Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 726
Filter
Add more filters

Publication year range
1.
Annu Rev Cell Dev Biol ; 35: 131-168, 2019 10 06.
Article in English | MEDLINE | ID: mdl-31399000

ABSTRACT

Protein coats are supramolecular complexes that assemble on the cytosolic face of membranes to promote cargo sorting and transport carrier formation in the endomembrane system of eukaryotic cells. Several types of protein coats have been described, including COPI, COPII, AP-1, AP-2, AP-3, AP-4, AP-5, and retromer, which operate at different stages of the endomembrane system. Defects in these coats impair specific transport pathways, compromising the function and viability of the cells. In humans, mutations in subunits of these coats cause various congenital diseases that are collectively referred to as coatopathies. In this article, we review the fundamental properties of protein coats and the diseases that result from mutation of their constituent subunits.


Subject(s)
Endosomes/chemistry , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Vesicular Transport Proteins/genetics , Animals , Coat Protein Complex I/genetics , Coat Protein Complex I/metabolism , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/therapy , Humans , Protein Transport , Vesicular Transport Proteins/metabolism
2.
Annu Rev Cell Dev Biol ; 34: 85-109, 2018 10 06.
Article in English | MEDLINE | ID: mdl-30095293

ABSTRACT

The endosomal sorting complexes required for transport (ESCRT) pathway mediates cellular membrane remodeling and fission reactions. The pathway comprises five core complexes: ALIX, ESCRT-I, ESCRT-II, ESCRT-III, and Vps4. These soluble complexes are typically recruited to target membranes by site-specific adaptors that bind one or both of the early-acting ESCRT factors: ALIX and ESCRT-I/ESCRT-II. These factors, in turn, nucleate assembly of ESCRT-III subunits into membrane-bound filaments that recruit the AAA ATPase Vps4. Together, ESCRT-III filaments and Vps4 remodel and sever membranes. Here, we review recent advances in our understanding of the structures, activities, and mechanisms of the ESCRT-III and Vps4 machinery, including the first high-resolution structures of ESCRT-III filaments, the assembled Vps4 enzyme in complex with an ESCRT-III substrate, the discovery that ESCRT-III/Vps4 complexes can promote both inside-out and outside-in membrane fission reactions, and emerging mechanistic models for ESCRT-mediated membrane fission.


Subject(s)
Actin Cytoskeleton/genetics , Adenosine Triphosphatases/genetics , Cell Membrane/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Saccharomyces cerevisiae Proteins/genetics , Actin Cytoskeleton/chemistry , Adenosine Triphosphatases/chemistry , Cell Membrane/chemistry , Cytokinesis , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomes/chemistry , Endosomes/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry
3.
Cell ; 166(1): 193-208, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27293189

ABSTRACT

γ-Secretases are a family of intramembrane-cleaving proteases involved in various signaling pathways and diseases, including Alzheimer's disease (AD). Cells co-express differing γ-secretase complexes, including two homologous presenilins (PSENs). We examined the significance of this heterogeneity and identified a unique motif in PSEN2 that directs this γ-secretase to late endosomes/lysosomes via a phosphorylation-dependent interaction with the AP-1 adaptor complex. Accordingly, PSEN2 selectively cleaves late endosomal/lysosomal localized substrates and generates the prominent pool of intracellular Aß that contains longer Aß; familial AD (FAD)-associated mutations in PSEN2 increased the levels of longer Aß further. Moreover, a subset of FAD mutants in PSEN1, normally more broadly distributed in the cell, phenocopies PSEN2 and shifts its localization to late endosomes/lysosomes. Thus, localization of γ-secretases determines substrate specificity, while FAD-causing mutations strongly enhance accumulation of aggregation-prone Aß42 in intracellular acidic compartments. The findings reveal potentially important roles for specific intracellular, localized reactions contributing to AD pathogenesis.


Subject(s)
Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/analysis , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Presenilin-2/analysis , Adaptor Protein Complex 1/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amino Acid Motifs , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Line, Tumor , Endosomes/chemistry , Humans , Lysosomes/chemistry , Mice , Presenilin-1/analysis , Presenilin-1/chemistry , Presenilin-1/genetics , Presenilin-1/metabolism , Presenilin-2/chemistry , Presenilin-2/genetics , Presenilin-2/metabolism , Rats , Substrate Specificity
4.
Nat Rev Mol Cell Biol ; 17(2): 69-82, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26627931

ABSTRACT

The endoplasmic reticulum (ER) is the largest organelle in the cell, and its functions have been studied for decades. The past several years have provided novel insights into the existence of distinct domains between the ER and other organelles, known as membrane contact sites (MCSs). At these contact sites, organelle membranes are closely apposed and tethered, but do not fuse. Here, various protein complexes can work in concert to perform specialized functions such as binding, sensing and transferring molecules, as well as engaging in organelle biogenesis and dynamics. This Review describes the structure and functions of MCSs, primarily focusing on contacts of the ER with mitochondria and endosomes.


Subject(s)
Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Eukaryotic Cells/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Animals , Biological Transport , Calcium/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Endoplasmic Reticulum/chemistry , Endosomes/chemistry , Endosomes/metabolism , Endosomes/ultrastructure , Eukaryotic Cells/ultrastructure , Gene Expression Regulation , Humans , Lipid Metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Organelle Biogenesis , Saccharomyces cerevisiae/genetics
5.
Cell ; 136(1): 15-7, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19135881

ABSTRACT

The ESCRT-III complex mediates membrane budding away from the cytosol in endosome biogenesis, cytokinesis, and viral budding. In this issue, Saksena et al. (2009) use an elegant fluorescence-based approach to define the sequential activation, recruitment, and disassembly of ESCRT-III subunits during membrane involution in vitro.


Subject(s)
Endosomes/chemistry , Endosomes/metabolism , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism , Cytosol/chemistry , Cytosol/metabolism , Humans , Spectrometry, Fluorescence , Yeasts
6.
Cell ; 136(1): 97-109, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19135892

ABSTRACT

Receptor downregulation in the MVB pathway is mediated by the ESCRT complexes. ESCRT-III is composed of four protein subunits that are monomeric in the cytosol and oligomerize into a protein lattice only upon membrane binding. Recent studies have shown that the ESCRT-III protein Snf7 can form a filament by undergoing homo-oligomerization. To examine the role of membrane binding and of interactions with other ESCRT components in initiating Snf7 oligomerization, we used fluorescence spectroscopy to directly detect and characterize the assembly of the Snf7 oligomer on liposomes using purified ESCRT components. The observed fluorescence changes reveal an obligatory sequence of membrane-protein and protein-protein interactions that generate the active conformation of Snf7. Also, we demonstrate that ESCRT-III assembly drives membrane deformation. Furthermore, using an in vitro disassembly assay, we directly demonstrate that Vps24 and Vps2 function as adaptors in the ATP-dependent membrane disassembly of the ESCRT-III complex by recruiting the AAA ATPase Vps4.


Subject(s)
Endosomes/chemistry , Endosomes/metabolism , Spectrometry, Fluorescence , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism , Endosomal Sorting Complexes Required for Transport , Humans , Liposomes/chemistry , Liposomes/metabolism , Multiprotein Complexes/metabolism , Yeasts
7.
J Virol ; 96(2): e0106021, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34705560

ABSTRACT

Rhinoviruses (RVs) cause recurrent infections of the nasal and pulmonary tracts, life-threatening conditions in chronic respiratory illness patients, predisposition of children to asthmatic exacerbation, and large economic cost. RVs are difficult to treat. They rapidly evolve resistance and are genetically diverse. Here, we provide insight into RV drug resistance mechanisms against chemical compounds neutralizing low pH in endolysosomes. Serial passaging of RV-A16 in the presence of the vacuolar proton ATPase inhibitor bafilomycin A1 (BafA1) or the endolysosomotropic agent ammonium chloride (NH4Cl) promoted the emergence of resistant virus populations. We found two reproducible point mutations in viral proteins 1 and 3 (VP1 and VP3), A2526G (serine 66 to asparagine [S66N]), and G2274U (cysteine 220 to phenylalanine [C220F]), respectively. Both mutations conferred cross-resistance to BafA1, NH4Cl, and the protonophore niclosamide, as identified by massive parallel sequencing and reverse genetics, but not the double mutation, which we could not rescue. Both VP1-S66 and VP3-C220 locate at the interprotomeric face, and their mutations increase the sensitivity of virions to low pH, elevated temperature, and soluble intercellular adhesion molecule 1 receptor. These results indicate that the ability of RV to uncoat at low endosomal pH confers virion resistance to extracellular stress. The data endorse endosomal acidification inhibitors as a viable strategy against RVs, especially if inhibitors are directly applied to the airways. IMPORTANCE Rhinoviruses (RVs) are the predominant agents causing the common cold. Anti-RV drugs and vaccines are not available, largely due to rapid evolutionary adaptation of RVs giving rise to resistant mutants and an immense diversity of antigens in more than 160 different RV types. In this study, we obtained insight into the cell biology of RVs by harnessing the ability of RVs to evolve resistance against host-targeting small chemical compounds neutralizing endosomal pH, an important cue for uncoating of normal RVs. We show that RVs grown in cells treated with inhibitors of endolysosomal acidification evolved capsid mutations yielding reduced virion stability against elevated temperature, low pH, and incubation with recombinant soluble receptor fragments. This fitness cost makes it unlikely that RV mutants adapted to neutral pH become prevalent in nature. The data support the concept of host-directed drug development against respiratory viruses in general, notably at low risk of gain-of-function mutations.


Subject(s)
Capsid/chemistry , Mutation/drug effects , Rhinovirus/physiology , Virus Uncoating/physiology , Antiviral Agents/pharmacology , Capsid/drug effects , Capsid Proteins/genetics , Capsid Proteins/metabolism , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Endosomes/chemistry , Endosomes/drug effects , Endosomes/metabolism , HeLa Cells , Humans , Hydrogen-Ion Concentration , Intercellular Adhesion Molecule-1/metabolism , Protein Conformation , Rhinovirus/chemistry , Rhinovirus/drug effects , Rhinovirus/genetics , Virion/chemistry , Virion/genetics , Virion/metabolism , Virus Internalization/drug effects , Virus Uncoating/drug effects , Virus Uncoating/genetics
8.
Cell ; 132(5): 832-45, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18329369

ABSTRACT

Cytokinesis involves the formation of a cleavage furrow, followed by abscission, the cutting of the midbody channel, the final bridge between dividing cells. Recently, the midbody ring became known as central for abscission, but its regulation remains enigmatic. Here, we identify BRUCE, a 528 kDa multifunctional protein, which processes ubiquitin-conjugating activity, as a major regulator of abscission. During cytokinesis, BRUCE moves from the vesicular system to the midbody ring and serves as a platform for the membrane delivery machinery and mitotic regulators. Depletion of BRUCE in cell cultures causes defective abscission and cytokinesis-associated apoptosis, accompanied by a block of vesicular targeting and defective formation of the midbody and the midbody ring. Notably, ubiquitin relocalizes from midbody microtubules to the midbody ring during cytokinesis, and depletion of BRUCE disrupts this process. We propose that BRUCE coordinates multiple steps required for abscission and that ubiquitylation may be a crucial trigger.


Subject(s)
Cytokinesis , Inhibitor of Apoptosis Proteins/metabolism , Apoptosis , Cell Line , Endosomes/chemistry , HeLa Cells , Humans , Inhibitor of Apoptosis Proteins/analysis , Intracellular Membranes/chemistry , Ubiquitin/analysis , Ubiquitin/metabolism , Ubiquitination , rab GTP-Binding Proteins/metabolism
9.
Cell ; 133(3): 486-97, 2008 May 02.
Article in English | MEDLINE | ID: mdl-18455989

ABSTRACT

During development of multicellular organisms, cells respond to extracellular cues through nonlinear signal transduction cascades whose principal components have been identified. Nevertheless, the molecular mechanisms underlying specificity of cellular responses remain poorly understood. Spatial distribution of signaling proteins may contribute to signaling specificity. Here, we tested this hypothesis by investigating the role of the Rab5 effector Appl1, an endosomal protein that interacts with transmembrane receptors and Akt. We show that in zebrafish, Appl1 regulates Akt activity and substrate specificity, controlling GSK-3beta but not TSC2. Consistent with this pattern, Appl1 is selectively required for cell survival, most critically in highly expressing tissues. Remarkably, Appl1 function requires its endosomal localization. Indeed, Akt and GSK-3beta, but not TSC2, dynamically associate with Appl1 endosomes upon growth factor stimulation. We propose that partitioning of Akt and selected effectors onto endosomal compartments represents a key mechanism contributing to the specificity of signal transduction in vertebrate development.


Subject(s)
Cell Survival , Proto-Oncogene Proteins c-akt/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Apoptosis , Embryonic Development , Endosomes/chemistry , Gene Expression Regulation, Developmental , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Molecular Sequence Data , Organ Specificity , Signal Transduction , Substrate Specificity , Vertebrates , Zebrafish/metabolism , Zebrafish Proteins/analysis , Zebrafish Proteins/genetics
10.
Bioorg Chem ; 134: 106424, 2023 05.
Article in English | MEDLINE | ID: mdl-36868126

ABSTRACT

Cell-penetrating peptides (CPPs) are prominent scaffolds for drug developments and related research, particularly the endocytic delivery of biomacromolecules. Effective cargo release from endosomes prior to lysosomal degradation is a crucial step, where the rational design and selection of CPPs remains a challenge and calls for deeper mechanistic understandings. Here, we have investigated a strategy of designing CPPs that selectively disrupt endosomal membranes based on bacterial membrane targeting sequences (MTSs). Six synthesized MTS peptides all exhibit cell-penetrating abilities, among which two d-peptides (d-EcMTS and d-TpMTS) are able to escape from endosomes and localize at ER after entering the cell. The utility of this strategy has been demonstrated by the intracellular delivery of green fluorescent protein (GFP). Together, these results suggest that the large pool of bacterial MTSs may be a rich source for the development of novel CPPs.


Subject(s)
Cell-Penetrating Peptides , Cell-Penetrating Peptides/chemistry , Endosomes/chemistry , Endosomes/metabolism
11.
Nature ; 550(7676): 415-418, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29019981

ABSTRACT

Transient receptor potential mucolipin 1 (TRPML1) is a cation channel located within endosomal and lysosomal membranes. Ubiquitously expressed in mammalian cells, its loss-of-function mutations are the direct cause of type IV mucolipidosis, an autosomal recessive lysosomal storage disease. Here we present the single-particle electron cryo-microscopy structure of the mouse TRPML1 channel embedded in nanodiscs. Combined with mutagenesis analysis, the TRPML1 structure reveals that phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2) binds to the N terminus of the channel-distal from the pore-and the helix-turn-helix extension between segments S2 and S3 probably couples ligand binding to pore opening. The tightly packed selectivity filter contains multiple ion-binding sites, and the conserved acidic residues form the luminal Ca2+-blocking site that confers luminal pH and Ca2+ modulation on channel conductance. A luminal linker domain forms a fenestrated canopy atop the channel, providing several luminal ion passages to the pore and creating a negative electrostatic trap, with a preference for divalent cations, at the luminal entrance. The structure also reveals two equally distributed S4-S5 linker conformations in the closed channel, suggesting an S4-S5 linker-mediated PtdInsP2 gating mechanism among TRPML channels.


Subject(s)
Cryoelectron Microscopy , Endosomes/chemistry , Lysosomes/chemistry , Nanostructures/chemistry , Transient Receptor Potential Channels/chemistry , Transient Receptor Potential Channels/ultrastructure , Animals , Binding Sites , Calcium , Hydrogen-Ion Concentration , Ion Transport , Ligands , Mice , Models, Molecular , Mutation , Phosphatidylinositol Phosphates/metabolism , Protein Conformation , Static Electricity , Transient Receptor Potential Channels/genetics
12.
Nature ; 552(7685): 410-414, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29236694

ABSTRACT

Vesicular carriers transport proteins and lipids from one organelle to another, recognizing specific identifiers for the donor and acceptor membranes. Two important identifiers are phosphoinositides and GTP-bound GTPases, which provide well-defined but mutable labels. Phosphatidylinositol and its phosphorylated derivatives are present on the cytosolic faces of most cellular membranes. Reversible phosphorylation of its headgroup produces seven distinct phosphoinositides. In endocytic traffic, phosphatidylinositol-4,5-biphosphate marks the plasma membrane, and phosphatidylinositol-3-phosphate and phosphatidylinositol-4-phosphate mark distinct endosomal compartments. It is unknown what sequence of changes in lipid content confers on the vesicles their distinct identity at each intermediate step. Here we describe 'coincidence-detecting' sensors that selectively report the phosphoinositide composition of clathrin-associated structures, and the use of these sensors to follow the dynamics of phosphoinositide conversion during endocytosis. The membrane of an assembling coated pit, in equilibrium with the surrounding plasma membrane, contains phosphatidylinositol-4,5-biphosphate and a smaller amount of phosphatidylinositol-4-phosphate. Closure of the vesicle interrupts free exchange with the plasma membrane. A substantial burst of phosphatidylinositol-4-phosphate immediately after budding coincides with a burst of phosphatidylinositol-3-phosphate, distinct from any later encounter with the phosphatidylinositol-3-phosphate pool in early endosomes; phosphatidylinositol-3,4-biphosphate and the GTPase Rab5 then appear and remain as the uncoating vesicles mature into Rab5-positive endocytic intermediates. Our observations show that a cascade of molecular conversions, made possible by the separation of a vesicle from its parent membrane, can label membrane-traffic intermediates and determine their destinations.


Subject(s)
Clathrin-Coated Vesicles/chemistry , Clathrin-Coated Vesicles/metabolism , Clathrin/metabolism , Coated Pits, Cell-Membrane/metabolism , Endocytosis , Endosomes/metabolism , Phosphatidylinositols/metabolism , Animals , Auxilins/metabolism , COS Cells , Cell Line , Cell Membrane/chemistry , Cell Membrane/metabolism , Chlorocebus aethiops , Coated Pits, Cell-Membrane/chemistry , Endosomes/chemistry , Humans , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/analysis , Phosphatidylinositols/chemistry , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Phosphotransferases/metabolism , rab5 GTP-Binding Proteins/metabolism
13.
J Biol Chem ; 297(5): 101328, 2021 11.
Article in English | MEDLINE | ID: mdl-34688656

ABSTRACT

Human apoptosis-linked gene-2 interacting protein X (ALIX), a versatile adapter protein, regulates essential cellular processes by shuttling between late endosomal membranes and the cytosol, determined by its interactions with Src kinase. Here, we investigate the molecular basis of these transitions and the effects of tyrosine phosphorylation on the interplay between structure, assembly, and intramolecular and intermolecular interactions of ALIX. As evidenced by transmission electron microscopy, fluorescence and circular dichroism spectroscopy, the proline-rich domain of ALIX, which encodes binding epitopes of multiple cellular partners, formed rope-like ß-sheet-rich reversible amyloid fibrils that dissolved upon Src-mediated phosphorylation and were restored on protein-tyrosine phosphatase 1B-mediated dephosphorylation of its conserved tyrosine residues. Analyses of the Bro1 domain of ALIX by solution NMR spectroscopy elucidated the conformational changes originating from its phosphorylation by Src and established that Bro1 binds to hyperphosphorylated proline-rich domain and to analogs of late endosomal membranes via its highly basic surface. These results uncover the autoinhibition mechanism that relocates ALIX to the cytosol and the diverse roles played by tyrosine phosphorylation in cellular and membrane functions of ALIX.


Subject(s)
Amyloid , Calcium-Binding Proteins , Cell Cycle Proteins , Endosomal Sorting Complexes Required for Transport , Endosomes , Intracellular Membranes , Amyloid/chemistry , Amyloid/metabolism , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/chemistry , Endosomes/metabolism , Humans , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Protein Domains , Structure-Activity Relationship , Tyrosine
14.
Biochem Biophys Res Commun ; 586: 63-67, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34826702

ABSTRACT

Although cell-penetrating peptides such as the HIV-derived TAT peptide have been used as tools for the intracellular delivery of therapeutic peptides and proteins, a problem persists: the endosomal escape efficiency is low. Previously, we found that the fusogenic peptide S19, derived from the human protein syncytin-1, enhance the endosomal escape efficiency of proteins that incorporated by endocytosis via TAT. In this study, we first performed Ala-scanning mutagenesis of S19, and found that all Ile, Val, Leu and Phe with high ß-sheet forming propensities in S19 are important for the intracellular uptake of S19-TAT-fused proteins. In a secondary structure analysis of the mutated S19-TAT peptides in the presence of liposomes mimicking late endosomes (LEs), the CD spectra of V3A and I4A mutants with low uptake activity showed the appearance of an α-helix structure, whereas the mutant G5A retained both the uptake activity and the ß-structure. In addition, we investigated the appropriate linking position and order of the S19 and TAT peptides to a cargo protein including an apoptosis-induced peptide and found that both the previous C-terminal S19-TAT tag and the N-terminal TAT-S19 tag promote the cytoplasmic delivery of the fusion protein. These results and previous results suggest that the interaction of TAT with the LE membrane causes a structural change in S19 from a random coil to a ß-strand and that the subsequent parallel ß-sheet formation between two S19 peptides may promote adjacent TAT dimerization, resulting in endosomal escape from the LE membrane.


Subject(s)
Cell Membrane/metabolism , Gene Products, env/metabolism , Gene Products, tat/metabolism , Peptides/metabolism , Plasmids/metabolism , Pregnancy Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Amino Acid Substitution , Cell Line, Tumor , Cell Membrane Permeability , Endosomes/chemistry , Endosomes/metabolism , Gene Expression , Gene Products, env/genetics , Gene Products, tat/genetics , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Liposomes/chemistry , Liposomes/metabolism , Optical Imaging , Peptides/genetics , Plasmids/chemistry , Pregnancy Proteins/genetics , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Transport , Recombinant Fusion Proteins/genetics , Transduction, Genetic
15.
Macromol Rapid Commun ; 43(12): e2100754, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35286740

ABSTRACT

For efficient delivery of messenger (m)RNA, delivery carriers need two major functions: protecting mRNA from nucleases and translocating mRNA from endolysosomes to the cytoplasm. Herein, these two complementary functionalities are integrated into a single polyplex by fine-tuning the catiomer chemical structure and incorporating the endosomal escape modality. The effect of the methylene spacer length on the catiomer side chain is evaluated by comparing poly(l-lysine) (PLL) with a tetramethylene spacer and poly(L-ornithine) (PLO) with a trimethylene spacer. Noteworthily, the nuclease stability of the mRNA/catiomer polyplexes is largely affected by the difference in one methylene group, with PLO/mRNA polyplex showing enhanced stability compared to PLL/mRNA polyplex. To introduce the endosomal escape function, the PLO/mRNA polyplex is wrapped with a charge-conversion polymer (CCP), which is negatively charged at extracellular pH but turns positive at endosomal acidic pH to disrupt the endosomal membrane. Compared to the parent PLO/mRNA polyplex, CCP facilitated the endosomal escape of the polyplex in cultured cells to improve the protein expression efficiency from mRNA by approximately 80-fold. Collectively, this system synergizes the protective effect of PLO against nucleases and the endosomal escape capability of CCP in mRNA delivery.


Subject(s)
Endosomes , Polymers , Endosomes/chemistry , Endosomes/metabolism , Ornithine/analysis , Ornithine/metabolism , Polymers/chemistry , RNA, Messenger , Transfection
16.
Traffic ; 20(3): 246-258, 2019 03.
Article in English | MEDLINE | ID: mdl-30569578

ABSTRACT

Homeostasis and the complex functions of organisms and cells rely on the sophisticated spatial and temporal regulation of signaling in different intra- and extracellular compartments and via different mediators. We here present a set of fast and easy to use protocols for the target-specific immunomagnetic enrichment of receptor containing endosomes (receptosomes), plasma membranes, lysosomes and exosomes. Isolation of subcellular organelles and exosomes is prerequisite for and will advance their detailed subsequent biochemical and functional analysis. Sequential application of the different subprotocols allows isolation of morphological and functional intact organelles from one pool of cells. The enrichment is based on a selective labelling using receptor ligands or antibodies together with superparamagnetic microbeads followed by separation in a patented matrix-free high-gradient magnetic purification device. This unique magnetic chamber is based on a focusing system outside of the empty separation column, generating an up to 3 T high-gradient magnetic field focused at the wall of the column.


Subject(s)
Cell Fractionation/methods , Endosomes/metabolism , Magnetic Fields , Cell Fractionation/instrumentation , Cell Line, Tumor , Endosomes/chemistry , Endosomes/ultrastructure , Humans , Ligands , Receptor Protein-Tyrosine Kinases/immunology , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction
17.
J Biol Chem ; 295(3): 800-807, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31836663

ABSTRACT

Sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the surface of human hepatocytes and functions as an entry receptor of hepatitis B virus (HBV). Recently, we have reported that epidermal growth factor receptor (EGFR) is involved in NTCP-mediated viral internalization during the cell entry process. Here, we analyzed which function of EGFR is essential for mediating HBV internalization. In contrast to the reported crucial function of EGFR-downstream signaling for the entry of hepatitis C virus (HCV), blockade of EGFR-downstream signaling proteins, including mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT), had no or only minor effects on HBV infection. Instead, deficiency of EGFR endocytosis resulting from either a deleterious mutation in EGFR or genetic knockdown of endocytosis adaptor molecules abrogated internalization of HBV via NTCP and prevented viral infection. EGFR activation triggered a time-dependent relocalization of HBV preS1 to the early and late endosomes and to lysosomes in concert with EGFR transport. Suppression of EGFR ubiquitination by site-directed mutagenesis or by knocking down two EGFR-sorting molecules, signal-transducing adaptor molecule (STAM) and lysosomal protein transmembrane 4ß (LAPTM4B), suggested that EGFR transport to the late endosome is critical for efficient HBV infection. Cumulatively, these results support the idea that the EGFR endocytosis/sorting machinery drives the translocation of NTCP-bound HBV from the cell surface to the endosomal network, which eventually enables productive viral infection.


Subject(s)
Endocytosis/genetics , Endosomes/genetics , ErbB Receptors/genetics , Hepatitis B/genetics , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes/chemistry , ErbB Receptors/chemistry , Hep G2 Cells , Hepacivirus/chemistry , Hepacivirus/genetics , Hepacivirus/pathogenicity , Hepatitis B/metabolism , Hepatitis B/virology , Hepatitis B virus/chemistry , Hepatitis B virus/genetics , Hepatitis B virus/pathogenicity , Hepatocytes/metabolism , Hepatocytes/virology , Humans , MAP Kinase Kinase 1/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Organic Anion Transporters, Sodium-Dependent , Phosphatidylinositol 3-Kinases/genetics , Phosphoproteins/chemistry , Phosphoproteins/genetics , STAT Transcription Factors/genetics , Symporters , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Virus Internalization
18.
J Biol Chem ; 295(20): 7075-7095, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32277048

ABSTRACT

Genetic screening has identified numerous variants of the endosomal solute carrier family 9 member A6 (SLC9A6)/(Na+,K+)/H+ exchanger 6 (NHE6) gene that cause Christianson syndrome, a debilitating X-linked developmental disorder associated with a range of neurological, somatic, and behavioral symptoms. Many of these variants cause complete loss of NHE6 expression, but how subtler missense substitutions or nonsense mutations that partially truncate its C-terminal cytoplasmic regulatory domain impair NHE6 activity and endosomal function are poorly understood. Here, we describe the molecular and cellular consequences of six unique mutations located in the N-terminal cytoplasmic segment (A9S), the membrane ion translocation domain (L188P and G383D), and the C-terminal regulatory domain (E547*, R568Q, and W570*) of human NHE6 that purportedly cause disease. Using a heterologous NHE6-deficient cell expression system, we show that the biochemical, catalytic, and cellular properties of the A9S and R568Q variants were largely indistinguishable from those of the WT transporter, which obscured their disease significance. By contrast, the L188P, G383D, E547*, and W570* mutants exhibited variable deficiencies in biosynthetic post-translational maturation, membrane sorting, pH homeostasis in recycling endosomes, and cargo trafficking, and they also triggered apoptosis. These findings broaden our understanding of the molecular dysfunctions of distinct NHE6 variants associated with Christianson syndrome.


Subject(s)
Ataxia , Endosomes , Epilepsy , Genetic Diseases, X-Linked , Intellectual Disability , Microcephaly , Mutation, Missense , Ocular Motility Disorders , Sodium-Hydrogen Exchangers , Amino Acid Substitution , Animals , Ataxia/genetics , Ataxia/metabolism , Cricetinae , Endosomes/chemistry , Endosomes/genetics , Endosomes/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , HeLa Cells , Humans , Hydrogen-Ion Concentration , Intellectual Disability/genetics , Intellectual Disability/metabolism , Microcephaly/genetics , Microcephaly/metabolism , Ocular Motility Disorders/genetics , Ocular Motility Disorders/metabolism , Protein Domains , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
19.
Chembiochem ; 22(23): 3277-3282, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34519410

ABSTRACT

Endosomal escape continues to be a limiting factor in the therapeutic use of nanomaterials. Assays to visualize endosomal escape often do not decouple the endosomal/lysosomal disruption from the release of payload into the cytosol. Here, we discuss three approaches to directly probe endosomal/lysosomal rupture: calcein dye dilution, lysosome size quantification and endosome/lysosome membrane integrity visualized with a genetically engineered cell line. We apply the three assays to endosomes/lysosomes ruptured via osmotic pressure and photochemical internalization.


Subject(s)
Endosomes/chemistry , Cytosol/chemistry , Fluoresceins/chemistry , Humans , Lysosomes/chemistry , Osmotic Pressure , Photochemical Processes
20.
Nature ; 526(7572): 212-7, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26416734

ABSTRACT

HIV-1 Nef, a protein important for the development of AIDS, has well-characterized effects on host membrane trafficking and receptor downregulation. By an unidentified mechanism, Nef increases the intrinsic infectivity of HIV-1 virions in a host-cell-dependent manner. Here we identify the host transmembrane protein SERINC5, and to a lesser extent SERINC3, as a potent inhibitor of HIV-1 particle infectivity that is counteracted by Nef. SERINC5 localizes to the plasma membrane, where it is efficiently incorporated into budding HIV-1 virions and impairs subsequent virion penetration of susceptible target cells. Nef redirects SERINC5 to a Rab7-positive endosomal compartment and thereby excludes it from HIV-1 particles. The ability to counteract SERINC5 was conserved in Nef encoded by diverse primate immunodeficiency viruses, as well as in the structurally unrelated glycosylated Gag from murine leukaemia virus. These examples of functional conservation and convergent evolution emphasize the fundamental importance of SERINC5 as a potent anti-retroviral factor.


Subject(s)
HIV-1/physiology , Host-Pathogen Interactions , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Virion/chemistry , Virion/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Cell Membrane/virology , Endosomes/chemistry , Endosomes/metabolism , Evolution, Molecular , Gene Products, gag/metabolism , Gene Products, nef/chemistry , Gene Products, nef/metabolism , HIV-1/chemistry , Host Specificity , Humans , Leukemia Virus, Murine/chemistry , Leukemia Virus, Murine/physiology , Membrane Glycoproteins , Membrane Proteins/analysis , Neoplasm Proteins/metabolism , Primates/virology , Receptors, Cell Surface/metabolism , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL