Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.901
Filter
Add more filters

Publication year range
1.
Extremophiles ; 28(3): 45, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316163

ABSTRACT

Hydrometallurgical bioprocesses for base metal recovery in environmentally friendly electronic device waste (e-waste) recycling are typically studied under neutral pH conditions to avoid competition between metals and hydrogen ions. However, metal leachate is generally strongly acidic, thus necessitating a neutralisation process in the application of these bioprocesses to e-waste recycling. To solve this pH disparity, we focused on acid-tolerant bacteria for metal recovery under strongly acidic conditions. Four acid-tolerant bacterial strains were isolated from neutral pH environments to recover base metals from simulated waste metal leachate (pH 1.5, containing 100 or 1000 mg L-1 of Co, Cu, Li, Mn, and Ni) without neutralisation. The laboratory setting for sequential metal recovery was established using these strains and a reported metal-adsorbing bacterium, Micrococcus luteus JCM1464. The metal species were successfully recovered from 100 mg L-1 metal mixtures at the following rates: Co (8.95%), Cu (21.23%), Li (5.49%), Mn (13.18%), and Ni (9.91%). From 1000 mg L-1 metal mixtures, Co (7.23%), Cu (6.82%), Li (5.85%), Mn (7.64%), and Ni (7.52%) were recovered. These results indicated the amenability of acid-tolerant bacteria to environmentally friendly base metal recycling, contributing to the development of novel industrial application of the beneficial but unutilised bioresource comprising acid-tolerant bacteria.


Subject(s)
Electronic Waste , Hydrogen-Ion Concentration , Micrococcus luteus/metabolism , Micrococcus luteus/drug effects , Micrococcus luteus/growth & development , Metals, Heavy/metabolism
2.
Environ Sci Technol ; 58(1): 570-579, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38150661

ABSTRACT

Chemical methods for the extraction and refinement of technologically critical rare earth elements (REEs) are energy-intensive, hazardous, and environmentally destructive. Current biobased extraction systems rely on extremophilic organisms and generate many of the same detrimental effects as chemical methodologies. The mesophilic methylotrophic bacterium Methylobacterium extorquens AM1 was previously shown to grow using electronic waste by naturally acquiring REEs to power methanol metabolism. Here we show that growth using electronic waste as a sole REE source is scalable up to 10 L with consistent metal yields without the use of harsh acids or high temperatures. The addition of organic acids increases REE leaching in a nonspecific manner. REE-specific bioleaching can be engineered through the overproduction of REE-binding ligands (called lanthanophores) and pyrroloquinoline quinone. REE bioaccumulation increases with the leachate concentration and is highly specific. REEs are stored intracellularly in polyphosphate granules, and genetic engineering to eliminate exopolyphosphatase activity increases metal accumulation, confirming the link between phosphate metabolism and biological REE use. Finally, we report the innate ability of M. extorquens to grow using other complex REE sources, including pulverized smartphones, demonstrating the flexibility and potential for use as a recovery platform for these critical metals.


Subject(s)
Electronic Waste , Metals, Rare Earth , Metals , Ligands
3.
Environ Sci Technol ; 58(36): 16153-16163, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39178241

ABSTRACT

Electronic waste is an emerging source of per- and polyfluoroalkyl substance (PFAS) emissions to the environment, yet the contribution from hazardous recycling practices in the South Asian region remains unclear. This study detected 41 PFAS in soil samples from e-waste recycling sites in Pakistan and the total concentrations were 7.43-367 ng/g dry weight (dw) (median: 37.7 ng/g dw). Trifluoroacetic acid (TFA) and 6:2 fluorotelomer sulfonic acid emerged as the dominant PFAS, constituting 49% and 13% of the total PFAS concentrations, respectively. Notably, nine CF3-containing emerging PFAS were identified by the high-resolution mass spectrometry (HRMS)-based screening. Specifically, hexafluoroisopropanol and bistriflimide (NTf2) were consistently identified across all the samples, with quantified concentrations reaching up to 854 and 90 ng/g dw, respectively. This suggests their potential association with electronic manufacturing and recycling processes. Furthermore, except for NTf2, all the identified emerging PFAS were confirmed as precursors of TFA with molar yields of 8.87-40.0% by the TOP assay validation in Milli-Q water. Overall, this study reveals significant emission of PFAS from hazardous e-waste recycling practices and emphasizes the identification of emerging sources of TFA from precursor transformation, which are essential for PFAS risk assessment.


Subject(s)
Electronic Waste , Recycling , Trifluoroacetic Acid , Trifluoroacetic Acid/chemistry , Environmental Monitoring
4.
Environ Res ; 252(Pt 4): 118915, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615792

ABSTRACT

Surface particulates collected from the workshop floors of three major e-waste recycling sites (Taizhou, Qingyuan, and Guiyu) in China were analyzed for tetrabromobisphenol A/S (TBBPA/S) and their derivatives to investigate the environmental pollution caused by e-waste recycling activities. Mean concentrations of total TBBPA/S analogs in surface particulates were 31,471-116,059 ng/g dry weight (dw). TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most frequently detected in particulates with average concentration ranges of 17,929-78,406, 5601-15,842, and 5929-21,383 ng/g dw, respectively. Meanwhile, TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most abundant TBBPA/S analogs, accounting for around 96% of the total. The composition profiles of TBBPA/S analogs differed significantly among three e-waste sites. Similarly, principal component analysis uncovered different pollution patterns among different sites. The discrepancy in the profiles of TBBPA/S analogs largely relied on the e-waste types recycled in different areas. E-waste recycling led to the release of TBBPA/S analogs, and TBBPA/S analogs produced differentiation during migration from source (surface particulates) to nearby soil. More researches are necessary to find a definite relationship between pollution status and e-waste types and study differentiation behavior of TBBPA/S analogs in migration and diffusion from source to environmental medium.


Subject(s)
Electronic Waste , Environmental Monitoring , Polybrominated Biphenyls , Recycling , Polybrominated Biphenyls/analysis , China , Electronic Waste/analysis , Particulate Matter/analysis
5.
Environ Res ; 250: 118537, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38408627

ABSTRACT

E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 µg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.


Subject(s)
Dust , Electronic Waste , Halogenated Diphenyl Ethers , Occupational Exposure , Polychlorinated Biphenyls , Recycling , Humans , Dust/analysis , Occupational Exposure/analysis , Europe , Electronic Waste/analysis , Halogenated Diphenyl Ethers/blood , Halogenated Diphenyl Ethers/analysis , Adult , Male , Middle Aged , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/analysis , Female , Persistent Organic Pollutants/blood , Silicones , Environmental Monitoring/methods
6.
Ecotoxicol Environ Saf ; 284: 116872, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39146595

ABSTRACT

Recycling electronic waste (e-waste) poses risks of metal exposure, potentially leading to health impairments. However, no previous study has focused on this issue in Hong Kong. Therefore, from June 2021 to September 2022, this study collected urine samples from 101 e-waste workers and 100 office workers in Hong Kong to compare their urinary levels of metals using ICP-MS. Among the 15 included metals (with detection rates above the 70 % threshold), eight showed significantly higher urinary concentrations (unit: µg/g creatinine) in e-waste workers compared to office workers: Li (25.09 vs. 33.36), Mn (1.78 vs. 4.15), Ni (2.10 vs. 2.77), Cu (5.81 vs. 9.23), Zn (404.35 vs. 431.52), Sr (151.33 vs. 186.26), Tl (0.35 vs. 0.43), and Pb (0.69 vs. 1.16). E-waste workers in Hong Kong generally exhibited lower metal levels than those in developing regions but higher than their counterparts in developed areas. The urine level of 8-hydroxy-2-deoxyguanosine (8-OHdG) was determined by HPLC-MS/MS, and no significant difference was found between the two groups. Multiple linear regression models revealed no significant association between individual metal and urinary 8-OHdG concentrations. However, the metal mixture was identified to marginally elevate the 8-OHdG concentrations (1.12, 95 %CI: 0.04, 2.19) by quantile g­computation models, with Mn and Cd playing significant roles in such effect. In conclusion, while the metal levels among Hong Kong e-waste workers compared favorably with their counterparts in other regions, their levels were higher than those of local office workers. This underscores the need for policymakers to prioritize attention to this unique industry.


Subject(s)
DNA Damage , Electronic Waste , Occupational Exposure , Recycling , Humans , Hong Kong , Occupational Exposure/analysis , Adult , Male , Female , Middle Aged , Metals/urine , Oxidative Stress , Environmental Monitoring , Biological Monitoring , Metals, Heavy/urine
7.
Ecotoxicology ; 33(8): 859-874, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38995499

ABSTRACT

Electronic waste (e-waste) has been identified as an emerging pollutant and is the fastest growing waste stream at the present time. Significant technological development and modernization within the last decade has led to the rapid accumulation of outdated, broken and unwanted electrical and electronic equipment (EEE). Electronic products mainly consist of a range of metal containing components that, when disposed of improperly, could result in metal constituents leached into the environment and posing a health risk to humans and animals alike. Metal exposure can induce oxidative stress in organisms, which could lead to synergistic, antagonistic and additive effects. The metals found highest in abundance in the simulated e-waste leachate, were nickel (Ni), barium (Ba), zinc (Zn), lithium (Li), iron (Fe), aluminium (Al) and copper (Cu). An acute exposure study was conducted over a 96 h period to determine the potential toxicity of e-waste on the test organism Danio rerio. Biomarker analysis results to assess the biochemical and physiological effects induced by e-waste leachate, showed a statistically significant effect induced on acetylcholinesterase activity, superoxide dismutase, catalase activity, reduced glutathione content, glutathione s-transferase, malondialdehyde and glucose energy available. The Integrated Biomarker Response (IBRv2) analysis revealed a greater biomarker response induced as the exposure concentration of e-waste leachate increased.


Subject(s)
Biomarkers , Electronic Waste , Water Pollutants, Chemical , Zebrafish , Zebrafish/physiology , Animals , Water Pollutants, Chemical/toxicity , Biomarkers/metabolism , Oxidative Stress/drug effects , Acetylcholinesterase/metabolism
8.
Bioprocess Biosyst Eng ; 47(9): 1533-1545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38888622

ABSTRACT

Rhodococcus erythropolis bacterium is known for its remarkable resistance characteristics that can be useful in several biotechnological processes, such as bioremediation. However, there is scarce knowledge concerning the behavior of this strain against different metals. This study sought to investigate the behavior of R. erythropolis ATCC 4277 against the residue of chalcopyrite and e-waste to verify both resistive capacities to the metals present in these residues and their potential use for biomining processes. These tests were carried out in a stirred tank bioreactor for 48 h, at 24ºC, pH 7.0, using a total volume of 2.0 L containing 2.5% (v/v) of a bacterial pre-culture. The pulp density of chalcopyrite was 5% (w/w), and agitation and oxygen flow rates were set to 250 rpm and 1.5 LO2 min-1, respectively. On the other hand, we utilized a waste of computer printed circuit board (WPCB) with a pulp density of 10% (w/w), agitation at 400 rpm, and an oxygen flow rate of 3.0 LO2 min-1. Metal concentration analyses post-fermentation showed that R. erythropolis ATCC 4277 was able to leach about 38% of the Cu present in the chalcopyrite residue (in ~ 24 h), and 49.5% of Fe, 42.3% of Ni, 27.4% of Al, and 15% Cu present in WPCB (in ~ 24 h). In addition, the strain survived well in the environment containing such metals, demonstrating the potential of using this bacterium for waste biomining processes as well as in other processes with these metals.


Subject(s)
Bioreactors , Rhodococcus , Rhodococcus/metabolism , Rhodococcus/growth & development , Copper/chemistry , Metals/chemistry , Biodegradation, Environmental , Electronic Waste
9.
Int J Phytoremediation ; 26(6): 903-912, 2024.
Article in English | MEDLINE | ID: mdl-38018097

ABSTRACT

Electronic waste (e-waste) illegally disposal in Thailand is becoming more widespread. A sustainable metal recovery technology is needed. A phytotechnology called "phytomining" of metals such as nickel (Ni) is a promising technology providing a sustainable solution to the growing e-waste problems. This study investigated the ability of Acacia species in association with e-waste site isolated, plant growth-promoting rhizobacteria (PGPR), Bacillus amyloliquefaciens. Acacia mangium accumulated higher Ni in their tissues when Ni concentrations in soil were lower than 200 mg kg-1. The inoculation of PGPR B. amyloliquefaciens enhanced Ni uptake and accumulation in the leaves, stem, and root. The results showed that the highest Ni concentration was found in the root ash (825.50 mg kg-1) when inoculated plants were grown in soil containing 600 mg kg-1 Ni. Hence, the Ni recovery process and mass balance were performed on root ashes. The highest Ni recovery was 91.3% from the acid (H2SO4) leachate of the ash of inoculated plant treated with 600 mg kg-1 Ni. This demonstrates the feasibility of PGPR-assisted phytomining from Ni-contaminated soil. Phytomining of Ni from any e-waste contaminated sites using Acacia mangium in combination with B. amyloliquefaciens can promote plant growth and improve the uptake of Ni.


Phytomining from electronic waste is an appealing technology that can provide a long-term waste management strategy while valuable trace metals can be recovered. In this study, we evaluated the nickel phytomining ability of Acacia mangium in association with PGPR Bacillus amyloliquefaciens. The results from this study showed that Ni recovery from phytomass using A. mangium with B. amyloliquefaciens can be further improved leading to a sustainable waste management strategy.


Subject(s)
Acacia , Bacillus amyloliquefaciens , Electronic Waste , Soil Pollutants , Nickel , Biodegradation, Environmental , Acacia/microbiology , Soil
10.
J Environ Manage ; 365: 121521, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959774

ABSTRACT

As part of electronic waste (e-waste), the fastest growing solid waste stream in the world, discarded liquid crystal displays (LCDs) contain substantial amounts of both valuable and potentially harmful metal, offering valuable opportunities for resource extraction but posing environmental threats. The present comprehensive study is an investigation into the bioleaching of indium from discarded LCD panels, with a particular focus on high pulp density shredded (Sh-LCDs) and powdered (P-LCDs) materials. This study involved an acidophilic consortium, with two pathways, namely the mixed sulfur-iron pathways and sulfur pathways, being explored to understand the bioleaching mechanisms. Indium bioleaching efficiencies through the mixed sulfur-iron pathway were approximately 60% and 100% for Sh-LCDs and P-LCDs, respectively. Three mechanisms were involved in the extraction of indium from LCD samples: acidolysis, complexolysis, and redoxolysis. The microbial community adapted to a pulp density of 32.5 g/L was streak-plated and it was revealed that sulfur-oxizing bacteria dominated, resulting in the minimum indium extraction of 10% and 55% for both Sh-LCDs and P-LCDs samples, respectively. It was generally accepted that ferric ions as oxidants were effective for indium bioleaching from both the Sh-LCDs and P-LCDs. This implies that the cooperation or interaction within the microbial community used in the bioleaching process had a beneficial impact, enhancing the overall effectiveness of extracting indium from LCD panels. The adapted consortium utilizes a combination of microbial transformation, efflux systems, and chelation through extracellular substances to detoxify heavy metals. The adapted microbial community demonstrated better indium leaching efficiency (50%) compared to the non-adapted microbial community which achieved a maximum of 29% and 5% respectively from Sh-LCDs and P-LCDs at a pulp density of 32.5 g/L. The advantages of an adapted microbial community for indium leaching efficiency, attributing this advantage to factors such as high metabolic activity and improved tolerance to heavy metals. Additionally, the protective role of the biofilm formed by the adapted microbial community is particularly noteworthy, as it contributes to the community's resilience in the presence of inhibitory substances. This information is valuable for understanding and optimizing bioleaching processes for indium recovery, and by extension to possibly other metals.


Subject(s)
Electronic Waste , Indium , Liquid Crystals
11.
J Environ Manage ; 351: 119778, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086113

ABSTRACT

This work was focused on the selective recovery of gold and silver from electronic wastes using a sequential process of pyrometallurgy (Qalkari) and room-temperature hydrometallurgy. In the first step, electronic wastes underwent Qalkari recycling, yielding tablets containing precious elements (Qalkari furnace product) and melting slag (Qalkari furnace waste). In the subsequent hydrometallurgy phase, the nitric acid concentration and the input solid amount were optimized for the effective room-temperature recovery of gold. Due to the successful separation of precision elements and disturbing substances in Qalkari, the gold recovery efficiency of 99.99% was obtained at the acid concentration of 50% (v/v) and the solid input of 15% (w/v). Afterwards, HCl, NH4Cl, and NaCl were used for silver recovery from the Qalkari-processed gold-recovered leaching solution, leading to the efficiency of 99.99%. But NH4Cl was recognized as the most effective precipitant as it promises the most enhanced potential for the possible subsequent recovery of palladium. In conclusion, this study draws the effectiveness of Qalkari in recycling electronic wastes, with a significant impact on the efficiency of succeeding room-temperature hydrometallurgical processes for gold and silver recovery within a reasonable leaching time.


Subject(s)
Electronic Waste , Silver , Gold , Temperature , Recycling
12.
J Environ Manage ; 351: 119779, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086120

ABSTRACT

With an exponential increase in consumers' need for electronic products, the world is facing an ever-increasing economic and environmental threat of electronic waste (e-waste). To minimize their adverse effects, e-waste recycling is one of the pivotal factors that can help in minimizing the environmental pollution andto increase recovery of valuable materials. For instance, Printed Circuit Boards (PCBs), while they have several valuable elements, they are hazardous too; and therefore, they form a large chunk of e-waste being generated today. Thus, in recycling PCBs, Electronic Components (ECs) are segregated at first, and separately processed for recovering key elements that could be re-used. However, in the current recycling process, especially in developing nations, humans manually screen ECs, which goes on to affect their health. It also causes losses of valuable materials. Therefore, automated solutions need to be adopted for both to classify and to segregate ECs from waste PCBs. The study proposes a robust EC identification system based on computer vision and deep learning algorithms (YOLOv3) to automate sorting process which would help in further processing. The study uses a publicly available dataset, and a PCB dataset which reflect challenging recycling environments like lighting conditions, cast shadows, orientations, viewpoints, and different cameras/resolutions. The outcome of YOLOv3 detection model based on training of both datasets presents satisfactory classification accuracy and capability of real-time competent identification, which in turn, could help in automatically segregating ECs, while leading towards effective e-waste recycling.


Subject(s)
Electronic Waste , Recycling , Humans , Computers , Electronic Waste/analysis , Electronics , Algorithms
13.
J Environ Manage ; 356: 120652, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531139

ABSTRACT

The increasing volume of electronic waste (e-waste) poses significant challenges for efficient collection in China. Despite many measures were taken over the past two decades, the e-waste collection rate was still not high. To this end, the Chinese government issued a new policy, the collection target responsibility (CTR) policy. Under the CTR policy, however, it is essential for participants to know how to share the responsibility of collection and how much reasonable targets are set to ensure the efficiency of the collection models. Therefore, the purpose of this paper is to explore the determination of optimal collection targets and the corresponding performance from the perspective of responsibility sharing to support the successful implementation of the CTR. Firstly, the study focuses on participants including the government, manufacturers, and recyclers, and develops three CTR models, independent collection model, government cost-sharing model, and enterprise collaboration model. Secondly, collection target equations for each model are established by employing dynamic differential game analysis, and corresponding collection performances are derived. Thirdly, through practical case simulations, the evolution of collection performance is dynamically analyzed to determine reasonable collection targets for the three models, as 23.8%, 32.3%, and 34.4%, respectively. The findings highlight the effectiveness of CTR in improving e-waste collection targets and performance, with the highest levels attained when the collection responsibilities are shared by government cost-sharing and enterprise collaboration. This study provides theoretical support for setting reasonable collection targets under CTR, and assists decision-makers in developing targeted CTR implementation measures.


Subject(s)
Electronic Waste , Waste Management , Humans , Recycling , China
14.
J Environ Manage ; 358: 120944, 2024 May.
Article in English | MEDLINE | ID: mdl-38652987

ABSTRACT

In the Maldives, the contribution of the informal sector to e-waste management is significant as a formal e-waste management system is not yet established. The opportunities for advancing the circular economy in the Maldives' e-waste sector rely on the possibility of its formalization. This study aimed to examine the current and anticipated situations of e-waste management in the Greater Malé Region of the Maldives, with a specific focus on formalizing the informal sector. Interviews and questionnaire-based surveys were conducted followed by statistical analysis of the data. The t-test performed for the consumer survey data (n = 202) suggests that formalization encourages consumers to engage with the informal sector, resulting in increased resource recovery. Thematic analysis of interviews conducted with both formal and informal sector stakeholders (n = 17) revealed that the informal sector plays a substantial role in managing e-waste. It also underscored the need for government assistance to enhance safety and productivity in this sector. Various opportunities and challenges for establishing a circular economy in the country were identified, such as the rise in e-waste generation, the presence of an active informal workforce, the lack of sufficient government support, and prevailing stereotypes among consumers regarding informal workers. These findings provide a fresh perspective on the solutions for waste management in the Maldives and open the door to further explore the significance of the informal sector and feasible formalization initiatives. This study could contribute to the literature on the role of the informal sector in waste management in the Maldives and other small island developing states.


Subject(s)
Electronic Waste , Waste Management , Indian Ocean Islands , Informal Sector , Maldives , Surveys and Questionnaires , Waste Management/methods
15.
J Environ Manage ; 363: 121384, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850922

ABSTRACT

In the course of this investigation, we undertook the contemplation of a green chemistry paradigm with the express intent of procuring valuable metal, namely gold, from electronic waste (e-waste). In pursuit of this overarching objective, we conceived a procedural framework consisting of two pivotal stages. As an initial stage, we introduced a physical separation procedure relying on the utilization of the Eddy current separator, prior to embarking on the process of leaching from e-waste. Subsequent to the partitioning of metals from the non-metal constituents of waste printed circuit boards (PCB), we initiated an investigation into the hydrogel derived from basil seeds (Ocimum basilicum L.), utilizing it as a biogenic sorbent medium. The thorough characterization of hydrogel extracted from basil seeds involved the application of an array of analytical techniques, encompassing FTIR, XRD, SEM, and BET. The batch sorption experiments show more than 90% uptake in the pH range of 2-5. The sorption capacity of the hydrogel material was evaluated as 188.44 mg g-1 from the Langmuir Isotherm model. The potential interference stemming from a spectrum of other ions, encompassing Al, Cu, Ni, Zn, Co, Cr, Fe, Mn, and Pb was systematically examined. Notably, the sole instance of interference in the context of adsorption of gold ions was observed to be associated with the presence of lead. The application of the hydrogel demonstrated a commendable efficiency in the recovery of Au(III) from the leached solution derived from the waste PCB.


Subject(s)
Electronic Waste , Gold , Hydrogels , Gold/chemistry , Hydrogels/chemistry , Adsorption , Ocimum basilicum/chemistry
16.
J Environ Manage ; 362: 121306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833918

ABSTRACT

Integrated circuits (ICs) and central processing units (CPUs), essential components of electrical and electronic equipment (EEE), are complex composite materials rich in recyclable high-value strategic and critical metals, with many in concentrations higher than in their natural ores. With gold the most valuable metal present, increase in demand for gold for EEE and its limited availability have led to a steep rise in the market price of gold, making gold recycling a high priority to meet demand. To overcome the limitations associated with conventional technologies for recycling e-waste, the use of greener technologies (ionic liquids (ILs) as leaching agents), offers greater potential for the recovery of gold from e-waste components. While previous studies have demonstrated the efficiency and feasibility of using ILs for gold recovery, these works predominantly concentrate on the extraction stage and often utilise simulated solutions, lacking the implementation of a complete process validated with real samples to effectively assess its overall effectiveness. In this work, a simulated Model Test System was used to determine the optimal leaching and extraction conditions before application to real samples. With copper being the most abundant metal in the e-waste fractions, to access the gold necessitated a two-stage pre-treatment (nitric acid leaching followed by aqua regia leaching) to ensure complete removal of copper and deliver a gold-enriched leach liquor. Gold extraction from the leach liquor was achieved by liquid-liquid extraction using Cyphos 101 (0.1 M in toluene with an O:A = 1:1, 20 °C, 150 rpm, and 15 min) and as a second process by sorption extraction with loaded resins (Amberlite XAD-7 with 300 mg of Cyphos 101/g of resins at 20 °C, 150 rpm and 3 h). In both processes, complete stripping and desorption of gold was achieved (0.5 M thiourea in 0.5 M HCl) and gold recovered, as nanoparticles of purity ≥95%, via a reduction step using a sodium borohydride solution (0.1 M NaBH4 in 0.1 M NaOH). These two hydrometallurgical processes developed can achieve overall efficiencies of ≥95% for gold recovery from real e-waste components, permit the reuse of the IL and resins up to five consecutive times, and offer a promising approach for recovery from any e-waste stream rich in gold.


Subject(s)
Gold , Ionic Liquids , Recycling , Ionic Liquids/chemistry , Gold/chemistry , Recycling/methods , Electronic Waste
17.
J Environ Manage ; 354: 120417, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382439

ABSTRACT

Unsustainable production and consumption are driving a significant increase in global electronic waste, posing substantial environmental and human health risks. Even in more developed nations, there is the challenge of low collection rates. In response, we integrate offline and online trading systems and design a material efficiency strategy for used cell phones. We propose a new multi-objective optimization framework to maximize profit, carbon emissions reduction, and circularity in the process of recycling and treatment. Considering multi-period, multi-product, multi-echelon features, as well as price sensitive demand, incentives, and qualities, we established a new multi-objective mixed-integer nonlinear programming optimization model. An enhanced, Fast, Non-Dominated Solution Sorting Genetic Algorithm (ASDNSGA-II) is developed for the solution. We used operational data from a leading Chinese Internet platform to validate the proposed optimization framework. The results demonstrate that the reverse logistics network designed achieves a win-win situation regarding profit and carbon emission reduction. This significantly boosts confidence and motivation for engaging in recycling efforts. Online recycling shows robust profitability and carbon reduction capabilities. An effective coordination mechanism for pricing in both online and offline channels should be established, retaining offline methods while gradually transitioning towards online methods. To increase the collection rate, it is essential to jointly implement a transitional strategy, including recycling incentives and subsidy policies. Additionally, elevating customer environmental awareness should be viewed as a long-term strategy, mitigating the cost of increasing collection rates during the market maturity stage (high collection rates).


Subject(s)
Cell Phone , Electronic Waste , Humans , Recycling/methods , Costs and Cost Analysis , Carbon
18.
J Environ Manage ; 369: 122371, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39236614

ABSTRACT

With the e-waste growing rapidly all over the globe due to growing demand of electronics, smartphones, etc., coming up with an efficient and sustainable recycling process is the need of the hour. The present work reports a novel and sustainable process of manufacturing Ni alloy by bringing together three major waste streams such as waste Ni-MH batteries, e-waste plastics, and waste glass. The chosen temperature (1550 °C) favours the reduction of nickel-oxide by e-waste plastic as the reductant and sends rare earth elements present in the waste Ni-MH battery as oxide mixture to the slag phase. Waste glass powder used in this process functions as the fluxing agent, hence not requiring any additional flux. The reduction mechanism is gas-based, controlled mainly by hydrogen and carbon monoxide gases released as a result of decomposition of e-waste plastic as reaction commenced from cold zone (∼300 °C) to hot zone (1550 °C) in the horizontal tubular furnace. Formation of nickel alloy and enrichment of slag with mixture of rare earth oxides were confirmed by XRD, SEM-EDS, and Rietveld refining analysis performed on the XRD spectra of slag phase. ICP-OES (Inductively coupled plasma optical emission spectroscopy) and LIBS (laser induced breakdown spectrometer KT-100S) confirmed the high metal content in the alloy, thereby emphasizing the purity (∼98%) which is close to the composition of nickel super alloy. A maximum of 61% by weight REO enrichment was achieved in the slag phase, having La2O3:44.6%, Pr2O3:14.8%, and Nd2O3: 1.6% under optimised experimental conditions (1550 °C, 15 min, and 20% waste glass powder). This scientific investigation evinces a promising route for efficient utilisation of waste streams emanating from e-waste, thereby devising a sustainable recycling technique and protecting the environment, too.


Subject(s)
Alloys , Cobalt , Glass , Nickel , Recycling , Nickel/chemistry , Glass/chemistry , Cobalt/chemistry , Alloys/chemistry , Electronic Waste , Electric Power Supplies
19.
J Environ Manage ; 358: 120945, 2024 May.
Article in English | MEDLINE | ID: mdl-38652986

ABSTRACT

This paper presents a comprehensive analysis of e-waste collection and management trends across six Canadian provinces, focusing on e-waste collection rates, provincial stewardship model attributes, program strategies and budget allocations from 2013 to 2020. Temporal and regression analyses were conducted using data from Electronic Product Recycling Association reports. A group characterization based on geographical proximity is proposed, aiming to explore the potential outcomes of fostering collaboration among neighboring provinces. The analysis emphasizes the significant impact of stewardship model attributes on e-waste collection rates, with Quebec emerging as a standout case, showcasing a remarkable 61.5% surge in collection rates. Findings from group analysis reveal a positive correlation between per capita e-waste collection rate and the growth of businesses and collection sites in Western Canada (Group A - British Columbia, Saskatchewan, and Manitoba). This highlights the potential benefits of a coordinated waste management approach, emphasizing the importance of shared resources and collaborative policies. Saskatchewan and Manitoba allocated only 6.6% and 7.0% of their respective budgets to e-waste transfer and storage. British Columbia's observed steady decrease of e-waste collection rate. In Group A, stewards handled 2.18-13.95 tonnes of e-waste during the study period. The cost per tonne of e-waste tended to be lower when more e-waste is managed per steward, suggesting the potential benefits of an integrated e-waste collection and management system.


Subject(s)
Waste Management , Canada , Cost-Effectiveness Analysis , Electronic Waste , Recycling/economics , Saskatchewan , Waste Management/economics , Waste Management/methods
20.
Environ Geochem Health ; 46(8): 279, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958829

ABSTRACT

The present study focused on to determine the concentration and health risk of heavy metals (Cu, Pb, Zn, Cd, Hg, Cr) in e-waste contaminated soils collected from different provinces of Pakistan. Further, the impact of heavy metals on soil enzyme activities and microbial community was also investigated. The concentration (mg/kg) of Hg, Zn, Fe, Cu, Pb, Cd, and Cr ranged between 0-0.258, 2.284-6.587, 3.005-40.72, 8.67-36.88, 12.05-35.03, 1.03-2.43, and 33.13-60.05, respectively. The results revealed that Lahore site of Punjab province indicated more concentration of heavy metals as compared to other sites. The level of Cr at all sites whereas Hg at only two sites exceeds the World Health Organization standards (WHO) for soil. Soil enzyme activity exhibited dynamic trend among the sites. Maximum enzyme activity was observed for urease followed by phosphatase and catalase. Contamination factor (Cf), Pollution load index (PLI), and geo-accumulation index (Igeo) results showed that all the sites are highly contaminated with Cu, Cd, and Pb. Hazard index (HI) was less than 1 for children and adults suggesting non-carcinogenic health risk. Principle component analysis results depicted relation among Cr, Fr, catalase, and actinomycetes; Cd, OM, urease, and bacteria, and Pb, Cu, Zn, Hg, and phosphatase, suggesting soil enzymes and microbial community profiles were influenced by e-waste pollution. Therefore, there is a dire need to introduce sustainable e-waste recycling techniques as well as to make stringent e-waste management policies to reduce further environmental contamination.


Subject(s)
Electronic Waste , Metals, Heavy , Soil Microbiology , Soil Pollutants , Metals, Heavy/analysis , Pakistan , Soil Pollutants/analysis , Risk Assessment , Humans , Environmental Monitoring/methods , Waste Disposal Facilities , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL