Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Publication year range
1.
Blood ; 144(5): 552-564, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38820589

ABSTRACT

ABSTRACT: Chronic kidney disease (CKD) is a major contributor to morbidity and mortality in sickle cell disease (SCD). Anemia, induced by chronic persistent hemolysis, is associated with the progressive deterioration of renal health, resulting in CKD. Moreover, patients with SCD experience acute kidney injury (AKI), a risk factor for CKD, often during vaso-occlusive crisis associated with acute intravascular hemolysis. However, the mechanisms of hemolysis-driven pathogenesis of the AKI-to-CKD transition in SCD remain elusive. Here, we investigated the role of increased renovascular rarefaction and the resulting substantial loss of the vascular endothelial protein C receptor (EPCR) in the progressive deterioration of renal function in transgenic SCD mice. Multiple hemolytic events raised circulating levels of soluble EPCR (sEPCR), indicating loss of EPCR from the cell surface. Using bone marrow transplantation and super-resolution ultrasound imaging, we demonstrated that SCD mice overexpressing EPCR were protective against heme-induced CKD development. In a cohort of patients with SCD, plasma sEPCR was significantly higher in individuals with CKD than in those without CKD. This study concludes that multiple hemolytic events may trigger CKD in SCD through the gradual loss of renovascular EPCR. Thus, the restoration of EPCR may be a therapeutic target, and plasma sEPCR can be developed as a prognostic marker for sickle CKD.


Subject(s)
Anemia, Sickle Cell , Endothelial Protein C Receptor , Heme , Mice, Transgenic , Renal Insufficiency, Chronic , Animals , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/pathology , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/blood , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/etiology , Endothelial Protein C Receptor/metabolism , Endothelial Protein C Receptor/genetics , Mice , Heme/metabolism , Humans , Male , Female , Hemolysis , Kidney/metabolism , Kidney/pathology
2.
Development ; 149(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35587592

ABSTRACT

Vascular establishment is one of the early events in embryogenesis. It is believed that vessel-initiating endothelial progenitors cluster to form the first primitive vessel. Understanding the molecular identity of these progenitors is crucial in order to elucidate lineage hierarchy. In this study, we identify protein C receptor (Procr) as an endothelial progenitor marker and investigate the role of Procr+ progenitors during embryonic vascular development. Using a ProcrmGFP-2A-lacZ reporter, we reveal a much earlier Procr expression (embryonic day 7.5) than previously acknowledged (embryonic day 13.5). Genetic fate-mapping experiments using ProcrCre and ProcrCreER demonstrate that Procr+ cells give rise to blood vessels throughout the entire embryo proper. Single-cell RNA-sequencing analyses place Procr+ cells at the start of endothelial commitment and maturation. Furthermore, targeted ablation of Procr+ cells results in failure of vessel formation and early embryonic lethality. Notably, genetic fate mapping and scRNA-seq pseudotime analysis support the view that Procr+ progenitors can give rise to hemogenic endothelium. In this study, we establish a Procr expression timeline and identify Procr+ vessel-initiating progenitors, and demonstrate their indispensable role in establishment of the vasculature during embryo development.


Subject(s)
Hemangioblasts , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Endothelial Protein C Receptor/genetics , Endothelial Protein C Receptor/metabolism , Hemangioblasts/metabolism
3.
J Infect Dis ; 227(2): 179-182, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36416015

ABSTRACT

The endothelial protein C receptor (EPCR)-rs867186 G allele has been linked to high plasma levels of soluble EPCR (sEPCR) and controversially associated with either susceptibility or resistance to severe and cerebral malaria. In this study, quantitative enzyme-linked immunosorbent assay and sequencing were used to assess sEPCR levels and EPCR-rs867186 polymorphism in blood samples from Beninese children with different clinical presentations of malaria. Our findings show that sEPCR levels were higher at hospital admission than during convalescence and that EPCR-rs867186 G allele was associated with increased sEPCR plasma levels, malaria severity, and mortality rate (P < .001, P = .03, and P = .04, respectively), suggesting a role of sEPCR in the pathogenesis of severe malaria.


Subject(s)
Malaria, Cerebral , Receptors, Cell Surface , Humans , Child , Endothelial Protein C Receptor/genetics , Polymorphism, Genetic
4.
J Med Virol ; 94(10): 4803-4808, 2022 10.
Article in English | MEDLINE | ID: mdl-35710974

ABSTRACT

The development of cardiovascular disease shows increase after contracting coronavirus 2019 (COVID-19) disease and myocardial damage is observed in patients who have had the disease severely. The relationship between genetic cardiovascular risk factors with COVID-19 infection was investigated in our study. One hundred thirty-five patients, 27 of whom were COVID-19 (-) and 108 were COVID-19 (+) patients, were included in the study. Patients were divided into three groups ([COVID-19 [-], COVID-19 [+] asymptomatic, and COVID-19 [+] symptomatic + patients with pulmonary involvement]). Genetic cardiovascular risk factors were examined in blood samples taken from the patients with new generation sequencing analysis. In the clinical classification, there were no significant differences between the three groups in fibrinogen beta chain-455G>A, human platelet antigen 1 (HPA1b)/platelet receptor GPIIIa/(ITGB3) (HPA1a/b; GpIIIa; integrin beta 3 L33P), ACE I/D, AGT (M268T), AGTR1 (1166A>C), Apo E (E2/E3/E4) (rs7412, rs429358), eNOS (786T>C), eNOS (894G>T) genes (p > 0.05). However, significant differences were observed in PROCR H3 haplotype/G (endothelial protein C receptor gene [EPCR] 4600A>G [A3 haplotype]), PROCR H1 haplotype/C (EPCR 4678G>C [A1 haplotype]) genes (p < 0.05). When COVID-19 (+) and COVID-19 (-) groups were compared, it was observed that the infection was more common in people with PROCR H1 haplotype/C and PROCR H3 haplotype/G genotypes (p < 0.05). PROCR H1 and PROCR H3 haplotypes may be an important factor in contracting COVID-19 disease. In people with COVID-19 disease, revealing PROCR genetic differences and measuring sEPCR levels will be beneficial in the follow-up of the disease.


Subject(s)
COVID-19 , Endothelial Protein C Receptor , Integrin beta3 , Antigens, CD/genetics , COVID-19/epidemiology , COVID-19/genetics , Endothelial Protein C Receptor/genetics , Haplotypes , Humans , Integrin beta3/genetics , Receptors, Cell Surface
5.
Am J Respir Cell Mol Biol ; 64(4): 477-491, 2021 04.
Article in English | MEDLINE | ID: mdl-33600743

ABSTRACT

Streptococcus pneumoniae is the leading cause of hospital community-acquired pneumonia. Patients with pneumococcal pneumonia may develop complicated parapneumonic effusions or empyema that can lead to pleural organization and subsequent fibrosis. The pathogenesis of pleural organization and scarification involves complex interactions between the components of the immune system, coagulation, and fibrinolysis. EPCR (endothelial protein C receptor) is a critical component of the protein C anticoagulant pathway. The present study was performed to evaluate the role of EPCR in the pathogenesis of S. pneumoniae infection-induced pleural thickening and fibrosis. Our studies show that the pleural mesothelium expresses EPCR. Intrapleural instillation of S. pneumoniae impairs lung compliance and lung volume in wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. Intrapleural S. pneumoniae infection induces pleural thickening in wild-type mice. Pleural thickening is more pronounced in EPCR-overexpressing mice, whereas it is reduced in EPCR-deficient mice. Markers of mesomesenchymal transition are increased in the visceral pleura of S. pneumoniae-infected wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. The lungs of wild-type and EPCR-overexpressing mice administered intrapleural S. pneumoniae showed increased infiltration of macrophages and neutrophils, which was significantly reduced in EPCR-deficient mice. An analysis of bacterial burden in the pleural lavage, the lungs, and blood revealed a significantly lower bacterial burden in EPCR-deficient mice compared with wild-type and EPCR-overexpressing mice. Overall, our data provide strong evidence that EPCR deficiency protects against S. pneumoniae infection-induced impairment of lung function and pleural remodeling.


Subject(s)
Endothelial Protein C Receptor/deficiency , Lung/metabolism , Pleura/metabolism , Pleural Effusion/metabolism , Pleurisy/metabolism , Pneumonia, Pneumococcal/metabolism , Streptococcus pneumoniae/pathogenicity , Animals , Bacterial Load , Cells, Cultured , Disease Models, Animal , Endothelial Protein C Receptor/genetics , Female , Fibrosis , Host-Pathogen Interactions , Humans , Lung/microbiology , Lung/pathology , Lung/physiopathology , Macrophages/metabolism , Macrophages/microbiology , Male , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Neutrophils/metabolism , Neutrophils/microbiology , Pleura/microbiology , Pleura/pathology , Pleural Effusion/microbiology , Pleural Effusion/pathology , Pleural Effusion/physiopathology , Pleurisy/microbiology , Pleurisy/pathology , Pleurisy/physiopathology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/pathology , Pneumonia, Pneumococcal/physiopathology
6.
BMC Biotechnol ; 21(1): 42, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34281556

ABSTRACT

BACKGROUND: Protein C receptor (Procr) has recently been shown to mark resident adult stem cells in the mammary gland, vascular system, and pancreatic islets. More so, high Procr expression was also detected and used as indicator for subsets of triple-negative breast cancers (TNBCs). Previous study has revealed Procr as a target of Wnt/ß-catenin signaling; however, direct upstream regulatory mechanism of Procr remains unknown. To comprehend the molecular role of Procr during physiology and pathology, elucidating the upstream effectors of Procr is necessary. Here, we provide a system for screening negative regulators of Procr, which could be adapted for broad molecular analysis on membrane proteins. RESULTS: We established a screening system which combines CRISPR-Cas9 guided gene disruption with fluorescence activated cell sorting technique (FACS). CommaDß (murine epithelial cells line) was used for the initial Procr upstream effector screening using lentiviral CRISPR-gRNA library. Shortlisted genes were further validated through individual lentiviral gRNA infection followed by Procr expression evaluation. Adam17 was identified as a specific negative inhibitor of Procr expression. In addition, MDA-MB-231 cells and Hs578T cells (human breast cancer cell lines) were used to verify the conserved regulation of ADAM17 over PROCR expression. CONCLUSION: We established an efficient CRISPR-Cas9/FACS screening system, which identifies the regulators of membrane proteins. Through this system, we identified Adam17 as the negative regulator of Procr membrane expression both in mammary epithelial cells and breast cancer cells.


Subject(s)
ADAM17 Protein/metabolism , Endothelial Protein C Receptor/genetics , Lentivirus/genetics , Mammary Glands, Human/enzymology , ADAM17 Protein/genetics , Base Sequence , Cell Line , Down-Regulation , Endothelial Protein C Receptor/metabolism , Gene Library , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Lentivirus/metabolism , RNA, Guide, Kinetoplastida/genetics
7.
J Cell Mol Med ; 24(6): 3370-3383, 2020 03.
Article in English | MEDLINE | ID: mdl-32003123

ABSTRACT

Preeclampsia is a severe pregnancy-related disease that is found in 3%-5% of pregnancies worldwide and is primarily related to the decreased proliferation and invasion of trophoblast cells and abnormal uterine spiral artery remodelling. However, studies on the pathogenesis of placental trophoblasts are insufficient, and the aetiology of PE remains unclear. Here, we report that endothelial protein C receptor (EPCR), a transmembrane glycoprotein, was down-regulated in placentas from preeclamptic patients. Moreover, lack of EPCR significantly reduced the trophoblast cell proliferation, invasion and tube formation capabilities. Microscale thermophoresis analysis showed that EPCR directly bound to protease-activated receptor 1 (PAR-1), a G protein-coupled receptor. This change resulted in a substantial reduction in active Rac1 and caused excessive actin rearrangement. Our findings reveal a previously unidentified role of EPCR in the regulation of trophoblast proliferation, invasion and tube formation through promotion of actin polymerization, which is required for normal placental development.


Subject(s)
Actins/metabolism , Endothelial Protein C Receptor/biosynthesis , Placenta/metabolism , Pre-Eclampsia/pathology , Trophoblasts/cytology , Adult , CRISPR-Cas Systems , Cell Line , Cell Proliferation , Down-Regulation , Endothelial Protein C Receptor/genetics , Female , Gene Knockout Techniques , Humans , Hypertension/pathology , Pregnancy , Pregnancy Complications/pathology , Protein Serine-Threonine Kinases/metabolism , Proteinuria/pathology , rac1 GTP-Binding Protein/metabolism
8.
PLoS Pathog ; 14(4): e1006981, 2018 04.
Article in English | MEDLINE | ID: mdl-29630665

ABSTRACT

Purpura fulminans is a deadly complication of Neisseria meningitidis infections due to extensive thrombosis of microvessels. Although a Disseminated Intra-vascular Coagulation syndrome (DIC) is frequently observed during Gram negative sepsis, it is rarely associated with extensive thrombosis like those observed during meningococcemia, suggesting that the meningococcus induces a specific dysregulation of coagulation. Another specific feature of N. meningitidis pathogenesis is its ability to colonize microvessels endothelial cells via type IV pili. Importantly, endothelial cells are key in controlling the coagulation cascade through the activation of the potent anticoagulant Protein C (PC) thanks to two endothelial cell receptors among which the Endothelial Protein C Receptor (EPCR). Considering that congenital or acquired deficiencies of PC are associated with purpura fulminans, we hypothesized that a defect in the activation of PC following meningococcal adhesion to microvessels is responsible for the thrombotic events observed during meningococcemia. Here we showed that the adhesion of N. meningitidis on endothelial cells results in a rapid and intense decrease of EPCR expression by inducing its cleavage in a process know as shedding. Using siRNA experiments and CRISPR/Cas9 genome edition we identified ADAM10 (A Disintegrin And Metalloproteinase-10) as the protease responsible for this shedding. Surprisingly, ADAM17, the only EPCR sheddase described so far, was not involved in this process. Finally, we showed that this ADAM10-mediated shedding of EPCR induced by the meningococcal interaction with endothelial cells was responsible for an impaired activation of Protein C. This work unveils for the first time a direct link between meningococcal adhesion to endothelial cells and a severe dysregulation of coagulation, and potentially identifies new therapeutic targets for meningococcal purpura fulminans.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Endothelial Protein C Receptor/metabolism , Endothelium, Vascular/pathology , Membrane Proteins/metabolism , Meningococcal Infections/complications , Microvessels/pathology , Protein C/metabolism , Purpura Fulminans/etiology , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Bacterial Adhesion , Blood Coagulation/physiology , Cells, Cultured , Endothelial Protein C Receptor/genetics , Endothelium, Vascular/metabolism , Endothelium, Vascular/microbiology , Humans , Membrane Proteins/genetics , Meningococcal Infections/microbiology , Microvessels/metabolism , Microvessels/microbiology , Neisseria meningitidis/physiology , Protein C/genetics , Purpura Fulminans/metabolism , Purpura Fulminans/pathology
9.
Blood ; 131(21): 2379-2392, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29669778

ABSTRACT

Recent studies show that endothelial cell protein C receptor (EPCR) interacts with diverse ligands, in addition to its known ligands protein C and activated protein C (APC). We showed in earlier studies that procoagulant clotting factor VIIa (FVIIa) binds EPCR and downregulates EPCR-mediated anticoagulation and induces an endothelial barrier protective effect. Here, we investigated the effect of FVIIa's interaction with EPCR on endothelial cell inflammation and lipopolysaccharide (LPS)-induced inflammatory responses in vivo. Treatment of endothelial cells with FVIIa suppressed tumor necrosis factor α (TNF-α)- and LPS-induced expression of cellular adhesion molecules and adherence of monocytes to endothelial cells. Inhibition of EPCR or protease-activated receptor 1 (PAR1) by either specific antibodies or small interfering RNA abolished the FVIIa-induced suppression of TNF-α- and LPS-induced expression of cellular adhesion molecules and interleukin-6. ß-Arrestin-1 silencing blocked the FVIIa-induced anti-inflammatory effect in endothelial cells. In vivo studies showed that FVIIa treatment markedly suppressed LPS-induced inflammatory cytokines and infiltration of innate immune cells into the lung in wild-type and EPCR-overexpressing mice, but not in EPCR-deficient mice. Mechanistic studies revealed that FVIIa treatment inhibited TNF-α-induced ERK1/2, p38 MAPK, JNK, NF-κB, and C-Jun activation indicating that FVIIa-mediated signaling blocks an upstream signaling event in TNFα-induced signaling cascade. FVIIa treatment impaired the recruitment of TNF-receptor-associated factor 2 into the TNF receptor 1 signaling complex. Overall, our present data provide convincing evidence that FVIIa binding to EPCR elicits anti-inflammatory signaling via a PAR1- and ß-arrestin-1 dependent pathway. The present study suggests new therapeutic potentials for FVIIa, which is currently in clinical use for treating bleeding disorders.


Subject(s)
Endothelial Protein C Receptor/metabolism , Factor VIIa/metabolism , Inflammation/metabolism , Receptor, PAR-1/metabolism , Signal Transduction , Animals , Biomarkers , Endothelial Protein C Receptor/genetics , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/genetics , Inflammation Mediators/metabolism , Lipopolysaccharides/adverse effects , Lipopolysaccharides/immunology , Mice , Receptor, PAR-1/genetics , Tumor Necrosis Factor-alpha/metabolism , beta-Arrestins/metabolism
10.
Eur J Neurol ; 27(2): 235-243, 2020 02.
Article in English | MEDLINE | ID: mdl-31408242

ABSTRACT

BACKGROUND AND PURPOSE: The involvement of protein C (PC) pathway components in multiple sclerosis (MS) has scarcely been explored. The aim was to investigate their levels in relation to clinical and neurodegenerative magnetic resonance imaging (MRI) outcomes in patients. METHODS: In all, 138 MS patients and 42 healthy individuals were studied. PC, protein S (PS) and soluble endothelial protein C receptor (sEPCR) were evaluated by multiplex assays and enzyme-linked immunosorbent assay. Regression analyses between 3 T MRI outcomes and PC pathway components were performed. ancova was used to compare MRI volumes based on protein level quartiles. Partial correlation was assessed amongst levels of PC pathway components and hemostasis protein levels, including soluble thrombomodulin (sTM), heparin cofactor II (HCII), plasminogen activator inhibitor 1 (PAI-1) and factor XII (FXII). The variation of PC concentration across four time points was evaluated in 32 additional MS patients. RESULTS: There was an association between PC concentration, mainly reflecting the zymogen PC, and MRI measures for volumes of total gray matter (GM) (P = 0.003), thalamus (P = 0.007), cortex (P = 0.008), deep GM (P = 0.009) and whole brain (P = 0.026). Patients in the highest PC level quartile were characterized by the lowest GM volumes. Correlations of PC-HCII, PC-FXII and sEPCR-sTM values were detectable in MS patients, whilst PC-PS and PS-PAI-1 correlations were present in healthy individuals only. CONCLUSIONS: Protein C plasma concentrations might be associated with neurodegenerative MRI outcomes in MS. Several differences in correlation amongst protein plasma levels suggest dysregulation of PC pathway components in MS patients. The stability of PC concentration over time supports a PC investigation in relation to GM atrophy in MS.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Protein C/analysis , Adult , Cross-Sectional Studies , Disease Progression , Endothelial Protein C Receptor/genetics , Female , Gray Matter/diagnostic imaging , Humans , Male , Middle Aged , Protein S/analysis , Signal Transduction , Treatment Outcome
11.
Xenotransplantation ; 27(2): e12557, 2020 03.
Article in English | MEDLINE | ID: mdl-31556182

ABSTRACT

BACKGROUND: Endothelial protein C receptor (EPCR) plays an anticoagulant and anti-inflammatory role by promoting the activation of protein C by thrombin bound to thrombomodulin (TBM). Incompatibility between pig TBM and human/primate thrombin is thought to contribute to dysregulated coagulation in pig-to-primate organ xenografts, and expression of human TBM (hTBM) in pigs has shown benefit in preclinical models. However, it is not known whether there are incompatibilities-or molecular barriers-between endogenous pig EPCR (pEPCR) and transgenically expressed human TBM. AIM: To clone and express pEPCR, and determine its function in the human protein C pathway in vitro. METHODS: Pig endothelial protein C receptor cDNA was generated from pig lung RNA by RT-PCR. Primate COS-7 transfectants expressing various combinations of human and pig TBM and EPCR were incubated with human thrombin and human protein C, and tested for TBM cofactor activity. RESULTS: The predicted protein sequence of pEPCR shared 72.3% amino acid sequence identity with hEPCR, and residues critical for protein C binding were conserved. COS-7 cells transfected with hEPCR, pEPCR or vector showed minimal TBM cofactor activity (0.13 ± 0.04, 0.13 ± 0.02 and 0.14 ± 0.06 U, respectively). The cofactor activity of hTBM-transfected cells (1.18 ± 0.29 U) was 8-fold higher than vector-transfected cells (P = .004) and further increased 4-fold and 3-fold by co-transfection with hEPCR (5.01 ± 1.12 U, P = .004) or pEPCR (3.73 ± 0.65 U, P = .003), respectively. CONCLUSIONS: Our data show that pEPCR is largely compatible with the human TBM/thrombin complex, when expressed on COS-7 cells in vitro, promoting the activation of human protein C. These findings suggest that endogenous pEPCR will enhance the activity of transgenic hTBM in the xenograft setting.


Subject(s)
Animals, Genetically Modified/immunology , Endothelial Cells/metabolism , Endothelial Protein C Receptor/metabolism , Protein C/metabolism , Animals , Blood Coagulation/physiology , Endothelial Protein C Receptor/genetics , Swine , Transplantation, Heterologous/methods
12.
Gynecol Endocrinol ; 36(12): 1082-1085, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32496885

ABSTRACT

OBJECTIVE: Thrombophilia is known to be associated with poor pregnancy outcomes. In this study, three thrombophilic gene polymorphisms, including EPCR (Ser219Gly), F11 (rs4253417) and F7 (323 Ins10) were investigated in an Iranian population of women in order to determine the correlation between thrombophilia and recurrent pregnancy loss (RPL). METHODS: Polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) were used to evaluate the frequency of three candidate thrombophilic risk factors for recurrent pregnancy loss. The frequencies of the polymorphisms were compared between the case (144 patients with a history of at least two miscarriages) and the control (150 healthy women with no abortion) group. RESULTS: Our results show that EPCR and FVII polymorphisms of the patient and control group have the same genotype frequency, and the difference is not statistically significant (p-value > .05). Regarding FXI polymorphism, TT genotype frequency was higher in the patient group than the control group (p-value < .05); however, CT heterozygote form was higher in the control group compared to the patient group (p-value < .05). CONCLUSION: In FXI polymorphism, T allele is possibly an RPL risk factor and C allele has a protective role. Thus, wild type FXI could be related to RPL, but EPCR and FVII polymorphism have no such correlation.


Subject(s)
Abortion, Habitual/genetics , Endothelial Protein C Receptor/genetics , Factor VII/genetics , Factor XI/genetics , Thrombophilia/genetics , Abortion, Habitual/blood , Adult , Female , Humans , Iran , Middle Aged , Polymorphism, Genetic , Pregnancy , Thrombophilia/blood , Young Adult
13.
J Biol Chem ; 293(4): 1413-1424, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29217770

ABSTRACT

The protein C receptor (PROCR) has emerged as a stem cell marker in several normal tissues and has also been implicated in tumor progression. However, the functional role of PROCR and the signaling mechanisms downstream of PROCR remain poorly understood. Here, we dissected the PROCR signaling pathways in breast cancer cells. Combining protein array, knockdown, and overexpression methods, we found that PROCR concomitantly activates multiple pathways. We also noted that PROCR-dependent ERK and PI3k-Akt-mTOR signaling pathways proceed through Src kinase and transactivation of insulin-like growth factor 1 receptor (IGF-1R). These pathway activities led to the accumulation of c-Myc and cyclin D1. On the other hand, PROCR-dependent RhoA-ROCK-p38 signaling relied on coagulation factor II thrombin receptor (F2R). We confirmed these findings in primary cells isolated from triple-negative breast cancer-derived xenografts (PDX) that have high expression of PROCR. To the best our knowledge, this is the first comprehensive study of PROCR signaling in breast cancer cells, and its findings also shed light on the molecular mechanisms of PROCR in stem cells in normal tissue.


Subject(s)
Endothelial Protein C Receptor/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Endothelial Protein C Receptor/genetics , Female , Humans , MCF-7 Cells , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
14.
Xenotransplantation ; 26(4): e12516, 2019 07.
Article in English | MEDLINE | ID: mdl-30989742

ABSTRACT

Xenotransplantation research has made considerable progress in recent years, largely through the increasing availability of pigs with multiple genetic modifications. We suggest that a pig with nine genetic modifications (ie, currently available) will provide organs (initially kidneys and hearts) that would function for a clinically valuable period of time, for example, >12 months, after transplantation into patients with end-stage organ failure. The national regulatory authorities, however, will likely require evidence, based on in vitro and/or in vivo experimental data, to justify the inclusion of each individual genetic modification in the pig. We provide data both from our own experience and that of others on the advantages of pigs in which (a) all three known carbohydrate xenoantigens have been deleted (triple-knockout pigs), (b) two human complement-regulatory proteins (CD46, CD55) and two human coagulation-regulatory proteins (thrombomodulin, endothelial cell protein C receptor) are expressed, (c) the anti-apoptotic and "anti-inflammatory" molecule, human hemeoxygenase-1 is expressed, and (d) human CD47 is expressed to suppress elements of the macrophage and T-cell responses. Although many alternative genetic modifications could be made to an organ-source pig, we suggest that the genetic manipulations we identify above will all contribute to the success of the initial clinical pig kidney or heart transplants, and that the beneficial contribution of each individual manipulation is supported by considerable experimental evidence.


Subject(s)
Animals, Genetically Modified/genetics , Graft Rejection/prevention & control , Swine/genetics , Transplantation, Heterologous , Animals , Animals, Genetically Modified/immunology , CD47 Antigen/genetics , CD47 Antigen/immunology , CD55 Antigens/genetics , CD55 Antigens/immunology , Endothelial Protein C Receptor/genetics , Endothelial Protein C Receptor/immunology , Galactosyltransferases/deficiency , Galactosyltransferases/genetics , Galactosyltransferases/immunology , Gene Knock-In Techniques , Gene Knockout Techniques , Graft Rejection/immunology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/immunology , Humans , Membrane Cofactor Protein/genetics , Membrane Cofactor Protein/immunology , Mixed Function Oxygenases/deficiency , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/immunology , N-Acetylgalactosaminyltransferases/deficiency , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/immunology , Swine/immunology , Thrombomodulin/genetics , Thrombomodulin/immunology
15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 44(9): 957-967, 2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31645483

ABSTRACT

OBJECTIVE: To investigate association between the single nucleotide polymorphisms of endothelial protein C receptor (EPCR) gene and the risk of Kawasaki disease (KD) in a Chinese children.
 Methods: A total of 103 KD patients including 23 patients with coronary artery lesions (CAL) and 158 controls were recruited. Seven tagging SNPs (rs6088738, rs2069940, rs2069945, rs2069952, rs867186, rs9574, and rs1415774) of EPCR gene were selected for TaqMan allelic discrimination assay. The plasma soluble EPCR (sEPCR) levels of 53 KD and 52 healthy children were detected by ELISA.
 Results: We found a significant association between rs2069952, rs9574 or rs1415774 and higher probability for the occurrence of KD but not CAL formation. Interestingly, males with these 3 SNPs and rs2069945 SNPs bore a much greater risk of KD than females. The level of plasma sEPCR in children with KD didnot predict the formation of CAL. However, the allele G of rs867186 in EPCR was associated with the increased level of plasma sEPCR in KD patients.
 Conclusion: The SNPs of EPCR are associated with KD susceptibility in a Chinese Han children.


Subject(s)
Endothelial Protein C Receptor/genetics , Mucocutaneous Lymph Node Syndrome/epidemiology , Asian People , Child , China/epidemiology , Female , Genetic Predisposition to Disease , Humans , Male , Mucocutaneous Lymph Node Syndrome/genetics , Polymorphism, Single Nucleotide
16.
Immunogenetics ; 70(7): 459-476, 2018 07.
Article in English | MEDLINE | ID: mdl-29270774

ABSTRACT

Humans have a number of nonclassical major histocompatibility complex (MHC) class I molecules that are quite divergent from the classical ones, and that may have separated from the classical lineage in pre-mammalian times. To estimate when in evolution the respective nonclassical lineages separated from the classical lineage, we first identified "phylogenetic marker motifs" within the evolution of classical MHC class I; the selected motifs are rather specific for and rather stably inherited within clades of species. Distribution of these motifs in nonclassical MHC class I molecules indicates that the lineage including the nonclassical MHC class I molecules CD1 and PROCR separated from the classical lineage before the emergence of tetrapod species, and that the human nonclassical MHC class I molecules FCGRT, MIC/ULBP/RAET, HFE, MR1, and ZAG show similarity with classical MHC class I at the avian/reptilian level. An MR1-like α1 exon sequence was identified in turtle. Our system furthermore indicates that the lineage UT, hitherto only found in non-eutherian mammals, predates tetrapod existence, and we identified UT genes in reptiles. If only accepting wide distribution of a lineage among extant species as true evidence for ancientness, the oldest identified nonclassical MHC class I lineage remains the fish-specific lineage Z, which was corroborated in the present study by finding both Z and classical-type MHC class I sequences in a primitive fish, the bichir. In short, we gained important new insights into the evolution of classical MHC class I motifs and the probable time of origin of nonclassical MHC class I lineages.


Subject(s)
Genes, MHC Class I/genetics , Histocompatibility Antigens Class I/genetics , Amino Acid Sequence , Animals , Antigens, CD1/genetics , Antigens, CD1/immunology , Base Sequence , Conserved Sequence , Endothelial Protein C Receptor/genetics , Endothelial Protein C Receptor/immunology , Evolution, Molecular , Genes, MHC Class I/immunology , Humans , Mammals/genetics , Phylogeny , Reptiles/genetics
17.
Stem Cells ; 35(7): 1786-1798, 2017 07.
Article in English | MEDLINE | ID: mdl-28480559

ABSTRACT

Endothelial protein C receptor (EPCR) is a specific receptor for anticoagulant protein C and expressed by human epidermis and cultured keratinocytes. Here we investigated whether: (a) the level of EPCR in keratinocytes is associated with their growth potential; and (b) EPCR is a potential marker for human epidermal stem cells. Human keratinocytes isolated from foreskins or adult skin tissues were transfected with EPCR siRNA or EPCR overexpressing plasmids. Cell proliferation, long term proliferation potential, colony forming efficiency (CFE), and in vitro epidermal regeneration ability of EPCRhigh and EPCRl °w cells were assessed. The expression and colocalization of EPCR with stem cell markers p63, integrin ß1, and activation of MAP kinases were detected by flow cytometry, immunofluorescence staining, or Western blot. Results showed that EPCR was highly expressed by the basal layer of skin epidermis. EPCRhigh cells were associated with the highest levels of p63 and integrin ß1. Most EPCRhigh cells were smaller in size, formed larger colonies and had a greater long term growth potential, CFE, holoclone formation, and in vitro epidermal regeneration ability when compared to EPCRl °w cells. Blocking EPCR resulted in keratinocyte apoptosis, particularly in nondifferentiated conditions. Cell proliferation and p63 expression were reduced by blocking EPCR and enhanced by overexpressing this receptor. These data indicate that EPCR can regulate p63, is associated with highly proliferative keratinocytes, and is a potential human epidermal stem cell marker. Stem Cells 2017;35:1786-1798.


Subject(s)
Dermis/metabolism , Endothelial Protein C Receptor/genetics , Keratinocytes/metabolism , Membrane Proteins/genetics , Adult , Apoptosis/genetics , Cell Proliferation , Dermis/cytology , Endothelial Protein C Receptor/antagonists & inhibitors , Endothelial Protein C Receptor/metabolism , Foreskin/cytology , Foreskin/metabolism , Gene Expression Regulation , Humans , Infant, Newborn , Integrin beta1/genetics , Integrin beta1/metabolism , Keratinocytes/cytology , Male , Membrane Proteins/metabolism , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Stem Cells
19.
In Vivo ; 37(4): 1680-1687, 2023.
Article in English | MEDLINE | ID: mdl-37369465

ABSTRACT

BACKGROUND/AIM: The Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs) are a group of blood cancers that arise from abnormal growth of blood cells in the bone marrow. Patients with MPNs are at increased risk for life-threatening thromboembolic complications. The detection of JAK2V617F in endothelial cells (ECs) brought a new perspective to the research of thromboembolic events. However, the mechanisms by which the mutation contributes to risk have yet to be entirely understood. Consequently, the objective of this study was to investigate how JAK2V617F impacts endothelial cells by considering thermoregulation. MATERIALS AND METHODS: We applied our previously created model for EC that was genetically modified with JAK2 wild type (WT)-GFP and JAK2V617F-GFP lentiviruses; the cells were cultured for 48 h at 37°C for normothermia and 32°C for mild hypothermia. We examined the effect of thermoregulation on infection efficiency and the expression of cell surface markers, including endothelial protein C receptor (EPCR), thrombomodulin (TM), and tissue factor (TF), which are related to the coagulation pathways. Furthermore, the microparticle production from the genetically modified EC (EMPs) was analyzed. RESULTS: We found suppression of the expression of coagulation factors, including EPCR, TM, and TF in JAK2V617F positive ECs under mild hypothermia. JAK2V617F-positive ECs showed slightly higher EMP production under mild hypothermia. CONCLUSION: Although the molecular mechanisms of the thermal effects on the tumor microenvironment with JAK2V617F and its effect on EMP production and coagulation are not known yet, the therapy-oriented effect of thermoregulation might be considered in future studies.


Subject(s)
Hypothermia , Myeloproliferative Disorders , Humans , Endothelial Protein C Receptor/genetics , Endothelial Cells , Mutation
20.
Expert Rev Hematol ; 16(2): 141-146, 2023 02.
Article in English | MEDLINE | ID: mdl-36523147

ABSTRACT

BACKGROUND: Due to their chronic hypercoagulable status, thalassemic individuals are at an elevated risk of developing thromboembolic sequence consequences. The goal of the current study is to assesses the EPCR gene polymorphism and soluble EPCR in Egyptian thalassemic children and its role in hypercoagulable state. RESEARCH DESIGN AND METHODS: Eighty children diagnosed as thalassemia major and 80 healthy youngsters as a control group. The EPCR gene was identified using a restriction fragment length polymerase chain reaction (RFLP PCR). Additionally, we assessed the soluble EPCR levels using an enzyme-linked immunosorbent assay (ELISA). RESULTS: Frequency of 1651C-G EPCR, the GC genotype was strongly related with an increased risk of coagulation (OR = 1.83 (0.64-5.26), P = 0.0.016). In addition, soluble EPCR was considerably higher in patients with thalassemia than in controls, P value <0.001. Our study revealed significance difference between soluble EPCR and different genotypes. CONCLUSION: Polymorphisms in the EPCR gene and an elevated soluble EPCR level in patients with ß-thalassemia major may contribute to these patients' hemostatic derangement in thalassemic Egyptian children.


Subject(s)
Thromboembolism , beta-Thalassemia , Humans , Child , Endothelial Protein C Receptor/genetics , beta-Thalassemia/genetics , Polymorphism, Genetic , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL