Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3185-3193, 2024 Jun.
Article in Zh | MEDLINE | ID: mdl-39041079

ABSTRACT

Peptidomics was employed to systematically analyze the characteristic peptides in Galli Gigerii Endothelium Corneum and its adulterants and establish a method for distinguishing Galli Gigerii Endothelium Corneum from its adulterants, including the gizzard membranes from ducks, geese, and pigeons. UPLC-Q-Exactive Orbitrap-MS was combined with multivariate statistical analysis to analyze the peptides in Galli Gigerii Endothelium Corneum and its adulterants. The structures of peptides were identified by pNovo combined with manual recognition of spectra, and synthetic peptide standards were used for validation. LC-MS/MS was used to optimize the sample pre-processing conditions, including the extraction procedure, extraction time, extraction solvents, and solvent volumes, for the characteristic peptide LESY in Galli Gigerii Endothelium Corneum. Multiple reaction monitoring(MRM) in the ESI~+ mode with m/z 511.24→269.11 and 511.24→243.13 as detection ions was employed for qualitative and quantitative analyses. The established UPLC-MS/MS method demonstrated good specificity, stability, and durability. The content of LESY in 16 batches of Galli Gigerii Endothelium Corneum samples ranged from 55.03 to 113.36 µg·g~(-1). Additionally, a qualitative detection method for the common peptide RDPVLVSR in adulterants was established with m/z 471.28→785.45 and 471.28→670.41 as the detection ions. This study established a convenient, rapid, and accurate detection method for the characteristic peptides in Galli Gigerii Endothelium Corneum and its adulterants. The method possesses good specificity, stability, and durability, providing a valuable reference for the identification and quality control of Galli Gigerii Endothelium Corneum and other traditional Chinese medicines derived from animal sources.


Subject(s)
Peptides , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Animals , Chromatography, High Pressure Liquid/methods , Peptides/chemistry , Peptides/analysis , Endothelium/chemistry , Chickens , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Proteomics/methods , Drug Contamination , Liquid Chromatography-Mass Spectrometry
2.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5434-5442, 2022 Oct.
Article in Zh | MEDLINE | ID: mdl-36471957

ABSTRACT

Galli Gigerii Endothelium Corneum(GGEC) is commonly used for the clinical treatment of indigestion, vomiting, diarrhea, and infantile malnutrition with accumulation. In recent decades, omnivorous domestic chickens, the original source of GGEC, has been replaced by broilers, which may lead to significant changes in the quality of the yielding GGEC. Through subjective and objective sensory evaluation, biological evaluation, and chemical analysis, this study compared the odor and quality between GGEC derived from domestic chickens and that from broilers. The odor intensity between them was compared by odor profile analysis and it was found that the fishy odor of GGEC derived from domestic chickens was significantly weaker than that of GGEC from broilers. Headspace-solid phase microextraction-gas chromatography-triple quadrupole tandem mass spectrometry(HS-SPME/GC-QQQ-MS/MS) suggested that the overall odor-causing chemicals were consistent with the fishy odor-causing chemicals. According to the odor activity va-lue and the orthogonal partial least squares discriminant analysis(OPLS-DA) result, dimethyl trisulfide, 2-methoxy-3-isobutylpyrazine, and 2-methylisoborneol were responsible for the fishy odor(OAV≥1) and the content of fishy odor-causing chemicals in GGEC derived from broilers was 1.12-2.13 folds that in GGEC from domestic chickens. The average pepsin potency in GGEC derived from broilers was 15.679 U·mg~(-1), and the corresponding figure for the medicinal from domestic chickens was 26.529 U·mg~(-1). The results of pre-column derivatization reverse-phase high-performance liquid chromatography(RP-HPLC) assay showed that the content of total amino acids and digestion-promoting amino acids in domestic chickens-derived GGEC was 1.12 times and 1.15 times that in GGEC from broilers, and the bitter amino acid content was 1.21 times folds that of the latter. In conclusion, GGEC derived from domestic chickens had weaker fishy odor, stronger enzyme activity, higher content of digestion-promoting amino acids, and stronger bitter taste than GGEC from broilers. This study lays a scientific basis for studying the quality variation of GGEC and provides a method for identifying high-quality GGEC. Therefore, it is of great significance for the development and cultivation of GGEC as both food and medicine and breeding of corresponding varieties.


Subject(s)
Odorants , Volatile Organic Compounds , Animals , Odorants/analysis , Chickens , Gas Chromatography-Mass Spectrometry/methods , Tandem Mass Spectrometry , Solid Phase Microextraction , Amino Acids , Endothelium/chemistry , Volatile Organic Compounds/analysis
3.
J Biol Chem ; 295(9): 2804-2821, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31964714

ABSTRACT

Animal cells express heparan sulfate proteoglycans that perform many important cellular functions by way of heparan sulfate-protein interactions. The identification of membrane heparan sulfate-binding proteins is challenging because of their low abundance and the need for extensive enrichment. Here, we report a proteomics workflow for the identification and characterization of membrane-anchored and extracellular proteins that bind heparan sulfate. The technique is based on limited proteolysis of live cells in the absence of denaturation and fixation, heparin-affinity chromatography, and high-resolution LC-MS/MS, and we designate it LPHAMS. Application of LPHAMS to U937 monocytic and primary murine and human endothelial cells identified 55 plasma membrane, extracellular matrix, and soluble secreted proteins, including many previously unidentified heparin-binding proteins. The method also facilitated the mapping of the heparin-binding domains, making it possible to predict the location of the heparin-binding site. To validate the discovery feature of LPHAMS, we characterized one of the newly-discovered heparin-binding proteins, C-type lectin 14a (CLEC14A), a member of the C-type lectin family that modulates angiogenesis. We found that the C-type lectin domain of CLEC14A binds one-to-one to heparin with nanomolar affinity, and using molecular modeling and mutagenesis, we mapped its heparin-binding site. CLEC14A physically interacted with other glycosaminoglycans, including endothelial heparan sulfate and chondroitin sulfate E, but not with neutral or sialylated oligosaccharides. The LPHAMS technique should be applicable to other cells and glycans and provides a way to expand the repertoire of glycan-binding proteins for further study.


Subject(s)
Cell Adhesion Molecules/metabolism , Endothelium/chemistry , Heparitin Sulfate/metabolism , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Proteomics/methods , Animals , Binding Sites , Cells, Cultured , Endothelium/cytology , Humans , Mice , Protein Binding , U937 Cells
4.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804258

ABSTRACT

The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels' mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.


Subject(s)
Endothelium/chemistry , Fibrosis/genetics , Glycocalyx/chemistry , Mechanotransduction, Cellular/genetics , Blood Proteins/chemistry , Blood Proteins/genetics , Capillary Permeability/genetics , Endothelium/ultrastructure , Fibrosis/pathology , Glucuronidase/adverse effects , Glycocalyx/genetics , Glycocalyx/ultrastructure , Glycosaminoglycans/chemistry , Glycosaminoglycans/genetics , Humans , Matrix Metalloproteinases/adverse effects , Proteoglycans/chemistry , Proteoglycans/genetics , Reactive Oxygen Species/adverse effects
5.
Molecules ; 26(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34946571

ABSTRACT

HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This "two-way" activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1.


Subject(s)
Endothelium/metabolism , Heparan Sulfate Proteoglycans/metabolism , Lymphocytes/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Cell Adhesion , Cell Movement , Endothelium/chemistry , Heparan Sulfate Proteoglycans/chemistry , Humans , Lymphocytes/chemistry , Models, Molecular , Molecular Structure , Stereoisomerism , Tumor Cells, Cultured , tat Gene Products, Human Immunodeficiency Virus/chemistry
6.
BMC Anesthesiol ; 20(1): 121, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32434495

ABSTRACT

BACKGROUND: The glycocalyx layer is a key structure in the endothelium. Tourniquet-induced ischemic periods are used during orthopedic surgery, and the reactive oxygen species generated after ischemia-reperfusion may mediate the shedding of the glycocalyx. Here, we describe the effects of tourniquet-induced ischemia-reperfusion and compare the effects of sevoflurane and propofol on the release of endothelial biomarkers after ischemia-reperfusion in knee-ligament surgery. METHODS: This pilot, single-center, blinded, randomized, controlled trial included 16 healthy patients. After spinal anesthesia, hypnosis was achieved with sevoflurane or propofol according to randomization. During the perioperative period, five venous blood samples were collected for quantification of syndecan-1, heparan sulfate, and thrombomodulin from blood serum by using ELISA assays kits. Sample size calculation was performed to detect a 25% change in the mean concentration of syndecan-1 with an alpha of 0.05 and power of 80%. RESULTS: For our primary outcome, a two-way ANOVA with post-hoc Bonferroni correction analysis showed no differences in syndecan-1 concentrations between the sevoflurane and propofol groups at any time point. In the sevoflurane group, we noted an increase in syndecan-1 concentrations 90 min after tourniquet release in the sevoflurane group from 34.6 ± 24.4 ng/mL to 47.9 ± 29.8 ng/mL (Wilcoxon test, p < 0.01) that was not observed in patients randomized to the propofol group. The two-way ANOVA showed no intergroup differences in heparan sulfate and thrombomodulin levels. CONCLUSIONS: Superficial endothelial damage without alterations in the cell layer integrity was observed after tourniquet knee-ligament surgery. There was no elevation in serum endothelial biomarkers in the propofol group patients. Sevoflurane did not show the protective effect observed in in vitro and in vivo studies. TRIAL REGISTRATION: The trial was registered in www.clinicaltrials.gov (ref: NCT03772054, Registered 11 December 2018).


Subject(s)
Endothelium/drug effects , Knee/surgery , Ligaments/surgery , Propofol/pharmacology , Sevoflurane/pharmacology , Tourniquets/adverse effects , Adult , Endothelium/chemistry , Glycocalyx/drug effects , Heparitin Sulfate/blood , Humans , Pilot Projects , Reperfusion Injury/prevention & control , Syndecan-1/blood
7.
Transpl Int ; 32(3): 300-312, 2019 03.
Article in English | MEDLINE | ID: mdl-30395360

ABSTRACT

The most prominent histologic lesion in antibody-mediated rejection is microvascular inflammation (MVI); however, its recognition and scoring can be challenging and poorly reproducible between pathologists. We developed a dual immunohistochemical (IHC)-stain (anti-CD34/anti-CD45 for endothelium/leukocytes) as ancillary tool to improve on the semi-quantitative Banff scores and allow quantification of MVI. We examined the relationship between CD34-CD45 IHC-based quantitative MVI score (the inflamed peritubular capillary ratio, iptcr) and renal-graft failure or donor-specific antibodies (DSA) strength at the time of biopsy. Quantitative iptcr score was significantly associated with renal graft failure (hazard ratio 1.81, per 1 SD-unit [0.13 points] of iptcr-increase; P = 0.026) and predicted the presence and strength of DSA (ordinal odds ratio: 2.42; P = 0.005; 75 biopsies/60 kidney transplant recipients; 30 HLA- and/or ABO-incompatible). Next, we assessed inter-pathologist agreement for ptc score and ptc extent (focal/diffuse) using CD34-CD45 IHC as compared to conventional stain. Compared to conventional stain, CD34-CD45 IHC significantly increased inter-pathologist agreement on ptc score severity and extent (κ-coefficient from 0.52-0.80 and 0.46-0.68, respectively, P < 0.001). Our findings show that CD34-CD45 IHC improves reproducibility of MVI scoring and facilitates MVI quantification and introduction of a dual anti-CD34/CD45 has the potential to improve recognition of MVI ahead of DSA results.


Subject(s)
Endothelium/chemistry , Kidney Transplantation , Kidney/pathology , Leukocytes/chemistry , Microvessels/physiology , Adult , Antigens, CD34/analysis , Biopsy , Female , Humans , Inflammation , Kidney/blood supply , Leukocyte Common Antigens/analysis , Male , Middle Aged , Prognosis , Reproducibility of Results , Retrospective Studies , Transplantation, Homologous
8.
J Cell Physiol ; 233(12): 9701-9715, 2018 12.
Article in English | MEDLINE | ID: mdl-30078213

ABSTRACT

The endothelium glycocalyx layer (ECL), presents on the apical surface of endothelial cells, creates a barrier between circulating blood and the vessel wall. Low shear stress (LSS) may accelerate the degradation of the glycocalyx via hyaluronidase2 (Hyal2) and then alter the cell polarity. Yet the liver kinase B1 (LKB1) signaling pathway plays an important role in regulating cell polarity. However, the relationship between LKB1 and glycocalyx during LSS is not clear. In the current study, we demonstrate that LSS attenuates LKB1 and AMP-activated protein kinase activation as well as activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p47phox ) and Hyal2 in the human umbilical vein endothelial cell (HUVEC). Pretreatment with 5-Aminoimidazole-4-carboxamide1-ß-D-ribofuranoside (AICAR), or diphenyleneiodonium (DPI chloride) and transfection with LKB1 overexpression vector and p47phox small interfering RNA downregulated LSS-induced Hyal2 activation. By coimmunoprecipitation, we discovered the existence of p47phox /Hyal2 complex. LSS induced the dissociation of p47phox /Hyal2 complex, which was inhibited by LKB1 overexpression and AICAR. Furthermore, knockdown of Hyal2 performed a positive feedback on LKB1 activity. In addition, we also show that LSS enhanced LKB1 translocation from the cytosol to the nucleus. Taken together, these data indicate that Hyal2 regulates LSS-induced injury of the glycocalyx via LKB1/AMPK/NADPH oxidase signaling cascades.


Subject(s)
Cell Adhesion Molecules/genetics , Glycocalyx/genetics , Hyaluronoglucosaminidase/genetics , NADPH Oxidases/genetics , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Cell Adhesion Molecules/chemistry , Cell Polarity/genetics , Endothelium/chemistry , Endothelium/metabolism , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , Gene Knockdown Techniques , Glycocalyx/pathology , Human Umbilical Vein Endothelial Cells , Humans , Hyaluronoglucosaminidase/chemistry , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , NADPH Oxidases/chemistry , Protein Kinases/genetics , Protein Serine-Threonine Kinases/chemistry , RNA, Small Interfering/genetics , Ribonucleotides/pharmacology , Signal Transduction , Stress, Mechanical
9.
Molecules ; 23(7)2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29986452

ABSTRACT

The development of new strategies for enhancing drug delivery to the brain represents a major challenge in treating cerebral diseases. In this paper, we report on the synthesis and structural characterization of a biocompatible nanoparticle (NP) made up of poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) co-polymer (namely PELGA) functionalized with the membranotropic peptide gH625 (gH) and the iron-mimicking peptide CRTIGPSVC (CRT) for transport across the blood-brain barrier (BBB). gH possesses a high translocation potency of the cell membrane. Conversely, CRT selectively recognizes the brain endothelium, which interacts with transferrin (Tf) and its receptor (TfR) through a non-canonical ligand-directed mechanism. We hypothesize that the delivery across the BBB of PELGA NPs should be efficiently enhanced by the NP functionalization with both gH and CRT. Synthesis of peptides and their conjugation to the PLGA as well as NP physical-chemical characterization are performed. Moreover, NP uptake, co-localization, adhesion under dynamic conditions, and permeation across in vitro BBB model are evaluated as a function of gH/CRT functionalization ratio. Results establish that the cooperative effect of CRT and gH may change the intra-cellular distribution of NPs and strengthen NP delivery across the BBB at the functionalization ratio 33% gH⁻66% CRT.


Subject(s)
Cerebellum/cytology , Drug Carriers/chemistry , Endothelium/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Polymers/chemical synthesis , Animals , Biocompatible Materials/chemistry , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cells, Cultured , Cerebellum/chemistry , Cerebellum/metabolism , Drug Design , Endothelium/cytology , Endothelium/metabolism , Lactates/chemistry , Mice , Peptides/metabolism , Polyethylene Glycols/chemistry , Polyglycolic Acid/chemistry , Polymers/chemistry , Receptors, Transferrin/metabolism , Transferrin/metabolism
10.
Ann Rheum Dis ; 76(5): 924-934, 2017 May.
Article in English | MEDLINE | ID: mdl-28062404

ABSTRACT

OBJECTIVE: Systemic sclerosis (SSc) features multiorgan fibrosis orchestrated predominantly by activated myofibroblasts. Endothelial-to-mesenchymal transition (EndoMT) is a transdifferentiation by which endothelial cells (ECs) lose their specific morphology/markers and acquire myofibroblast-like features. Here, we determined the possible contribution of EndoMT to the pathogenesis of dermal fibrosis in SSc and two mouse models. METHODS: Skin sections were immunostained for endothelial CD31 or vascular endothelial (VE)-cadherin in combination with α-smooth muscle actin (α-SMA) myofibroblast marker. Dermal microvascular ECs (dMVECs) were prepared from SSc and healthy skin (SSc-dMVECs and H-dMVECs). H-dMVECs were treated with transforming growth factor-ß1 (TGFß1) or SSc and healthy sera. Endothelial/mesenchymal markers were assessed by real-time PCR, immunoblotting and immunofluorescence. Cell contractile phenotype was assayed by collagen gel contraction. RESULTS: Cells in intermediate stages of EndoMT were identified in dermal vessels of either patients with SSc or bleomycin-induced and urokinase-type plasminogen activator receptor (uPAR)-deficient mouse models. At variance with H-dMVECs, SSc-dMVECs exhibited a spindle-shaped appearance, co-expression of lower levels of CD31 and VE-cadherin with myofibroblast markers (α-SMA+ stress fibres, S100A4 and type I collagen), constitutive nuclear localisation of the EndoMT driver Snail1 and an ability to effectively contract collagen gels. Treatment of H-dMVECs either with SSc sera or TGFß1 resulted in the acquisition of a myofibroblast-like morphology and contractile phenotype and downregulation of endothelial markers in parallel with the induction of mesenchymal markers. Matrix metalloproteinase-12-dependent uPAR cleavage was implicated in the induction of EndoMT by SSc sera. CONCLUSIONS: In SSc, EndoMT may be a crucial event linking endothelial dysfunction and development of dermal fibrosis.


Subject(s)
Endothelial Cells/pathology , Endothelium/metabolism , Epithelial-Mesenchymal Transition , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Skin/pathology , Actins/analysis , Actins/metabolism , Animals , Bleomycin , Cadherins/analysis , Cadherins/metabolism , Case-Control Studies , Cells, Cultured , Collagen Type I/metabolism , Disease Models, Animal , Endothelium/chemistry , Endothelium/pathology , Fibrosis , Humans , Male , Matrix Metalloproteinase 12/blood , Mice , Mice, Inbred C57BL , Mice, Knockout , Microvessels/chemistry , Microvessels/pathology , Phenotype , Platelet Endothelial Cell Adhesion Molecule-1/analysis , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , S100 Calcium-Binding Protein A4/metabolism , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/genetics , Serum , Skin/blood supply , Snail Family Transcription Factors/metabolism , Transforming Growth Factor beta1/pharmacology , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
11.
Int J Clin Oncol ; 21(2): 302-309, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26293333

ABSTRACT

BACKGROUND: Increased expression of collagen XV has been reported in hepatocellular carcinogenesis in mice. The aim of this study was to confirm the previous murine findings in human hepatocellular carcinoma (HCC) specimens, along with the histopathological distribution of collagen XV in tumoral tissues. METHODS: Sixty-three primary HCC specimens were examined. Immunostaining of collagen XV and quantitative reverse transcriptional PCR of COL15A1, which encodes collagen XV, were performed. RESULTS: Positive staining of collagen XV was observed in all tumoral regions, regardless of differentiation level or pathological type of HCC, along the sinusoid-like endothelium, whereas collagen XV was not expressed in any non-tumoral region. The intensity score of collagen XV immunostaining and the mRNA value of COL15A1 were significantly correlated. COL15A1 expression in tumors was 3.24-fold higher than in non-tumoral regions. Multivariate analysis showed that COL15A1 expression was significantly higher in the absence of hepatitis virus and moderately differentiated HCC. CONCLUSIONS: COL15A1 mRNA was up-regulated in HCC and collagen XV was expressed along the sinusoid-like endothelium of HCC but not in non-tumoral regions, which implies that collagen XV contributes to the capillarization of HCC.


Subject(s)
Carcinoma, Hepatocellular/chemistry , Carcinoma, Hepatocellular/pathology , Collagen/genetics , Liver Neoplasms/chemistry , Liver Neoplasms/pathology , Aged , Aged, 80 and over , Carcinogenesis , Carcinoma, Hepatocellular/blood supply , Cell Differentiation , Endothelium/chemistry , Female , Humans , Liver/chemistry , Liver Neoplasms/blood supply , Male , Middle Aged , Neovascularization, Pathologic , RNA, Messenger/analysis
12.
Chem Soc Rev ; 44(22): 8174-99, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26239875

ABSTRACT

While the blood vessel is seldom the target tissue, almost all nanomedicine will interact with blood vessels and blood at some point of time along its life cycle in the human body regardless of their intended destination. Despite its importance, many bionanotechnologists do not feature endothelial cells (ECs), the blood vessel cells, or consider blood effects in their studies. Including blood vessel cells in the study can greatly increase our understanding of the behavior of any given nanomedicine at the tissue of interest or to understand side effects that may occur in vivo. In this review, we will first describe the diversity of EC types found in the human body and their unique behaviors and possibly how these important differences can implicate nanomedicine behavior. Subsequently, we will discuss about the protein corona derived from blood with foci on the physiochemical aspects of nanoparticles (NPs) that dictate the protein corona characteristics. We would also discuss about how NPs characteristics can affect uptake by the endothelium. Subsequently, mechanisms of how NPs could cross the endothelium to access the tissue of interest. Throughout the paper, we will share some novel nanomedicine related ideas and insights that were derived from the understanding of the NPs' interaction with the ECs. This review will inspire more exciting nanotechnologies that had accounted for the complexities of the real human body.


Subject(s)
Blood Vessels/chemistry , Nanoparticles/analysis , Endothelial Cells/chemistry , Endothelium/chemistry , Humans , Nanotechnology
13.
Analyst ; 140(7): 2178-84, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25502217

ABSTRACT

The main spectral differences between the biochemical compositions of the vascular endothelium of control, hypertensive NO-deficient, and NO-deficient mice supplemented with nitrate were studied using Raman microimaging. A significantly different Raman signature of the endothelium in these three groups in the 1200-1400 cm(-1) region was assigned to the α-helix and ß-sheet alterations in the protein secondary structure upon the development of hypertension. The second pronounced biochemical marker of endothelium alterations was the lipid to protein ratio. A lower intensity of the band at 2940 cm(-1) relative to the feature at 1007 cm(-1) in the endothelium in hypertension compared to the control indicated a decrease of the lipid content relative to proteins during the progress of the pathology. The nitrate-based treatment partially reversed the effects of hypertension. The nitrate supplementation restored the lipid to protein ratio in the endothelium to the control level, while the changes in the secondary structure of proteins were irreversible upon nitrate administration.


Subject(s)
Hypertension/metabolism , Nitric Oxide/deficiency , Spectrum Analysis, Raman , Animals , Aorta/chemistry , Cluster Analysis , Elastin/chemistry , Endothelium/chemistry , Mice , Mice, Inbred C57BL
14.
Cancer Cell ; 11(6): 478-81, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17560330

ABSTRACT

Angiogenesis is a hallmark of solid tumors, and disruption of tumor vasculature is an active anticancer therapy in some cases. Several proteins expressed on the surface of tumor endothelium have been identified during the last decade. However, due to the expression in both physiological and tumor angiogenesis, only a few targets have been developed for clinical therapeutics. By thorough SAGE analysis of mouse endothelial cells isolated from various normal resting tissues, regenerating liver, and liver-metastasized tumor, Seaman and colleagues in this issue of Cancer Cell have demonstrated organ-specific endothelial markers, physiological angiogenesis endothelial markers, and tumor endothelial markers and revealed striking differences between physiological and pathological angiogenesis.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Biomarkers, Tumor , Endothelium/chemistry , Liver Neoplasms, Experimental/metabolism , Animals , Liver/metabolism , Liver Regeneration , Mice , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic , Organ Specificity
15.
Bioorg Khim ; 40(2): 131-41, 2014.
Article in Russian | MEDLINE | ID: mdl-25895332

ABSTRACT

In normal state, a complex multicomponent system called glycocalyx is present on the surface of endothelial vascular system. The structure of the glycocalyx is determined by a group ofproteoglycans, glycoproteins and glycosaminoglycans, originating from endothelial cells and blood flow. Due to its complexity and location on the border of the system of blood circulation, glycocalyx participates in a number of functions supporting the metabolism of the vascular wall. Complete or partial loss of this structure in pathologicalconditions leads to inconsistencies in the vascular wall and changes in its functions. The first part of this review considers the history of detection and determination of endothelial glycocalyx structure, utilized methods and approaches. The molecular composition of the glycocalyx, properties of its components and glycocalyx structure organization are described. The English version of the paper: Russian Journal of Bioorganic Chemistry, see also http://www.maik.ru.


Subject(s)
Blood Circulation , Blood Vessels/ultrastructure , Endothelium/ultrastructure , Glycocalyx/ultrastructure , Blood Vessels/chemistry , Blood Vessels/metabolism , Endothelium/chemistry , Glycocalyx/chemistry , Glycocalyx/metabolism , Glycoproteins/chemistry , Glycosaminoglycans/chemistry , Humans , Proteoglycans/chemistry
16.
Bioorg Khim ; 40(3): 259-74, 2014.
Article in Russian | MEDLINE | ID: mdl-25898732

ABSTRACT

In normal state, a complex multicomponent system called glycocalyx is present on the surface of endothelial vascular system. Due to complexity of its composition and location on the border between vessel wall and blood circulation, glycocalyx participates in a number of functions supporting the metabolism of the vascular wall. In pathological conditions undergo complete or partial loss of this structure, which leads to inconsistencies in the vascular wall and change its functions. The functions of endothelial glycocalyx are its involvement in the regulation of vascular permeability, transduction and transformation by the shear stress of blood flow on endothelium, the molecular regulation of glycocalyx microenvironment and its interaction with circulating blood cells. Also briefly be considered participation of glycocalyx in the implementation of cardiovascular diseases, their correction, bioengineering application of glycocalyx and its components.


Subject(s)
Cell Communication/physiology , Endothelium/metabolism , Glycocalyx/metabolism , Hyperglycemia/metabolism , Bioengineering , Blood Circulation/physiology , Capillary Permeability/physiology , Endothelium/chemistry , Endothelium/pathology , Glycocalyx/chemistry , Glycocalyx/pathology , Humans , Hyperglycemia/physiopathology , Reperfusion Injury/physiopathology , Stress, Mechanical
17.
Zhongguo Zhong Yao Za Zhi ; 39(8): 1463-7, 2014 Apr.
Article in Zh | MEDLINE | ID: mdl-25039183

ABSTRACT

Hydrolytic amino acids were extracted by acid hydrolysis method, then derivatized with phenyl isothiocyanate (PITC). And the samples were analysed by HPLC on an Ultimate Prime C18 (4.6 mm x 250 mm, 5 microm) column with gradient elution of 0.1 mol x L(-1) sodium acetate buffer solution (adjusted to pH 6. 5)-acetonitrile (93:7) (A) and acetonitrile-water (8:2) (B) at a flow rate of 1.0 mL x min(-1). Column temperature was 40 degrees C and the detected wavelength was 254 nm. Amino acids derivative solution remained stable in 36 hours. The response was linear for 16 amino acids with a correlation coefficient r > 0.999 5. The average recoveries were 98.01% -101.8%. The method is reliable with good accuracy and repeatability, which is useful for the determination of amino acids in Galli Gigerii Endothelium Corneum.


Subject(s)
Amino Acids/analysis , Endothelium/chemistry , Gizzard, Avian/chemistry , Animals , Chickens , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase
18.
Sci Rep ; 14(1): 4280, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383765

ABSTRACT

Acute kidney injury (AKI) is a common condition in hospitalized patients who often requires kidney support therapy (KST). However, predicting the need for KST in critically ill patients remains challenging. This study aimed to analyze endothelium-related biomarkers as predictors of KST need in critically ill patients with stage 2 AKI. A prospective observational study was conducted on 127 adult ICU patients with stage 2 AKI by serum creatinine only. Endothelium-related biomarkers, including vascular cell adhesion protein-1 (VCAM-1), angiopoietin (AGPT) 1 and 2, and syndecan-1, were measured. Clinical parameters and outcomes were recorded. Logistic regression models, receiver operating characteristic (ROC) curves, continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were used for analysis. Among the patients, 22 (17.2%) required KST within 72 h. AGPT2 and syndecan-1 levels were significantly greater in patients who progressed to the KST. Multivariate analysis revealed that AGPT2 and syndecan-1 were independently associated with the need for KST. The area under the ROC curve (AUC-ROC) for AGPT2 and syndecan-1 performed better than did the constructed clinical model in predicting KST. The combination of AGPT2 and syndecan-1 improved the discrimination capacity of predicting KST beyond that of the clinical model alone. Additionally, this combination improved the classification accuracy of the NRI and IDI. AGPT2 and syndecan-1 demonstrated predictive value for the need for KST in critically ill patients with stage 2 AKI. The combination of AGPT2 and syndecan-1 alone enhanced the predictive capacity of predicting KST beyond clinical variables alone. These findings may contribute to the early identification of patients who will benefit from KST and aid in the management of AKI in critically ill patients.


Subject(s)
Acute Kidney Injury , Syndecan-1 , Adult , Humans , Critical Illness/therapy , Biomarkers , Acute Kidney Injury/therapy , Endothelium/chemistry , ROC Curve , Kidney/chemistry
19.
Proteomics ; 13(2): 368-78, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23197389

ABSTRACT

ATP-sensitive K(+) (K(ATP)) channels are expressed ubiquitously, but have diverse roles in various organs and cells. Their diversity can partly be explained by distinct tissue-specific compositions of four copies of the pore-forming inward rectifier potassium channel subunits (Kir6.1 and/or Kir6.2) and four regulatory sulfonylurea receptor subunits (SUR1 and/or SUR2). Channel function and/or subcellular localization also can be modified by the proteins with which they transiently or permanently interact to generate even more diversity. We performed a quantitative proteomic analysis of K(ATP) channel complexes in the heart, endothelium, insulin-secreting min6 cells (pancreatic ß-cell like), and the hypothalamus to identify proteins with which they interact in different tissues. Glycolysis is an overrepresented pathway in identified proteins of the heart, min6 cells, and the endothelium. Proteins with other energy metabolic functions were identified in the hypothalamic samples. These data suggest that the metabolo-electrical coupling conferred by K(ATP) channels is conferred partly by proteins with which they interact. A large number of identified cytoskeletal and trafficking proteins suggests endocytic recycling may help control K(ATP) channel surface density and/or subcellular localization. Overall, our data demonstrate that K(ATP) channels in different tissues may assemble with proteins having common functions, but that tissue-specific complex organization also occurs.


Subject(s)
KATP Channels/chemistry , KATP Channels/metabolism , Proteomics/methods , ATP-Binding Cassette Transporters , Animals , Endothelium/chemistry , Endothelium/metabolism , Insulin-Secreting Cells/chemistry , Insulin-Secreting Cells/metabolism , KATP Channels/analysis , Mice , Myocardium/chemistry , Myocardium/metabolism , Organ Specificity , Potassium Channels, Inwardly Rectifying , Receptors, Drug , Sulfonylurea Receptors
20.
Int J Pharm ; 622: 121823, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35605891

ABSTRACT

The compositionally distinct lipid rafts present in the plasma membrane regulate the restrictive trafficking and signal transduction in the blood-brain barrier (BBB) endothelium. Several metabolic and neurodegenerative diseases are associated with lipid homeostasis disruption within the BBB endothelium. Here, we hypothesized that the delivery of lipid triglyceride based nanoemulsions containing unsaturated fatty acids (UFAs) provides a novel non-pharmacological approach to modulate lipid raft integrity and rectify the aberrant trafficking and signal transduction. The current study has shown that soybean oil nanoemulsions (SNEs) altered the morphology of lipid rafts that are stained by Alex Fluor 647 labelled cholera toxin (AF647-CTX) in polarized human cerebral microvascular endothelial (hCMEC/D3) cell monolayers. Moreover, western blot and flow cytometry analysis showed that SNEs containing polyunsaturated fatty acids (PUFAs) increased phospo-AKT (p-AKT) expression, a marker for the stimulation of metabolic arm of insulin signaling, and insulin uptake in hCMEC/D3 monolayers. However, olive oil nanoemulsions (ONEs) containing monounsaturated fatty acids (MUFAs) had no detectable impact on lipid raft integrity, AKT phosphorylation, or insulin uptake. These findings provided direct evidence that SNEs containing PUFAs can upregulate insulin-pAKT pathway, facilitate insulin trafficking at the BBB, and potentially address cerebrovascular dysfunction in metabolic and neurodegenerative diseases.


Subject(s)
Blood-Brain Barrier , Insulin , Blood-Brain Barrier/metabolism , Endothelium/chemistry , Endothelium/metabolism , Fatty Acids, Unsaturated , Humans , Insulin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Soybean Oil
SELECTION OF CITATIONS
SEARCH DETAIL