in Chernobyl survivors as a result of the radiation brain damage after-effect.


Subject(s)
Cerebral Cortex/radiation effects , Chernobyl Nuclear Accident , Dominance, Cerebral/radiation effects , Electroencephalography/radiation effects , Occupational Diseases/physiopathology , Radiation Injuries/diagnosis , Signal Processing, Computer-Assisted , Survivors , Adult , Cellular Senescence/radiation effects , Cortical Synchronization/radiation effects , Female , Fourier Analysis , Humans , Longitudinal Studies , Male , Middle Aged , Neurons/radiation effects , Occupational Diseases/diagnosis , Radiation Injuries/physiopathology , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL