Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.908
Filter
Add more filters

Publication year range
1.
Nature ; 601(7892): 217-222, 2022 01.
Article in English | MEDLINE | ID: mdl-35022589

ABSTRACT

The use of lithium metal anodes in solid-state batteries has emerged as one of the most promising technologies for replacing conventional lithium-ion batteries1,2. Solid-state electrolytes are a key enabling technology for the safe operation of lithium metal batteries as they suppress the uncontrolled growth of lithium dendrites. However, the mechanical properties and electrochemical performance of current solid-state electrolytes do not meet the requirements for practical applications of lithium metal batteries. Here we report a class of elastomeric solid-state electrolytes with a three-dimensional interconnected plastic crystal phase. The elastomeric electrolytes show a combination of mechanical robustness, high ionic conductivity, low interfacial resistance and high lithium-ion transference number. The in situ-formed elastomer electrolyte on copper foils accommodates volume changes for prolonged lithium plating and stripping processes with a Coulombic efficiency of 100.0 per cent. Moreover, the elastomer electrolytes enable stable operation of the full cells under constrained conditions of a limited lithium source, a thin electrolyte and a high-loading LiNi0.83Mn0.06Co0.11O2 cathode at a high voltage of 4.5 volts at ambient temperature, delivering a high specific energy exceeding 410 watt-hours per kilogram of electrode plus electrolyte. The elastomeric electrolyte system presents a powerful strategy for enabling stable operation of high-energy, solid-state lithium batteries.


Subject(s)
Electrolytes , Lithium , Elastomers
2.
Proc Natl Acad Sci U S A ; 121(31): e2407501121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042697

ABSTRACT

This study explores the impact of electrostatic interactions and hydrogen bonding on tear film stability, a crucial factor for ocular surface health. While mucosal and meibomian layers have been extensively studied, the role of electrolytes in the aqueous phase remains unclear. Dry eye syndrome, characterized by insufficient tear quantity or quality, is associated with hyperosmolality, making electrolyte composition an important factor that might impact tear stability. Using a model buffer solution on a silica glass dome, we simulated physiologically relevant tear film conditions. Sodium chloride alone induced premature dewetting through salt crystal nucleation. In contrast, trace amounts of solutes with hydroxyl groups (sodium phosphate dibasic, potassium phosphate monobasic, and glucose) exhibited intriguing phenomena: quasi-stable films, solutal Marangoni-driven fluid influx increasing film thickness, and viscous fingering due to Saffman-Taylor instability. These observations are rationalized by the association of salt solutions with increased surface tension and the propensity of hydroxyl-group-containing solutes to engage in significant hydrogen bonding, altering local viscosity. This creates a viscosity contrast between the bulk buffer solution and the film region. Moreover, these solutes shield the glass dome, counteracting sodium chloride crystallization. These insights not only advance our understanding of tear film mechanics but also pave the way for predictive diagnostics in dry eye syndrome, offering a robust platform for personalized medical interventions based on individual tear film composition.


Subject(s)
Electrolytes , Hydrogen Bonding , Tears , Tears/chemistry , Electrolytes/chemistry , Humans , Viscosity , Sodium Chloride/chemistry , Phosphates/chemistry , Surface Tension , Static Electricity , Dry Eye Syndromes/metabolism , Wettability , Potassium Compounds
3.
Nature ; 579(7798): 224-228, 2020 03.
Article in English | MEDLINE | ID: mdl-32123353

ABSTRACT

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption1. Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density2,3. Thus, fundamental insight at the molecular level is required to improve performance4,5. Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4'-((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the 1H NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the 1H NMR shift of the water resonance) and the line broadening of the 1H shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.


Subject(s)
Electric Power Supplies , Magnetic Resonance Spectroscopy , Electrolytes/chemistry , Electrons , Oxidation-Reduction
4.
Proc Natl Acad Sci U S A ; 120(3): e2209979120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36626554

ABSTRACT

The electrolysis of nitrate reduction to ammonia (NRA) is promising for obtaining value-added chemicals and mitigating environmental concerns. Recently, catalysts with high-performance ammonia synthesis from nitrate has been achieved under alkaline or acidic conditions. However, NRA in neutral solution still suffers from the low yield rate and selectivity of ammonia due to the low binding affinity and nucleophilicity of NO3-. Here, we confirmed that the in-situ-generated Fe(II) ions existed as specifically adsorbed cations in the inner Helmholtz plane (IHP) with a low redox potential. Inspired by this, a strategy (Fe-IHP strategy) was proposed to enhance NRA activity by tuning the affinity of the electrode-electrolyte interface. The specifically adsorbed Fe(II) ions [SA-Fe(II)] greatly alleviated the electrostatic repulsion around the interfaceresulting in a 10-fold lower in the adsorption-free energy of NO3- when compared to the case without SA-Fe(II). Meanwhile, the modulated interface accelerated the kinetic mass transfer process by 25 folds compared to the control. Under neutral conditions, a Faraday efficiency of 99.6%, a selectivity of 99%, and an extremely high NH3 yield rate of 485.8 mmol h-1 g-1 FeOOH were achieved. Theoretical calculations and in-situ Raman spectroscopy confirmed the electron-rich state of the SA-Fe(II) donated to p orbitals of N atom and favored the hydrogenation of *NO to *NOH for promoting the formation of high-selectivity ammonia. In sum, these findings complement the textbook on the specific adsorption of cations and provide insights into the design of low-cost NRA catalysts with efficient ammonia synthesis.


Subject(s)
Ammonia , Nitrates , Electrolytes , Adsorption , Iron , Ferrous Compounds
5.
Proc Natl Acad Sci U S A ; 120(38): e2218281120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695900

ABSTRACT

Producing novel enzymes that are catalytically active in vitro and biologically functional in vivo is a key goal of synthetic biology. Previously, we reported Syn-F4, the first de novo protein that meets both criteria. Syn-F4 hydrolyzed the siderophore ferric enterobactin, and expression of Syn-F4 allowed an inviable strain of Escherichia coli (Δfes) to grow in iron-limited medium. Here, we describe the crystal structure of Syn-F4. Syn-F4 forms a dimeric 4-helix bundle. Each monomer comprises two long α-helices, and the loops of the Syn-F4 dimer are on the same end of the bundle (syn topology). Interestingly, there is a penetrated hole in the central region of the Syn-F4 structure. Extensive mutagenesis experiments in a previous study showed that five residues (Glu26, His74, Arg77, Lys78, and Arg85) were essential for enzymatic activity in vivo. All these residues are located around the hole in the central region of the Syn-F4 structure, suggesting a putative active site with a catalytic dyad (Glu26-His74). The complete inactivity of purified proteins with mutations at the five residues supports the putative active site and reaction mechanism. Molecular dynamics and docking simulations of the ferric enterobactin siderophore binding to the Syn-F4 structure demonstrate the dynamic property of the putative active site. The structure and active site of Syn-F4 are completely different from native enterobactin esterase enzymes, thereby demonstrating that proteins designed de novo can provide life-sustaining catalytic activities using structures and mechanisms dramatically different from those that arose in nature.


Subject(s)
Enterobactin , Siderophores , Iron , Iron, Dietary , Catalysis , Electrolytes , Escherichia coli/genetics
6.
Circulation ; 149(13): 1019-1032, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38131187

ABSTRACT

BACKGROUND: Hypertension is a key risk factor for major adverse cardiovascular events but remains difficult to treat in many individuals. Dietary interventions are an effective approach to lower blood pressure (BP) but are not equally effective across all individuals. BP is heritable, and genetics may be a useful tool to overcome treatment response heterogeneity. We investigated whether the genetics of BP could be used to identify individuals with hypertension who may receive a particular benefit from lowering sodium intake and boosting potassium levels. METHODS: In this observational genetic study, we leveraged cross-sectional data from up to 296 475 genotyped individuals drawn from the UK Biobank cohort for whom BP and urinary electrolytes (sodium and potassium), biomarkers of sodium and potassium intake, were measured. Biologically directed genetic scores for BP were constructed specifically among pathways related to sodium and potassium biology (pharmagenic enrichment scores), as well as unannotated genome-wide scores (conventional polygenic scores). We then tested whether there was a gene-by-environment interaction between urinary electrolytes and these genetic scores on BP. RESULTS: Genetic risk and urinary electrolytes both independently correlated with BP. However, urinary sodium was associated with a larger BP increase among individuals with higher genetic risk in sodium- and potassium-related pathways than in those with comparatively lower genetic risk. For example, each SD in urinary sodium was associated with a 1.47-mm Hg increase in systolic BP for those in the top 10% of the distribution of genetic risk in sodium and potassium transport pathways versus a 0.97-mm Hg systolic BP increase in the lowest 10% (P=1.95×10-3). This interaction with urinary sodium remained when considering estimated glomerular filtration rate and indexing sodium to urinary creatinine. There was no strong evidence of an interaction between urinary sodium and a standard genome-wide polygenic score of BP. CONCLUSIONS: The data suggest that genetic risk in sodium and potassium pathways could be used in a precision medicine model to direct interventions more specifically in the management of hypertension. Intervention studies are warranted.


Subject(s)
Hypertension , Sodium, Dietary , Humans , Sodium/urine , Potassium/urine , Cross-Sectional Studies , Hypertension/diagnosis , Hypertension/genetics , Blood Pressure/genetics , Electrolytes , Sodium, Dietary/adverse effects
7.
Proc Natl Acad Sci U S A ; 119(36): e2202395119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037382

ABSTRACT

A detailed framework for modeling and interpreting the data in totality from a cyclic voltammetric measurement of adsorbed redox monolayers on semiconductor electrodes has been developed. A three-layer model consisting of the semiconductor space-charge layer, a surface layer, and an electrolyte layer is presented that articulates the interplay between electrostatic, thermodynamic, and kinetic factors in the electrochemistry of a redox adsorbate on a semiconductor. Expressions are derived that describe the charging and faradaic current densities individually, and an algorithm is demonstrated that allows for the calculation of the total current density in a cyclic voltammetry measurement as a function of changes in the physical properties of the system (e.g., surface recombination, dielectric property of the surface layer, and electrolyte concentration). The most profound point from this analysis is that the faradaic and charging current densities can be coupled. That is, the common assumption that these contributions to the total current are always independent is not accurate. Their interrelation can influence the interpretation of the charge-transfer kinetics under certain experimental conditions. More generally, this work not only fills a long-standing knowledge gap in electrochemistry but also aids practitioners advancing energy conversion/storage strategies based on redox adsorbates on semiconductor electrodes.


Subject(s)
Electrochemistry , Electrodes , Semiconductors , Electrolytes , Oxidation-Reduction
8.
Proc Natl Acad Sci U S A ; 119(45): e2203256119, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36322760

ABSTRACT

The next generation of fuel cells, electrolyzers, and batteries requires higher power, faster kinetics, and larger energy density, which necessitate the use of compositionally complex oxides to achieve multifunctionalities and activity. These compositionally complex oxides may change their phases and structures during an electrochemical process-a so-called "electrochemically driven phase transformation." The origin for such a phase change has remained obscure. The aim of this paper is to present an experimental study and a theoretical analysis of phase evolution in praseodymium nickelates. Nickelate-based electrodes show up to 60 times greater phase transformation during operation when compared with thermally annealed ones. Theoretical analysis suggests that the presence of a reduced oxygen partial pressure at the interface between the oxygen electrode and the electrolyte is the origin for the phase change in an oxygen electrode. Guided by the theory, the addition of the electronic conduction in the interface layer leads to the significant suppression of phase change while improving cell performance and performance stability.


Subject(s)
Electric Power Supplies , Oxides , Oxides/chemistry , Electrodes , Electrolytes/chemistry , Oxygen/chemistry
9.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35058361

ABSTRACT

Bioelectrochemistry employs an array of high-surface-area meso- and macroporous electrode architectures to increase protein loading and the electrochemical current response. While the local chemical environment has been studied in small-molecule and heterogenous electrocatalysis, conditions in enzyme electrochemistry are still commonly established based on bulk solution assays, without appropriate consideration of the nonequilibrium conditions of the confined electrode space. Here, we apply electrochemical and computational techniques to explore the local environment of fuel-producing oxidoreductases within porous electrode architectures. This improved understanding of the local environment enabled simple manipulation of the electrolyte solution by adjusting the bulk pH and buffer pKa to achieve an optimum local pH for maximal activity of the immobilized enzyme. When applied to macroporous inverse opal electrodes, the benefits of higher loading and increased mass transport were employed, and, consequently, the electrolyte adjusted to reach -8.0 mA ⋅ cm-2 for the H2 evolution reaction and -3.6 mA ⋅ cm-2 for the CO2 reduction reaction (CO2RR), demonstrating an 18-fold improvement on previously reported enzymatic CO2RR systems. This research emphasizes the critical importance of understanding the confined enzymatic chemical environment, thus expanding the known capabilities of enzyme bioelectrocatalysis. These considerations and insights can be directly applied to both bio(photo)electrochemical fuel and chemical synthesis, as well as enzymatic fuel cells, to significantly improve the fundamental understanding of the enzyme-electrode interface as well as device performance.


Subject(s)
Electrochemical Techniques , Electrochemistry , Enzymes/chemistry , Algorithms , Buffers , Electrodes , Electrolytes/chemistry , Microelectrodes , Molecular Structure , Porosity , Structure-Activity Relationship
10.
Nano Lett ; 24(20): 6192-6200, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38666542

ABSTRACT

Creating artificial synapses that can interact with biological neural systems is critical for developing advanced intelligent systems. However, there are still many difficulties, including device morphology and fluid selection. Based on Micro-Electro-Mechanical System technologies, we utilized two immiscible electrolytes to form a liquid/liquid interface at the tip of a funnel nanochannel, effectively enabling a wafer-level fabrication, interactions between multiple information carriers, and electron-to-chemical signal transitions. The distinctive ionic transport properties successfully achieved a hysteresis in ionic transport, resulting in adjustable multistage conductance gradient and synaptic functions. Notably, the device is similar to biological systems in terms of structure and signal carriers, especially for the low operating voltage (200 mV), which matches the biological neural potential (∼110 mV). This work lays the foundation for realizing the function of iontronics neuromorphic computing at ultralow operating voltages and in-memory computing, which can break the limits of information barriers for brain-machine interfaces.


Subject(s)
Nanotechnology , Synapses , Synapses/physiology , Nanotechnology/instrumentation , Electrolytes/chemistry , Nanostructures/chemistry , Neurons/physiology , Electric Conductivity
11.
BMC Genomics ; 25(1): 280, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493091

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is a prevalent arrhythmic condition resulting in increased stroke risk and is associated with high mortality. Electrolyte imbalance can increase the risk of AF, where the relationship between AF and serum electrolytes remains unclear. METHODS: A total of 15,792 individuals were included in the observational study, with incident AF ascertainment in the Atherosclerosis Risk in Communities (ARIC) study. The Cox regression models were applied to calculate the hazard ratio (HR) and 95% confidence interval (CI) for AF based on different serum electrolyte levels. Mendelian randomization (MR) analyses were performed to examine the causal association. RESULTS: In observational study, after a median 19.7 years of follow-up, a total of 2551 developed AF. After full adjustment, participants with serum potassium below the 5th percentile had a higher risk of AF relative to participants in the middle quintile. Serum magnesium was also inversely associated with the risk of AF. An increased incidence of AF was identified in individuals with higher serum phosphate percentiles. Serum calcium levels were not related to AF risk. Moreover, MR analysis indicated that genetically predicted serum electrolyte levels were not causally associated with AF risk. The odds ratio for AF were 0.999 for potassium, 1.044 for magnesium, 0.728 for phosphate, and 0.979 for calcium, respectively. CONCLUSIONS: Serum electrolyte disorders such as hypokalemia, hypomagnesemia and hyperphosphatemia were associated with an increased risk of AF and may also serve to be prognostic factors. However, the present study did not support serum electrolytes as causal mediators for AF development.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/epidemiology , Atrial Fibrillation/genetics , Risk Factors , Magnesium , Mendelian Randomization Analysis , Calcium , Potassium , Phosphates , Electrolytes , Genome-Wide Association Study/methods
12.
J Am Chem Soc ; 146(1): 660-667, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38131111

ABSTRACT

Conjugated oligoelectrolytes (COEs) comprise a class of fluorescent reporters with tunable optical properties and lipid bilayer affinity. These molecules have proven effective in a range of bioimaging applications; however, their use in characterizing specific subcellular structures remains restricted. Such capabilities would broaden COE applications to understand cellular dysfunction, cell communication, and the targets of different pharmaceutical agents. Here, we disclose a novel COE derivative, COE-CN, which enables the visualization of mitochondria, including morphological changes and lysosomal fusion upon treatment with depolarizing agents. COE-CN is characterized by the presence of imidazolium solubilizing groups and an optically active cyanovinyl-linked distyrylbenzene core with intramolecular charge-transfer characteristics. Our current understanding is that the relatively shorter molecular length of COE-CN leads to weaker binding within lipid bilayer membranes, which allows sampling of internal cellular structures and ultimately to different localization relative to elongated COEs. As a means of practical demonstration, COE-CN can be used to diagnose cells with damaged mitochondria via flow cytometry. Coupled with an elongated COE that does not translocate upon depolarization, changes in ratiometric fluorescence intensity can be used to monitor mitochondrial membrane potential disruption, demonstrating the potential for use in diagnostic assays.


Subject(s)
Electrolytes , Lipid Bilayers , Lipid Bilayers/chemistry , Electrolytes/chemistry , Coloring Agents , Flow Cytometry
13.
Kidney Int ; 105(2): 247-250, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38245215

ABSTRACT

Intravenous (i.v.) fluid therapy is critically important in pediatric kidney transplantation. Because of the high volumes given perioperatively, transplant recipients can develop significant electrolyte abnormalities depending on the types of fluids used. Current practices in pediatric transplantation aim to balance risks of hyponatremia from traditionally used hypotonic fluids, such as 0.45% sodium chloride, against hyperchloremia and acidosis associated with isotonic 0.9% sodium chloride. Using the balanced solution Plasma-Lyte 148 as an alternative might mitigate these risks.


Subject(s)
Hyponatremia , Kidney Transplantation , Water-Electrolyte Imbalance , Humans , Child , Kidney Transplantation/adverse effects , Sodium Chloride/adverse effects , Water-Electrolyte Imbalance/etiology , Water-Electrolyte Imbalance/prevention & control , Hyponatremia/etiology , Hyponatremia/prevention & control , Electrolytes
14.
Kidney Int ; 105(2): 364-375, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37914088

ABSTRACT

Acute electrolyte and acid-base imbalance is experienced by many children following kidney transplant. This is partly because doctors give very large volumes of artificial fluids to keep the new kidney working. When severe, fluid imbalance can lead to seizures, cerebral edema and death. In this pragmatic, open-label, randomized controlled trial, we randomly assigned (1:1) pediatric kidney transplant recipients to Plasma-Lyte-148 or standard of care perioperative intravenous fluids (predominantly 0.45% sodium chloride and 0.9% sodium chloride solutions). We then compared clinically significant electrolyte and acid-base abnormalities in the first 72 hours post-transplant. The primary outcome, acute hyponatremia, was experienced by 53% of 68 participants in the Plasma-Lyte-148 group and 58% of 69 participants in the standard fluids group (odds ratio 0·77 (0·34 - 1·75)). Five of 16 secondary outcomes differed with Plasma-Lyte-148: hypernatremia was significantly more frequent (odds ratio 3·5 (1·1 - 10·8)), significantly fewer changes to fluid prescriptions were made (rate ratio 0·52 (0·40-0·67)), and significantly fewer participants experienced hyperchloremia (odds ratio 0·17 (0·07 - 0·40)), acidosis (odds ratio 0·09 (0·04 - 0·22)) and hypomagnesemia (odds ratio 0·21 (0·08 - 0·50)). No other secondary outcomes differed between groups. Serious adverse events were reported in 9% of participants randomized to Plasma-Lyte-148 and 7% of participants randomized to standard fluids. Thus, perioperative Plasma-Lyte-148 did not change the proportion of children who experienced acute hyponatremia compared to standard fluids. However fewer fluid prescription changes were made with Plasma-Lyte-148, while hyperchloremia and acidosis were less common.


Subject(s)
Acidosis , Hyponatremia , Kidney Transplantation , Water-Electrolyte Imbalance , Humans , Child , Sodium Chloride/adverse effects , Hyponatremia/epidemiology , Hyponatremia/etiology , Electrolytes/adverse effects , Acidosis/etiology , Acidosis/chemically induced , Water-Electrolyte Imbalance/etiology , Water-Electrolyte Imbalance/chemically induced , Fluid Therapy/adverse effects , Isotonic Solutions/adverse effects , Gluconates , Potassium Chloride , Magnesium Chloride , Sodium Acetate
15.
BMC Plant Biol ; 24(1): 85, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308226

ABSTRACT

BACKGROUND: Onion seeds have limited storage capacity compared to other vegetable seeds. It is crucial to identify the mechanisms that induce tolerance to storage conditions and reduce seed deterioration. To address this goal, an experiment was conducted to evaluate changes in germination, biochemical, physiological, and molecular characteristics of onion seed landraces (Horand, Kazerun landraces and Zargan cultivar) at different aging levels (control, three-days and six-days accelerated aging, and natural aging for one year). RESULTS: The findings suggest that there was an increase in glucose, fructose, total sugar, and electrolyte leakage in the Horand (HOR), Kazerun (KAZ) landraces, and Zarghan (ZAR) cultivar, with Kazerun exhibiting the greatest increase. The percentage and rate of germination of Kazerun decreased by 54% and 33%, respectively, in six-day accelerated aging compared to the control, while it decreased by 12% and 14%, respectively, in Horand. Protein content decreased with increasing levels of aging, with a decrease of 26% in Kazerun landrace at six days of aging, while it was 16% in Horand landrace. The antioxidant activities of catalase, superoxide dismutase, and glutathione peroxidase decreased more intensively in Kazerun. The expression of AMY1, BMY1, CTR1, and NPR1 genes were lower in Kazerun landraces than in Horand and Zargan at different aging levels. CONCLUSIONS: The AMY1, BMY1, CTR1, and NPR1 genes play a pivotal role in onion seed germination, and their downregulation under stressful conditions has been shown to decrease germination rates. In addition, the activity of CAT, SOD, and GPx enzymes decreased by seed aging, and the amount of glucose, fructose, total sugar and electrolyte leakage increased, which ultimately led to seed deterioration. Based on the results of this experiment, it is recommended to conduct further studies into the molecular aspects involved in onion seed deterioration. More research on the genes related to this process is suggested, as well as investigating the impact of different priming treatments on the genes expression involved in the onion seed aging process.


Subject(s)
Germination , Onions , Onions/genetics , Germination/genetics , Seeds/metabolism , Electrolytes/analysis , Electrolytes/metabolism , Fructose/analysis , Fructose/metabolism , Glucose/metabolism , Sugars/metabolism
16.
Small ; 20(30): e2306877, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38415820

ABSTRACT

Complexation between oppositely charged polyelectrolytes offers a facile single-step strategy for assembling functional micro-nano carriers for efficient drug and vaccine delivery. However, the stability of the delivery system within the physiological environment is compromised due to the swelling of the polyelectrolyte complex, driven by the charge shielding effect, and consequently leads to uncontrollable burst release, thereby limiting its potential applications. In a pioneering approach, cellular pathway-inspired calcium carbonate precipitation pathways are developed that are integrated into polyelectrolyte capsules (MICPC). These innovative capsules are fabricated at the interface of all-aqueous microfluidic droplets, resulting in a precisely controllable and sustained release profile in physiological conditions. Unlike single-step polyelectrolyte assembly capsules which always perform rapid burst release, the MICPC exhibits a sustainable and tunable release pattern, releasing biomolecules at an average rate of 3-10% per day. Remarkably, the degree of control over MICPC's release kinetics can be finely tuned by adjusting the quantity of synthesized calcium carbonate particles within the polyelectrolyte complex. This groundbreaking work not only deepens the insights into polyelectrolyte complexation but also significantly enhances the overall stability of these complexes, opening up new avenues for expanding the range of applications involving polyelectrolyte complex-related materials.


Subject(s)
Calcium Carbonate , Capsules , Polyelectrolytes , Calcium Carbonate/chemistry , Capsules/chemistry , Polyelectrolytes/chemistry , Chemical Precipitation , Electrolytes/chemistry
17.
Chembiochem ; 25(11): e202400057, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38390661

ABSTRACT

Halophilic organisms have adapted to multi-molar salt concentrations, their cytoplasmic proteins functioning despite stronger attraction between hydrophobic groups. These proteins, of interest in biotechnology because of decreasing fresh-water resources, have excess acidic amino acids. It has been suggested that conformational fluctuations - critical for protein function - decrease in the presence of a stronger hydrophobic effect, and that an acidic proteome would counteract this decrease. However, our understanding of the salt- and acidic amino acid dependency of enzymatic activity is limited. Here, using solution NMR relaxation and molecular dynamics simulations for in total 14 proteins, we show that salt concentration has a limited and moreover non-monotonic impact on protein dynamics. The results speak against the conformational-fluctuations model, instead indicating that maintaining protein dynamics to ensure protein function is not an evolutionary driving force behind the acidic proteome of halophilic proteins.


Subject(s)
Molecular Dynamics Simulation , Solutions , Electrolytes/chemistry , Proteins/chemistry , Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Nuclear Magnetic Resonance, Biomolecular
18.
Nat Mater ; 22(7): 848-852, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37106132

ABSTRACT

Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation1,2. However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 s state to hybridized Li-s/Ti-d orbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions.


Subject(s)
Electrolytes , Lithium , Electric Power Supplies , Engineering , Software
19.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R401-R415, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38465401

ABSTRACT

Potassium (K+) is an essential electrolyte that plays a key role in many physiological processes, including mineralcorticoid action, systemic blood-pressure regulation, and hormone secretion and action. Indeed, maintaining K+ balance is critical for normal cell function, as too high or too low K+ levels can have serious and potentially deadly health consequences. K+ homeostasis is achieved by an intricate balance between the intracellular and extracellular fluid as well as balance between K+ intake and excretion. This is achieved via the coordinated actions of regulatory mechanisms such as the gastrointestinal feedforward effect, insulin and aldosterone upregulation of Na+-K+-ATPase uptake, and hormone and electrolyte impacts on renal K+ handling. We recently developed a mathematical model of whole body K+ regulation to unravel the individual impacts of these regulatory mechanisms. In this study, we extend our mathematical model to incorporate recent experimental findings that showed decreased fractional proximal tubule reabsorption under a high-K+ diet. We conducted model simulations and sensitivity analyses to investigate how these renal alterations impact whole body K+ regulation. Model predictions quantify the sensitivity of K+ regulation to various levels of proximal tubule K+ reabsorption adaptation and tubuloglomerular feedback. Our results suggest that the reduced proximal tubule K+ reabsorption under a high-K+ diet could achieve K+ balance in isolation, but the resulting tubuloglomerular feedback reduces filtration rate and thus K+ excretion.NEW & NOTEWORTHY Potassium homeostasis is maintained in the body by a complex system of regulatory mechanisms. This system, when healthy, maintains a small extracellular potassium concentration, despite large fluctuations of dietary potassium. The complexities of the system make this problem well suited for investigation with mathematical modeling. In this study, we extend our mathematical model to consider recent experimental results on renal potassium handling on a high potassium diet and investigate the impacts from a whole body perspective.


Subject(s)
Electrolytes , Kidney Tubules, Proximal , Feedback , Potassium , Hormones
20.
Diabetes Metab Res Rev ; 40(5): e3831, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925619

ABSTRACT

Fluid resuscitation during diabetic ketoacidosis (DKA) is most frequently performed with 0.9% saline despite its high chloride and sodium concentration. Balanced Electrolyte Solutions (BES) may prove a more physiological alternative, but convincing evidence is missing. We aimed to compare the efficacy of 0.9% saline to BES in DKA management. MEDLINE, Cochrane Library, and Embase databases were searched for relevant studies using predefined keywords (from inception to 27 November 2021). Relevant studies were those in which 0.9% saline (Saline-group) was compared to BES (BES-group) in adults admitted with DKA. Two reviewers independently extracted data and assessed the risk of bias. The primary outcome was time to DKA resolution (defined by each study individually), while the main secondary outcomes were changes in laboratory values, duration of insulin infusion, and mortality. We included seven randomized controlled trials and three observational studies with 1006 participants. The primary outcome was reported for 316 patients, and we found that BES resolves DKA faster than 0.9% saline with a mean difference (MD) of -5.36 [95% CI: -10.46, -0.26] hours. Post-resuscitation chloride (MD: -4.26 [-6.97, -1.54] mmoL/L) and sodium (MD: -1.38 [-2.14, -0.62] mmoL/L) levels were significantly lower. In contrast, levels of post-resuscitation bicarbonate (MD: 1.82 [0.75, 2.89] mmoL/L) were significantly elevated in the BES-group compared to the Saline-group. There was no statistically significant difference between the groups regarding the duration of parenteral insulin administration (MD: 0.16 [-3.03, 3.35] hours) or mortality (OR: -0.67 [0.12, 3.68]). Studies showed some concern or a high risk of bias, and the level of evidence for most outcomes was low. This meta-analysis indicates that the use of BES resolves DKA faster than 0.9% saline. Therefore, DKA guidelines should consider BES instead of 0.9% saline as the first choice during fluid resuscitation.


Subject(s)
Diabetic Ketoacidosis , Fluid Therapy , Saline Solution , Adult , Humans , Diabetic Ketoacidosis/therapy , Diabetic Ketoacidosis/drug therapy , Electrolytes/administration & dosage , Fluid Therapy/methods , Prognosis , Resuscitation/methods , Saline Solution/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL