Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Virol ; 98(8): e0085824, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39078257

ABSTRACT

Japanese encephalitis virus (JEV) is an arthropod-borne, plus-strand flavivirus causing viral encephalitis in humans with a high case fatality rate. The JEV non-structural protein 5 (NS5) with the RNA-dependent RNA polymerase activity interacts with the viral and host proteins to constitute the replication complex. We have identified the multifunctional protein Nucleolin (NCL) as one of the several NS5-interacting host proteins. We demonstrate the interaction and colocalization of JEV NS5 with NCL in the virus-infected HeLa cells. The siRNA-mediated knockdown of NCL indicated that it was required for efficient viral replication. Importantly, JEV grew to higher titers in cells over-expressing exogenous NCL, demonstrating its pro-viral role. We demonstrated that NS5 interacted with the RRM and GAR domains of NCL. We show that the NCL-binding aptamer AS1411 containing the G-quadruplex (GQ) structure and the GQ ligand BRACO-19 caused significant inhibition of JEV replication. The antiviral effect of AS1411 and BRACO-19 could be overcome in HeLa cells by the overexpression of exogenous NCL. We demonstrated that the synthetic RNAs derived from the 3'-NCR of JEV genomic RNA containing the GQ sequence could bind NCL in vitro. The replication complex binding to the 3'-NCR is required for the viral RNA synthesis. It is likely that NCL present in the replication complex destabilizes the GQ structures in the genomic RNA, thus facilitating the movement of the replication complex resulting in efficient virus replication.IMPORTANCEJapanese encephalitis virus (JEV) is endemic in most parts of South-East Asia and the Western Pacific region, causing epidemics of encephalitis with a high case fatality rate. While a tissue culture-derived JEV vaccine is available, no antiviral therapy exists. The JEV NS5 protein has RNA-dependent RNA polymerase activity. Together with several host and viral proteins, it constitutes the replication complex necessary for virus replication. Understanding the interaction of NS5 with the host proteins could help design novel antivirals. We identified Nucleolin (NCL) as a crucial host protein interactor of JEV NS5 having a pro-viral role in virus replication. The NS5-interacting NCL binds to the G-quadruplex (GQ) structure sequence in the 3'-NCR of JEV RNA. This may smoothen the movement of the replication complex along the genomic RNA, thereby facilitating the virus replication. This study is the first report on how NCL, a host protein, helps in JEV replication through GQ-binding.


Subject(s)
Encephalitis Virus, Japanese , Nucleolin , Phosphoproteins , RNA-Binding Proteins , Viral Nonstructural Proteins , Virus Replication , Humans , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , HeLa Cells , Protein Binding , Encephalitis, Japanese/virology , Encephalitis, Japanese/metabolism , Host-Pathogen Interactions , G-Quadruplexes , Animals
2.
J Virol ; 98(5): e0019524, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38656209

ABSTRACT

The host cytoskeleton plays crucial roles in various stages of virus infection, including viral entry, transport, replication, and release. However, the specific mechanisms by which intermediate filaments are involved in orthoflavivirus infection have not been well understood. In this study, we demonstrate that the Japanese encephalitis virus (JEV) remodels the vimentin network, resulting in the formation of cage-like structures that support viral replication. Mechanistically, JEV NS1 and NS1' proteins induce the translocation of CDK1 from the nucleus to the cytoplasm and interact with it, leading to the phosphorylation of vimentin at Ser56. This phosphorylation event recruits PLK1, which further phosphorylates vimentin at Ser83. Consequently, these phosphorylation modifications convert the typically filamentous vimentin into non-filamentous "particles" or "squiggles." These vimentin "particles" or "squiggles" are then transported retrogradely along microtubules to the endoplasmic reticulum, where they form cage-like structures. Notably, NS1' is more effective than NS1 in triggering the CDK1-PLK1 cascade response. Overall, our study provides new insights into how JEV NS1 and NS1' proteins manipulate the vimentin network to facilitate efficient viral replication. IMPORTANCE: Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus that causes severe encephalitis in humans, particularly in Asia. Despite the availability of a safe and effective vaccine, JEV infection remains a significant public health threat due to limited vaccination coverage. Understanding the interactions between JEV and host proteins is essential for developing more effective antiviral strategies. In this study, we investigated the role of vimentin, an intermediate filament protein, in JEV replication. Our findings reveal that JEV NS1 and NS1' proteins induce vimentin rearrangement, resulting in the formation of cage-like structures that envelop the viral replication factories (RFs), thus facilitating efficient viral replication. Our research highlights the importance of the interplay between the cytoskeleton and orthoflavivirus, suggesting that targeting vimentin could be a promising approach for the development of antiviral strategies to inhibit JEV propagation.


Subject(s)
Encephalitis Virus, Japanese , Vimentin , Viral Nonstructural Proteins , Virus Replication , Animals , Humans , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/virology , Encephalitis, Japanese/metabolism , HEK293 Cells , Host-Pathogen Interactions , Phosphorylation , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases/metabolism , Vimentin/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics
3.
J Virol ; 98(5): e0195923, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38634598

ABSTRACT

The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.


Subject(s)
Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Sialic Acids , Virus Attachment , Animals , Mice , Cell Line , Culex/virology , Culex/metabolism , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/virology , Encephalitis, Japanese/metabolism , Mosquito Vectors/virology , Neuraminidase/metabolism , Neuraminidase/genetics , Sialic Acids/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Virus Internalization
4.
PLoS Pathog ; 19(10): e1011681, 2023 10.
Article in English | MEDLINE | ID: mdl-37819933

ABSTRACT

In the case of the Japanese encephalitis virus (JEV), the envelope protein (E), a major component of viral particles, contains a highly conserved N-linked glycosylation site (E: N154). Glycosylation of the E protein is thought to play an important role in the ability of the virus to attach to target cells during transmission; however, its role in viral particle formation and release remains poorly understood. In this study, we investigated the role of N-glycosylation of flaviviral structural proteins in viral particle formation and secretion by introducing mutations in viral structural proteins or cellular factors involved in glycoprotein transport and processing. The number of secreted subviral particles (SVPs) was significantly reduced in N154A, a glycosylation-null mutant, but increased in D67N, a mutant containing additional glycosylation sites, indicating that the amount of E glycosylation regulates the release of SVPs. SVP secretion was reduced in cells deficient in galactose, sialic acid, and N-acetylglucosamine modifications in the Golgi apparatus; however, these reductions were not significant, suggesting that glycosylation mainly plays a role in pre-Golgi transport. Fluorescent labeling of SVPs using a split green fluorescent protein (GFP) system and time-lapse imaging by retention using selective hooks (RUSH) system revealed that the glycosylation-deficient mutant was arrested before endoplasmic reticulum (ER)- Golgi transport. However, the absence of ERGIC-53 and ERGIC-L, ER-Golgi transport cargo receptors that recognize sugar chains on cargo proteins, does not impair SVP secretion. In contrast, the solubility of the N154A mutant of E or the N15A/T17A mutant of prM in cells was markedly lower than that of the wild type, and proteasome-mediated rapid degradation of these mutants was observed, indicating the significance of glycosylation of both prM and E in proper protein folding and assembly of viral particles in the ER.


Subject(s)
Encephalitis Virus, Japanese , Flavivirus , Glycosylation , Flavivirus/metabolism , Viral Envelope Proteins/metabolism , Encephalitis Virus, Japanese/metabolism , Virion/metabolism
5.
Subcell Biochem ; 106: 251-281, 2023.
Article in English | MEDLINE | ID: mdl-38159231

ABSTRACT

RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.


Subject(s)
Encephalitis Virus, Japanese , Flavivirus , West Nile virus , Zika Virus Infection , Zika Virus , Child , Humans , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/metabolism , West Nile virus/physiology , Blood-Brain Barrier
6.
Mar Drugs ; 22(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38393063

ABSTRACT

The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that primarily affects people in Asia and seriously threatens public health. Considering the rising occurrence rates and lack of targeted antiviral treatments, it is essential to comprehend and tackle obstacles related to JEV in order to lessen its influence on world health. This investigation explores compounds derived from marine brown algae (Phaeophyceae) as potential inhibitors of JEV RNA-dependent RNA polymerase (RdRp), a critical enzyme in the virus's replication cycle. Employing the computational virtual screen approach, four compounds, i.e., CMNPD16749, CMNPD2606, CMNPD27817, and CMNPD23662, with favorable binding energies ranging from -15.7 Kcal/mol to -13.9 kcal/mol were identified. Subsequently, through molecular docking analysis, the interactions responsible for the binding stability between the target protein and hit molecules compared to the reference molecule Galidesvir were studied. Further, through extensive molecular dynamic (MD) simulation studies at 200 ns, it was confirmed that each docked complex showed acceptable dynamic stability compared to the reference molecule. These findings were further validated using MM/PBSA free binding energy calculations, PCA analysis and free energy landscape construction. These computational findings suggested that the brown algae-derived compounds may act as an antiviral drug against JEV infection and lay a crucial foundation for future experimental studies against JEV.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Humans , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/metabolism , RNA-Dependent RNA Polymerase/metabolism , Molecular Docking Simulation , Virus Replication/genetics
7.
J Biol Chem ; 298(3): 101597, 2022 03.
Article in English | MEDLINE | ID: mdl-35063505

ABSTRACT

Flaviviruses are human pathogens that can cause severe diseases, such as dengue fever and Japanese encephalitis, which can lead to death. Valosin-containing protein (VCP)/p97, a cellular ATPase associated with diverse cellular activities (AAA-ATPase), is reported to have multiple roles in flavivirus replication. Nevertheless, the importance of each role still has not been addressed. In this study, the functions of 17 VCP mutants that are reportedly unable to interact with the VCP cofactors were validated using the short-interfering RNA rescue experiments. Our findings of this study suggested that VCP exerts its functions in replication of the Japanese encephalitis virus by interacting with the VCP cofactor nuclear protein localization 4 (NPL4). We show that the depletion of NPL4 impaired the early stage of viral genome replication. In addition, we demonstrate that the direct interaction between NPL4 and viral nonstructural protein (NS4B) is critical for the translocation of NS4B to the sites of viral replication. Finally, we found that Japanese encephalitis virus and dengue virus promoted stress granule formation only in VCP inhibitor-treated cells and the expression of NS4B or VCP attenuated stress granule formation mediated by protein kinase R, which is generally known to be activated by type I interferon and viral genome RNA. These results suggest that the NS4B-mediated recruitment of VCP to the virus replication site inhibits cellular stress responses and consequently facilitates viral protein synthesis in the flavivirus-infected cells.


Subject(s)
Encephalitis Virus, Japanese , Flavivirus , Nuclear Proteins , Stress Granules , Valosin Containing Protein , Viral Nonstructural Proteins , Virus Replication , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/metabolism , Encephalitis Virus, Japanese/physiology , Flavivirus/genetics , Flavivirus/metabolism , Flavivirus/physiology , Genome, Viral , Humans , Nuclear Proteins/metabolism , RNA, Viral/genetics , Stress Granules/genetics , Stress Granules/metabolism , Valosin Containing Protein/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology
8.
J Gen Virol ; 104(4)2023 04.
Article in English | MEDLINE | ID: mdl-37097881

ABSTRACT

Swine are considered to be an important intermediate host in the cycle of Japanese encephalitis virus (JEV) infection. Most existing antiviral studies of JEV mainly focus on the host factor of the dead-end hosts. However, little research has addressed this in swine. Here, we found that swine interferon alpha-inducible protein 6 (sIFI6) possessed antiviral activity against JEV. In vitro studies showed that overexpression of sIFI6 inhibited the infection of JEV, while sIFI6 knockdown enhanced the infection of JEV in PK-15 cells. In addition, we also found that the structural integrity of sIFI6 was required by anti-JEV activity and that sIFI6 interacted with JEV nonstructural protein 4A (NS4A), an integral membrane protein with a pivotal function in replication complex during JEV replication. The interaction domain was mapped to the fourth transmembrane domain (TMD), also known as the 2K peptide of NS4A. The antiviral activity of sIFI6 was regulated by endoplasmic reticulum (ER) stress-related protein, Bip. In vivo studies revealed that sIFI6 alleviated symptoms of JEV infection in C57BL/6 mice. In addition, the antiviral spectrum of sIFI6 showed that sIFI6 specifically inhibited JEV infection. In conclusion, this study identified sIFI6 as a host factor against JEV infection for the first time. Our findings provide a potential drug target against JEV infection.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Mice , Antiviral Agents/therapeutic use , Cell Line , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/metabolism , Mice, Inbred C57BL , Swine , Virus Replication , Phosphoproteins/metabolism , Nuclear Proteins/metabolism
9.
Int J Mol Sci ; 24(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37834294

ABSTRACT

RNase H-dependent gapmer antisense oligonucleotides (ASOs) are a promising therapeutic approach via sequence-specific binding to and degrading target RNAs. However, the efficacy and mechanism of antiviral gapmer ASOs have remained unclear. Here, we investigated the inhibitory effects of gapmer ASOs containing locked nucleic acids (LNA gapmers) on proliferating a mosquito-borne flavivirus, Japanese encephalitis virus (JEV), with high mortality. We designed several LNA gapmers targeting the 3' untranslated region of JEV genomic RNAs. In vitro screening by plaque assay using Vero cells revealed that LNA gapmers targeting a stem-loop region effectively inhibit JEV proliferation. Cell-based and RNA cleavage assays using mismatched LNA gapmers exhibited an underlying mechanism where the inhibition of viral production results from JEV RNA degradation by LNA gapmers in a sequence- and modification-dependent manner. Encouragingly, LNA gapmers potently inhibited the proliferation of five JEV strains of predominant genotypes I and III in human neuroblastoma cells without apparent cytotoxicity. Database searching showed a low possibility of off-target binding of our LNA gapmers to human RNAs. The target viral RNA sequence conservation observed here highlighted their broad-spectrum antiviral potential against different JEV genotypes/strains. This work will facilitate the development of an antiviral LNA gapmer therapy for JEV and other flavivirus infections.


Subject(s)
Encephalitis Virus, Japanese , Oligonucleotides, Antisense , Animals , Chlorocebus aethiops , Humans , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/metabolism , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/metabolism , Ribonuclease H/metabolism , Vero Cells , RNA, Viral/genetics , Antiviral Agents/pharmacology
10.
J Virol ; 95(15): e0223420, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33980593

ABSTRACT

Many positive-stranded RNA viruses encode polyproteins from which viral proteins are generated by processing the polyproteins. This system produces an equal amount of each viral protein, though the required amounts for each protein are not the same. In this study, we found the extra membrane-anchored nonstructural (NS) proteins of Japanese encephalitis virus and dengue virus are rapidly and selectively degraded by the endoplasmic reticulum-associated degradation (ERAD) pathway. Our gene targeting study revealed that ERAD involving Derlin2 and SEL1L, but not Derlin1, is required for the viral genome replication. Derlin2 is predominantly localized in the convoluted membrane (CM) of the viral replication organelle, and viral NS proteins are degraded in the CM. Hence, these results suggest that viral protein homeostasis is regulated by Derlin2-mediated ERAD in the CM, and this process is critical for the propagation of these viruses. IMPORTANCE The results of this study reveal the cellular ERAD system controls the amount of each viral protein in virus-infected cells and that this "viral protein homeostasis" is critical for viral propagation. Furthermore, we clarified that the "convoluted membrane (CM)," which was previously considered a structure with unknown function, serves as a kind of waste dump where viral protein degradation occurs. We also found that the Derlin2/SEL1L/HRD1-specific pathway is involved in this process, whereas the Derlin1-mediated pathway is not. This novel ERAD-mediated fine-tuning system for the stoichiometries of polyprotein-derived viral proteins may represent a common feature among polyprotein-encoding viruses.


Subject(s)
Dengue Virus/metabolism , Encephalitis Virus, Japanese/metabolism , Endoplasmic Reticulum-Associated Degradation/physiology , Membrane Proteins/metabolism , Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Cell Line, Tumor , Chlorocebus aethiops , Dengue Virus/growth & development , Encephalitis Virus, Japanese/growth & development , Endoplasmic Reticulum/metabolism , Genome, Viral/genetics , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , RNA Interference , RNA, Small Interfering/genetics , Ubiquitin-Protein Ligases/metabolism , Valosin Containing Protein/metabolism , Vero Cells , Virus Replication/physiology
11.
PLoS Pathog ; 16(5): e1008484, 2020 05.
Article in English | MEDLINE | ID: mdl-32357182

ABSTRACT

The flaviviruses pose serious threats to human health. Being a natural fusion of a methyltransferase (MTase) and an RNA-dependent RNA polymerase (RdRP), NS5 is the most conserved flavivirus protein and an important antiviral target. Previously reported NS5 structures represented by those from the Japanese encephalitis virus (JEV) and Dengue virus serotype 3 (DENV3) exhibit two apparently different global conformations, defining two sets of intra-molecular MTase-RdRP interactions. However, whether these NS5 conformations are conserved in flaviviruses and their specific functions remain elusive. Here we report two forms of DENV serotype 2 (DENV2) NS5 crystal structures representing two conformational states with defined analogies to the JEV-mode and DENV3-mode conformations, respectively, demonstrating the conservation of both conformation modes and providing clues for how different conformational states may be interconnected. Data from in vitro polymerase assays further demonstrate that perturbing the JEV-mode but not the DENV3-mode intra-molecular interactions inhibits catalysis only at initiation, while the cell-based virological analysis suggests that both modes of interactions are important for virus proliferation. Our work highlights the role of MTase as a unique intra-molecular initiation factor specifically only through the JEV-mode conformation, providing an example of conformation-based crosstalk between naturally fused protein functional modules.


Subject(s)
Dengue Virus/chemistry , Encephalitis Virus, Japanese/chemistry , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Animals , Cricetinae , Crystallography, X-Ray , Dengue Virus/metabolism , Encephalitis Virus, Japanese/metabolism , Humans , Protein Domains , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism
12.
PLoS Pathog ; 16(10): e1009035, 2020 10.
Article in English | MEDLINE | ID: mdl-33108395

ABSTRACT

The tumor suppressor p53 as an innate antiviral regulator contributes to restricting Japanese encephalitis virus (JEV) replication, but the mechanism is still unclear. The interferon-induced transmembrane protein 3 (IFITM3) is an intrinsic barrier to a range of virus infection, whether IFITM3 is responsible for the p53-mediated anti-JEV response remains elusive. Here, we found that IFITM3 significantly inhibited JEV replication in a protein-palmitoylation-dependent manner and incorporated into JEV virions to diminish the infectivity of progeny viruses. Palmitoylation was also indispensible for keeping IFITM3 from lysosomal degradation to maintain its protein stability. p53 up-regulated IFITM3 expression at the protein level via enhancing IFITM3 palmitoylation. Screening of palmitoyltransferases revealed that zinc finger DHHC domain-containing protein 1 (ZDHHC1) was transcriptionally up-regulated by p53, and consequently ZDHHC1 interacted with IFITM3 to promote its palmitoylation and stability. Knockdown of IFITM3 significantly impaired the inhibitory role of ZDHHC1 on JEV replication. Meanwhile, knockdown of either ZDHHC1 or IFITM3 expression also compromised the p53-mediated anti-JEV effect. Interestingly, JEV reduced p53 expression to impair ZDHHC1 mediated IFITM3 palmitoylation for viral evasion. Our data suggest the existence of a previously unrecognized p53-ZDHHC1-IFITM3 regulatory pathway with an essential role in restricting JEV infection and provide a novel insight into JEV-host interaction.


Subject(s)
Acyltransferases/metabolism , Encephalitis Virus, Japanese/physiology , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Virus Replication/physiology , A549 Cells , Animals , Cell Line, Tumor , Chlorocebus aethiops , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/metabolism , Encephalitis, Japanese/virology , HEK293 Cells , Host-Pathogen Interactions , Humans , Interferons/metabolism , Lipoylation , Vero Cells
13.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: mdl-33095129

ABSTRACT

Microtubule-associated protein 1 light chain 3 (MAP1LC3) is a protein with a well-defined function in autophagy, but still incompletely understood roles in several other autophagy-independent processess. Studies have shown MAP1LC3 is a host-dependency factor for the replication of several viruses. Japanese encephalitis virus (JEV), a neurotropic flavivirus, replicates on ER-derived membranes that are marked by autophagosome-negative non-lipidated MAP1LC3 (LC3-I). Depletion of LC3 exerts a profound inhibition on virus replication and egress. Here, we further characterize the role of LC3 in JEV replication, and through immunofluorescence and immunoprecipitation show that LC3-I interacts with the virus capsid protein in infected cells. This association was observed on capsid localized to both the replication complex and lipid droplets (LDs). JEV infection decreased the number of LDs per cell indicating a link between lipid metabolism and virus replication. This capsid-LC3 interaction was independent of the autophagy adaptor protein p62/Sequestosome 1 (SQSTM1). Further, no association of capsid was seen with the Gamma-aminobutyric acid receptor-associated protein family, suggesting that this interaction was specific for LC3. High-resolution protein-protein docking studies identified a putative LC3-interacting region in capsid, 56FTAL59, and other key residues that could mediate a direct interaction between the two proteins.


Subject(s)
Capsid Proteins/metabolism , Encephalitis Virus, Japanese/physiology , Lipid Droplets/metabolism , Microtubule-Associated Proteins/metabolism , Viral Replication Compartments/metabolism , Amino Acid Sequence , Animals , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/chemistry , Cell Line , Encephalitis Virus, Japanese/metabolism , Host-Pathogen Interactions , Humans , Mice , Molecular Docking Simulation , Protein Interaction Domains and Motifs , Virus Replication
14.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: mdl-32796073

ABSTRACT

Japanese encephalitis virus (JEV) is a viral zoonosis that can cause viral encephalitis, death, and disability. Although the Culex mosquito is the primary vector of JEV, little is known about JEV transmission by this kind of mosquito. Here, we found that mosquito defensin facilitated the adsorption of JEV on target cells via the defensin/lipoprotein receptor-related protein 2 (LRP2) axis. Mosquito defensin bound the ED III domain of the viral envelope (E) protein and directly mediated efficient virus adsorption on the target cell surface; the receptor LRP2, which is expressed on the cell surface, affected defensin-dependent adsorption. As a result, mosquito defensin enhanced JEV infection in the salivary gland, increasing the possibility of viral transmission by mosquitoes. These findings demonstrate the novel role of mosquito defensin in JEV infection and the mechanisms through which the virus exploits mosquito defensin for infection and transmission.IMPORTANCE In this study, we observed the complex roles of mosquito defensin in JEV infection; mosquito defensin exhibited a weak antiviral effect but strongly enhanced binding. In the latter, defensin directly binds the ED III domain of the viral E protein and promotes the adsorption of JEV to target cells by interacting with lipoprotein receptor-related protein 2 (LRP2), thus accelerating virus entry. Together, our results indicate that mosquito defensin plays an important role in facilitating JEV infection and potential transmission.


Subject(s)
Culex/genetics , Defensins/genetics , Encephalitis Virus, Japanese/genetics , Insect Proteins/genetics , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Mosquito Vectors/genetics , Viral Envelope Proteins/genetics , Adsorption , Animals , Culex/virology , Defensins/metabolism , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/transmission , Encephalitis, Japanese/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Insect Proteins/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Mosquito Vectors/virology , Protein Binding , Salivary Glands/metabolism , Salivary Glands/virology , Viral Envelope Proteins/metabolism , Virus Internalization
15.
J Immunol ; 203(8): 2222-2238, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31527198

ABSTRACT

Microglia being the resident macrophage of brain provides neuroprotection following diverse microbial infections. Japanese encephalitis virus (JEV) invades the CNS, resulting in neuroinflammation, which turns the neuroprotective role of microglia detrimental as characterized by increased microglial activation and neuronal death. Several host factors, including microRNAs, play vital roles in regulating virus-induced inflammation. In the current study, we demonstrate that the expression of miR-301a is increased in JEV-infected microglial cells and human brain. Overexpression of miR-301a augments the JEV-induced inflammatory response, whereas inhibition of miR-301a completely reverses the effects. Mechanistically, NF-κB-repressing factor (NKRF) functioning as inhibitor of NF-κB activation is identified as a potential target of miR-301a in JEV infection. Consequently, miR-301a-mediated inhibition of NKRF enhances nuclear translocation of NF-κB, which, in turn, resulted in amplified inflammatory response. Conversely, NKRF overexpression in miR-301a-inhibited condition restores nuclear accumulation of NF-κB to a basal level. We also observed that JEV infection induces classical activation (M1) of microglia that drives the production of proinflammatory cytokines while suppressing alternative activation (M2) that could serve to dampen the inflammatory response. Furthermore, in vivo neutralization of miR-301a in mouse brain restores NKRF expression, thereby reducing inflammatory response, microglial activation, and neuronal apoptosis. Thus, our study suggests that the JEV-induced expression of miR-301a positively regulates inflammatory response by suppressing NKRF production, which might be targeted to manage viral-induced neuroinflammation.


Subject(s)
Antiviral Agents/pharmacology , Encephalitis Virus, Japanese/drug effects , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/drug therapy , Encephalitis, Japanese/immunology , Interferon beta-1b/pharmacology , MicroRNAs/metabolism , Repressor Proteins/antagonists & inhibitors , Animals , Cells, Cultured , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/metabolism , Female , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Male , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Repressor Proteins/metabolism
16.
Int J Mol Sci ; 22(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401776

ABSTRACT

Flavivirus genus includes many deadly viruses such as the Japanese encephalitis virus (JEV) and Zika virus (ZIKV). The 5' terminal regions (TR) of flaviviruses interact with human proteins and such interactions are critical for viral replication. One of the human proteins identified to interact with the 5' TR of JEV is the DEAD-box helicase, DDX3X. In this study, we in vitro transcribed the 5' TR of JEV and demonstrated its direct interaction with recombinant DDX3X (Kd of 1.66 ± 0.21 µM) using microscale thermophoresis (MST). Due to the proposed structural similarities of 5' and 3' TRs of flaviviruses, we investigated if the ZIKV 5' TR could also interact with human DDX3X. Our MST studies suggested that DDX3X recognizes ZIKV 5' TR with a Kd of 7.05 ± 0.75 µM. Next, we performed helicase assays that suggested that the binding of DDX3X leads to the unwinding of JEV and ZIKV 5' TRs. Overall, our data indicate, for the first time, that DDX3X can directly bind and unwind in vitro transcribed flaviviral TRs. In summary, our work indicates that DDX3X could be further explored as a therapeutic target to inhibit Flaviviral replication.


Subject(s)
DEAD-box RNA Helicases/metabolism , Encephalitis Virus, Japanese/metabolism , Host Microbial Interactions/genetics , Zika Virus/metabolism , 5' Untranslated Regions , DEAD-box RNA Helicases/genetics , Encephalitis Virus, Japanese/chemistry , Encephalitis Virus, Japanese/genetics , Gene Expression , Humans , Protein Domains , Up-Regulation , Virus Replication/genetics , Zika Virus/chemistry , Zika Virus/genetics
17.
J Virol ; 93(17)2019 09 01.
Article in English | MEDLINE | ID: mdl-31189710

ABSTRACT

Accumulated evidence demonstrates that Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, the precise role of PERK in JEV-induced apoptosis and encephalitis remains unknown. Here, we report that JEV infection activates the PERK-ATF4-CHOP apoptosis pathway both in vitro and in vivo PERK activation also promotes the formation of stress granule, which in turn represses JEV-induced apoptosis. However, PERK inhibitor reduces apoptosis, indicating that JEV-activated PERK predominantly induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway. Among JEV proteins that have been reported to induce ER stress, only JEV NS4B can induce PERK activation. PERK has been reported to form an active molecule by dimerization. The coimmunoprecipitation assay shows that NS4B interacts with PERK. Moreover, glycerol gradient centrifugation shows that NS4B induces PERK dimerization. Both the LIG-FHA and the LIG-WD40 domains within NS4B are required to induce PERK dimerization, suggesting that JEV NS4B pulls two PERK molecules together by simultaneously interacting with them via different motifs. PERK deactivation reduces brain cell damage and encephalitis during JEV infection. Furthermore, expression of JEV NS4B is sufficient to induce encephalitis via PERK in mice, indicating that JEV activates PERK primarily via its NS4B to cause encephalitis. Taken together, our findings provide a novel insight into JEV-caused encephalitis.IMPORTANCE Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, whether the PERK pathway of ER stress response plays important roles in JEV-induced apoptosis and encephalitis remains unknown. Here, we found that JEV infection activates ER stress sensor PERK in neuronal cells and mouse brains. PERK activation induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway upon JEV infection. Among the JEV proteins prM, E, NS1, NS2A, NS2B, and NS4B, only NS4B activates PERK. Moreover, activated PERK participates in apoptosis and encephalitis induced by JEV and NS4B. These findings provide a novel therapeutic approach for JEV-caused encephalitis.


Subject(s)
Encephalitis Virus, Japanese/pathogenicity , Encephalitis, Japanese/metabolism , Neurons/cytology , Viral Nonstructural Proteins/metabolism , eIF-2 Kinase/metabolism , Activating Transcription Factor 4/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/therapeutic use , Animals , Apoptosis , Binding Sites , Cell Line , Disease Models, Animal , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/virology , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/metabolism , Indoles/pharmacology , Indoles/therapeutic use , Mice , Neurons/metabolism , Neurons/virology , Protein Multimerization , Signal Transduction , Transcription Factor CHOP/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , eIF-2 Kinase/chemistry
18.
J Virol ; 94(1)2019 12 12.
Article in English | MEDLINE | ID: mdl-31597763

ABSTRACT

Flavivirus nonstructural protein 5 (NS5) contains an N-terminal methyltransferase (MTase) domain and a C-terminal polymerase (RNA-dependent RNA polymerase [RdRp]) domain fused through a 9-amino-acid linker. While the individual NS5 domains are structurally conserved, in the full-length protein, their relative orientations fall into two classes: the NS5 proteins from Japanese encephalitis virus (JEV) and Zika virus (ZIKV) adopt one conformation, while the NS5 protein from dengue virus serotype 3 (DENV3) adopts another. Here, we report a crystallographic structure of NS5 from DENV2 in a conformation similar to the extended one seen in JEV and ZIKV NS5 crystal structures. Replacement of the DENV2 NS5 linker with DENV1, DENV3, DENV4, JEV, and ZIKV NS5 linkers had modest or minimal effects on in vitro DENV2 MTase and RdRp activities. Heterotypic DENV NS5 linkers attenuated DENV2 replicon growth in cells, while the JEV and ZIKV NS5 linkers abolished replication. Thus, the JEV and ZIKV linkers likely hindered essential DENV2 NS5 interactions with other viral or host proteins within the virus replicative complex. Overall, this work sheds light on the dynamics of the multifunctional flavivirus NS5 protein and its interdomain linker. Targeting the NS5 linker is a possible strategy for producing attenuated flavivirus strains for vaccine design.IMPORTANCE Flaviviruses include important human pathogens, such as dengue virus and Zika virus. NS5 is a nonstructural protein essential for flavivirus RNA replication with dual MTase and RdRp enzyme activities and thus constitutes a major drug target. Insights into NS5 structure, dynamics, and evolution should inform the development of antiviral inhibitors and vaccine design. We found that NS5 from DENV2 can adopt a conformation resembling that of NS5 from JEV and ZIKV. Replacement of the DENV2 NS5 linker with the JEV and ZIKV NS5 linkers abolished DENV2 replication in cells, without significantly impacting in vitro DENV2 NS5 enzymatic activities. We propose that heterotypic flavivirus NS5 linkers impede DENV2 NS5 protein-protein interactions that are essential for virus replication.


Subject(s)
Dengue Virus/chemistry , Encephalitis Virus, Japanese/chemistry , Viral Nonstructural Proteins/chemistry , Zika Virus/chemistry , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Dengue Virus/genetics , Dengue Virus/metabolism , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Replicon , Sequence Alignment , Serogroup , Structural Homology, Protein , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/genetics , Zika Virus/metabolism
19.
Protein Expr Purif ; 169: 105548, 2020 05.
Article in English | MEDLINE | ID: mdl-31786309

ABSTRACT

Japanese encephalitis virus (JEV) is a member of the Flavivirus genus and has recently attracted attention as a high-risk pathogen in the Asia-Pacific region, with up to 30% mortality in the afflicted patients. Recent outbreaks of flavivirus-associated infections around the world have put the focus on non-structural protein 1 (NS1) as a candidate for diagnostic and vaccine researches on flaviviruses. Although the JEV NS1 protein has been expressed in eukaryotic cells, attempts to express JEV NS1 in E. coli are on due to advantages such as rapid growth, easy manipulation, low cost, and high yield. However, the challenges of low yield and poor solubility of the proteins expressed in E. coli remain to be overcome. Herein, we reported successful expression of the JEV NS1 protein in E. coli Rosetta(DE3) strain. We standardized the temperature, induction time, as well as the concentration of the inducer for optimizing the expression of JEV NS1 in E. coli. Further, we successfully obtained soluble JEV NS1 from inclusion bodies by partial refolding during elution and gradual refolding during dialysis. Furthermore, the JEV NS1 protein was found to retain its molecular weight and was able to induce an immune response in the mouse. Western blot and indirect enzyme-linked immunosorbent assay were performed using the blood of the immunized mouse and purified JEV NS1 in this study. Hence, JEV NS1 expressed in and isolated from E. coli Rosetta(DE3) strain holds potential for application in vaccine development and diagnostic studies to combat Japanese encephalitis outbreaks in the future.


Subject(s)
Encephalitis Virus, Japanese , Viral Nonstructural Proteins/biosynthesis , Animals , Cloning, Molecular/methods , Encephalitis Virus, Japanese/immunology , Encephalitis Virus, Japanese/metabolism , Escherichia coli/metabolism , Mice , Recombinant Proteins/biosynthesis , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/immunology
20.
J Virol ; 92(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29343583

ABSTRACT

Japanese encephalitis virus (JEV) is a mosquito-transmitted flavivirus that is closely related to other emerging viral pathogens, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV). JEV infection can result in meningitis and encephalitis, which in severe cases cause permanent brain damage and death. JEV occurs predominantly in rural areas throughout Southeast Asia, the Pacific Islands, and the Far East, causing around 68,000 cases of infection worldwide each year. In this report, we present a 2.1-Å-resolution crystal structure of the C-terminal ß-ladder domain of JEV nonstructural protein 1 (NS1-C). The surface charge distribution of JEV NS1-C is similar to those of WNV and ZIKV but differs from that of DENV. Analysis of the JEV NS1-C structure, with in silico molecular dynamics simulation and experimental solution small-angle X-ray scattering, indicates extensive loop flexibility on the exterior of the protein. This, together with the surface charge distribution, indicates that flexibility influences the protein-protein interactions that govern pathogenicity. These factors also affect the interaction of NS1 with the 22NS1 monoclonal antibody, which is protective against West Nile virus infection. Liposome and heparin binding assays indicate that only the N-terminal region of NS1 mediates interaction with membranes and that sulfate binding sites common to NS1 structures are not glycosaminoglycan binding interfaces. This report highlights several differences between flavivirus NS1 proteins and contributes to our understanding of their structure-pathogenic function relationships.IMPORTANCE JEV is a major cause of viral encephalitis in Asia. Despite extensive vaccination, epidemics still occur. Nonstructural protein 1 (NS1) plays a role in viral replication, and, because it is secreted, it can exhibit a wide range of interactions with host proteins. NS1 sequence and protein folds are conserved within the Flavivirus genus, but variations in NS1 protein-protein interactions among viruses likely contribute to differences in pathogenesis. Here, we compared characteristics of the C-terminal ß-ladder domain of NS1 between flaviviruses, including surface charge, loop flexibility, epitope cross-reactivity, membrane adherence, and glycosaminoglycan binding. These structural features are central to NS1 functionality and may provide insight into the development of diagnostic tests and therapeutics.


Subject(s)
Encephalitis Virus, Japanese/chemistry , Viral Nonstructural Proteins/chemistry , Crystallography, X-Ray , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/metabolism , Heparin/chemistry , Liposomes/chemistry , Protein Domains , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL