Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.779
Filter
Add more filters

Publication year range
1.
Cell ; 173(4): 1045-1057.e9, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29727663

ABSTRACT

Ependymal cells are multi-ciliated cells that form the brain's ventricular epithelium and a niche for neural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ). In addition, ependymal cells are suggested to be latent NSCs with a capacity to acquire neurogenic function. This remains highly controversial due to a lack of prospective in vivo labeling techniques that can effectively distinguish ependymal cells from neighboring V-SVZ NSCs. We describe a transgenic system that allows for targeted labeling of ependymal cells within the V-SVZ. Single-cell RNA-seq revealed that ependymal cells are enriched for cilia-related genes and share several stem-cell-associated genes with neural stem or progenitors. Under in vivo and in vitro neural-stem- or progenitor-stimulating environments, ependymal cells failed to demonstrate any suggestion of latent neural-stem-cell function. These findings suggest remarkable stability of ependymal cell function and provide fundamental insights into the molecular signature of the V-SVZ niche.


Subject(s)
Ependyma/metabolism , Genomics , Actins/genetics , Actins/metabolism , Animals , Cell Differentiation/drug effects , Ependyma/cytology , Ependyma/drug effects , Female , Fibroblast Growth Factor 2/pharmacology , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Single-Cell Analysis , Stem Cell Niche , Transcriptome , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
2.
Cell ; 161(5): 1175-1186, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26000486

ABSTRACT

The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation.


Subject(s)
Ependyma/cytology , Neural Stem Cells/metabolism , AC133 Antigen , Animals , Antigens, CD/metabolism , Cell Differentiation , Cell Movement , Ependyma/metabolism , Fibroblast Growth Factors/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Glycoproteins/metabolism , Mice , Neural Stem Cells/cytology , Peptides/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Vascular Endothelial Growth Factor A/metabolism
3.
PLoS Biol ; 22(5): e3002596, 2024 May.
Article in English | MEDLINE | ID: mdl-38718086

ABSTRACT

Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.


Subject(s)
Autism Spectrum Disorder , Cilia , Ependyma , Mice, Knockout , Phenotype , Animals , Male , Mice , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Behavior, Animal , Cilia/metabolism , Disease Models, Animal , Ependyma/metabolism , Hippocampus/metabolism , Hydrocephalus/genetics , Hydrocephalus/metabolism , Hydrocephalus/pathology , Hydrocephalus/physiopathology , Katanin/metabolism , Katanin/genetics , Mice, Inbred C57BL , Neurons/metabolism , Synapses/metabolism , Transcriptome/genetics
4.
Proc Natl Acad Sci U S A ; 121(27): e2314702121, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38916997

ABSTRACT

Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.


Subject(s)
Cilia , Hydrocephalus , Microtubules , Animals , Female , Humans , Male , Mice , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/metabolism , Cilia/metabolism , Cilia/pathology , Ependyma/metabolism , Ependyma/pathology , Hydrocephalus/genetics , Hydrocephalus/pathology , Hydrocephalus/metabolism , Katanin/metabolism , Katanin/genetics , Microtubules/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/pathology
5.
PLoS Biol ; 21(3): e3002008, 2023 03.
Article in English | MEDLINE | ID: mdl-36862758

ABSTRACT

Idiopathic scoliosis (IS) is the most common spinal deformity diagnosed in childhood or early adolescence, while the underlying pathogenesis of this serious condition remains largely unknown. Here, we report zebrafish ccdc57 mutants exhibiting scoliosis during late development, similar to that observed in human adolescent idiopathic scoliosis (AIS). Zebrafish ccdc57 mutants developed hydrocephalus due to cerebrospinal fluid (CSF) flow defects caused by uncoordinated cilia beating in ependymal cells. Mechanistically, Ccdc57 localizes to ciliary basal bodies and controls the planar polarity of ependymal cells through regulating the organization of microtubule networks and proper positioning of basal bodies. Interestingly, ependymal cell polarity defects were first observed in ccdc57 mutants at approximately 17 days postfertilization, the same time when scoliosis became apparent and prior to multiciliated ependymal cell maturation. We further showed that mutant spinal cord exhibited altered expression pattern of the Urotensin neuropeptides, in consistent with the curvature of the spine. Strikingly, human IS patients also displayed abnormal Urotensin signaling in paraspinal muscles. Altogether, our data suggest that ependymal polarity defects are one of the earliest sign of scoliosis in zebrafish and disclose the essential and conserved roles of Urotensin signaling during scoliosis progression.


Subject(s)
Hydrocephalus , Scoliosis , Urotensins , Animals , Cilia/metabolism , Ependyma/metabolism , Ependyma/pathology , Hydrocephalus/genetics , Hydrocephalus/metabolism , Hydrocephalus/pathology , Scoliosis/genetics , Scoliosis/metabolism , Scoliosis/pathology , Urotensins/metabolism , Zebrafish
6.
Nature ; 571(7764): 198-204, 2019 07.
Article in English | MEDLINE | ID: mdl-31292557

ABSTRACT

Slow-wave sleep and rapid eye movement (or paradoxical) sleep have been found in mammals, birds and lizards, but it is unclear whether these neuronal signatures are found in non-amniotic vertebrates. Here we develop non-invasive fluorescence-based polysomnography for zebrafish, and show-using unbiased, brain-wide activity recording coupled with assessment of eye movement, muscle dynamics and heart rate-that there are at least two major sleep signatures in zebrafish. These signatures, which we term slow bursting sleep and propagating wave sleep, share commonalities with those of slow-wave sleep and paradoxical or rapid eye movement sleep, respectively. Further, we find that melanin-concentrating hormone signalling (which is involved in mammalian sleep) also regulates propagating wave sleep signatures and the overall amount of sleep in zebrafish, probably via activation of ependymal cells. These observations suggest that common neural signatures of sleep may have emerged in the vertebrate brain over 450 million years ago.


Subject(s)
Neurons/physiology , Sleep/physiology , Zebrafish/physiology , Animals , Biological Evolution , Brain/cytology , Brain/drug effects , Brain/physiology , Brain/physiopathology , Ependyma/cytology , Eye Movements , Fluorescence , Heart Rate , Hypnotics and Sedatives/pharmacology , Hypothalamic Hormones/metabolism , Melanins/metabolism , Neurons/drug effects , Pigmentation/physiology , Pituitary Hormones/metabolism , Polysomnography/methods , Sleep/drug effects , Sleep Deprivation/physiopathology , Sleep, REM/drug effects , Sleep, REM/physiology , Sleep, Slow-Wave/drug effects , Sleep, Slow-Wave/physiology
7.
Stroke ; 55(4): 1062-1074, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436063

ABSTRACT

BACKGROUND: In preterm birth germinal matrix hemorrhages (GMHs) and the consequent posthemorrhagic hydrocephalus (PHH), the neuroepithelium/ependyma development is disrupted. This work is aimed to explore the possibilities of ependymal repair in GMH/PHH using a combination of neural stem cells, ependymal progenitors (EpPs), and mesenchymal stem cells. METHODS: GMH/PHH was induced in 4-day-old mice using collagenase, blood, or blood serum injections. PHH severity was characterized 2 weeks later using magnetic resonance, immunofluorescence, and protein expression quantification with mass spectrometry. Ependymal restoration and wall regeneration after stem cell treatments were tested in vivo and in an ex vivo experimental approach using ventricular walls from mice developing moderate and severe GMH/PHH. The effect of the GMH environment on EpP differentiation was tested in vitro. Two-tailed Student t or Wilcoxon-Mann-Whitney U test was used to find differences between the treated and nontreated groups. ANOVA and Kruskal-Wallis tests were used to compare >2 groups with post hoc Tukey and Dunn multiple comparison tests, respectively. RESULTS: PHH severity was correlated with the extension of GMH and ependymal disruption (means, 88.22% severe versus 19.4% moderate). GMH/PHH hindered the survival rates of the transplanted neural stem cells/EpPs. New multiciliated ependymal cells could be generated from transplanted neural stem cells and more efficiently from EpPs (15% mean increase). Blood and TNFα (tumor necrosis factor alpha) negatively affected ciliogenesis in cells committed to ependyma differentiation (expressing Foxj1 [forkhead box J1] transcription factor). Pretreatment with mesenchymal stem cells improved the survival rates of EpPs and ependymal differentiation while reducing the edematous (means, 18% to 0.5% decrease in severe edema) and inflammatory conditions in the explants. The effectiveness of this therapeutical strategy was corroborated in vivo (means, 29% to 0% in severe edema). CONCLUSIONS: In GMH/PHH, the ependyma can be restored and edema decreased from either neural stem cell or EpP transplantation in vitro and in vivo. Mesenchymal stem cell pretreatment improved the success of the ependymal restoration.


Subject(s)
Fetal Diseases , Hydrocephalus , Neural Stem Cells , Premature Birth , Humans , Female , Animals , Mice , Ependyma/pathology , Hydrocephalus/surgery , Hydrocephalus/metabolism , Cerebral Hemorrhage/therapy , Cerebral Hemorrhage/metabolism , Edema
8.
EMBO J ; 39(5): e101679, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32009252

ABSTRACT

Adult neural stem cells (NSCs) reside in specialized niches, which hold a balanced number of NSCs, their progeny, and other cells. How niche capacity is regulated to contain a specific number of NSCs remains unclear. Here, we show that ependyma-derived matricellular protein CCN1 (cellular communication network factor 1) negatively regulates niche capacity and NSC number in the adult ventricular-subventricular zone (V-SVZ). Adult ependyma-specific deletion of Ccn1 transiently enhanced NSC proliferation and reduced neuronal differentiation in mice, increasing the numbers of NSCs and NSC units. Although proliferation of NSCs and neurogenesis seen in Ccn1 knockout mice eventually returned to normal, the expanded NSC pool was maintained in the V-SVZ until old age. Inhibition of EGFR signaling prevented expansion of the NSC population observed in CCN1 deficient mice. Thus, ependyma-derived CCN1 restricts NSC expansion in the adult brain to maintain the proper niche capacity of the V-SVZ.


Subject(s)
Cysteine-Rich Protein 61/metabolism , Neurogenesis/physiology , Signal Transduction , Adult Stem Cells/physiology , Animals , Brain , Cysteine-Rich Protein 61/genetics , Ependyma/cytology , Ependyma/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/cytology , Neural Stem Cells/metabolism
9.
Development ; 148(3)2021 02 05.
Article in English | MEDLINE | ID: mdl-33462112

ABSTRACT

Microtubules (MTs) regulate numerous cellular processes, but their roles in brain morphogenesis are not well known. Here, we show that CAMSAP3, a non-centrosomal microtubule regulator, is important for shaping the lateral ventricles. In differentiating ependymal cells, CAMSAP3 became concentrated at the apical domains, serving to generate MT networks at these sites. Camsap3-mutated mice showed abnormally narrow lateral ventricles, in which excessive stenosis or fusion was induced, leading to a decrease of neural stem cells at the ventricular and subventricular zones. This defect was ascribed at least in part to a failure of neocortical ependymal cells to broaden their apical domain, a process necessary for expanding the ventricular cavities. mTORC1 was required for ependymal cell growth but its activity was downregulated in mutant cells. Lysosomes, which mediate mTORC1 activation, tended to be reduced at the apical regions of the mutant cells, along with disorganized apical MT networks at the corresponding sites. These findings suggest that CAMSAP3 supports mTORC1 signaling required for ependymal cell growth via MT network regulation, and, in turn, shaping of the lateral ventricles.


Subject(s)
Brain/metabolism , Cell Cycle , Ependyma/growth & development , Lateral Ventricles/growth & development , Mechanistic Target of Rapamycin Complex 1/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Animals , Brain/growth & development , Ependyma/metabolism , Epithelial Cells/cytology , Female , Lysosomes , Male , Mice , Mice, Inbred C57BL , Microtubules/metabolism , Neuroglia/metabolism
10.
J Anat ; 244(3): 391-401, 2024 03.
Article in English | MEDLINE | ID: mdl-37965891

ABSTRACT

In humans and most mammals, there is a notch-like portal, the foramen of Luschka (or lateral foramen), which connects the lumen of the fourth ventricle with the subdural space. Gross dissection, light and scanning electron microscopy, and µCT analysis revealed the presence of a foramen of Luschka in the American alligator (Alligator mississippiensis). In this species, the foramen of Luschka is a notch in the dorsolateral wall of the pons immediately caudal to the peduncular base of the cerebellum, near the rostral end of the telovelar membrane over the fourth ventricle. At the foramen of Luschka there was a transition from a superficial pia mater lining to a deep ependymal lining. There was continuity between the lumen of the fourth ventricle and the subdural space, via the foramen of Luschka. This anatomical continuity was further demonstrated by injecting Evans blue into the lateral ventricle which led to extravasation through the foramen of Luschka and pooling of the dye on the lateral surface of the brain. Simultaneous subdural and intraventricular recordings of cerebrospinal fluid (CSF) pressures revealed a stable agreement between the two pressures at rest. Perturbation of the system allowed for static and dynamic differences to develop, which could indicate varying flow patterns of CSF through the foramen of Luschka.


Subject(s)
Alligators and Crocodiles , Animals , Humans , Subdural Space , Cerebellum , Fourth Ventricle , Ependyma , Mammals
11.
Biol Pharm Bull ; 47(6): 1113-1118, 2024.
Article in English | MEDLINE | ID: mdl-38839362

ABSTRACT

Motile cilia in the ependymal cells that line the brain ventricles play pivotal roles in cerebrospinal fluid (CSF) flow in well-defined directions. However, the substances and pathways which regulate their beating have not been well studied. Here, we used primary cultured cells derived from neonatal mouse brain that possess motile cilia and found that adenosine (ADO) stimulates ciliary beating by increasing the ciliary beat frequency (CBF) in a concentration-dependent manner, with the ED50 value being 5 µM. Ciliary beating stimulated by ADO was inhibited by A2B receptor (A2BR) antagonist MRS1754 without any inhibition by antagonists of other ADO receptor subtypes. The expression of A2BR on the cilia was also confirmed by immunofluorescence. The values of CBF were also increased by forskolin, which is an activator of adenylate cyclase, whereas they were not further increased by the addition of ADO. Furthermore, ciliary beating was not stimulated by ADO in the presence of a protein kinase A (PKA) inhibitors. These results altogether suggest that ADO stimulates ciliary beating through A2BR on the cilia, and activation of PKA.


Subject(s)
Adenosine , Animals, Newborn , Brain , Cilia , Cyclic AMP-Dependent Protein Kinases , Receptor, Adenosine A2B , Animals , Cilia/drug effects , Cilia/metabolism , Cilia/physiology , Receptor, Adenosine A2B/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Adenosine/pharmacology , Brain/metabolism , Brain/drug effects , Mice , Cells, Cultured , Signal Transduction/drug effects , Adenosine A2 Receptor Antagonists/pharmacology , Colforsin/pharmacology , Ependyma/metabolism , Ependyma/cytology
12.
Cell Mol Life Sci ; 80(7): 181, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37329342

ABSTRACT

Ependymal cells lining the central canal of the spinal cord play a crucial role in providing a physical barrier and in the circulation of cerebrospinal fluid. These cells express the FOXJ1 and SOX2 transcription factors in mice and are derived from various neural tube populations, including embryonic roof and floor plate cells. They exhibit a dorsal-ventral expression pattern of spinal cord developmental transcription factors (such as MSX1, PAX6, ARX, and FOXA2), resembling an embryonic-like organization. Although this ependymal region is present in young humans, it appears to be lost with age. To re-examine this issue, we collected 17 fresh spinal cords from organ donors aged 37-83 years and performed immunohistochemistry on lightly fixed tissues. We observed cells expressing FOXJ1 in the central region in all cases, which co-expressed SOX2 and PAX6 as well as RFX2 and ARL13B, two proteins involved in ciliogenesis and cilia-mediated sonic hedgehog signaling, respectively. Half of the cases exhibited a lumen and some presented portions of the spinal cord with closed and open central canals. Co-staining of FOXJ1 with other neurodevelopmental transcription factors (ARX, FOXA2, MSX1) and NESTIN revealed heterogeneity of the ependymal cells. Interestingly, three donors aged > 75 years exhibited a fetal-like regionalization of neurodevelopmental transcription factors, with dorsal and ventral ependymal cells expressing MSX1, ARX, and FOXA2. These results provide new evidence for the persistence of ependymal cells expressing neurodevelopmental genes throughout human life and highlight the importance of further investigation of these cells.


Subject(s)
Hedgehog Proteins , Spinal Cord , Humans , Mice , Animals , Hedgehog Proteins/genetics , Spinal Cord/metabolism , Neuroglia/metabolism , Transcription Factors/metabolism , Ependyma/metabolism , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism
13.
J Neurosci ; 42(2): 202-219, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34815315

ABSTRACT

Multiciliated ependymal cells line the ventricle wall and generate CSF flow through ciliary beating. Defects in ependymal cells cause hydrocephalus; however, there are still significant gaps in our understanding the molecular, cellular and developmental mechanisms involved in the pathogenesis of hydrocephalus. Here, we demonstrate that specific deletion of RNA-binding protein (RBP) Hu antigen R (HuR) in the mouse brain results in hydrocephalus and causes postnatal death. HuR deficiency leads to impaired ependymal cell development with defective motile ciliogenesis in both female and male mice. Transcriptome-wide analysis reveals that HuR binds to mRNA transcripts related to ciliogenesis, including cilia and flagella associated protein 52 (Cfap52), the effector gene of Foxj-1 and Rfx transcriptional factors. HuR deficiency accelerates the degradation of Cfap52 mRNA, while overexpression of Cfap52 is able to promote the development of HuR-deficient ependymal cells. Taken together, our results unravel the important role of HuR in posttranscriptional regulation of ependymal cell development by stabilizing Cfap52 mRNA.SIGNIFICANCE STATEMENT This study identifies Hu antigen R (HuR) as a genetic factor involved in the pathogenesis of hydrocephalus. Mechanistically, HuR regulates ependymal cell differentiation and ciliogenesis through stabilizing Cfap52 mRNA, the effector gene of Foxj-1 and Rfx transcriptional factors.


Subject(s)
Brain/metabolism , ELAV-Like Protein 1/metabolism , Ependyma/metabolism , Hydrocephalus/metabolism , Animals , Cilia/metabolism , ELAV-Like Protein 1/genetics , Ependyma/cytology , Female , Gene Expression Regulation , Hydrocephalus/genetics , Male , Mice , Mice, Knockout
14.
Semin Cell Dev Biol ; 112: 61-68, 2021 04.
Article in English | MEDLINE | ID: mdl-32771376

ABSTRACT

Within the adult mammalian central nervous system, the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles houses neural stem cells (NSCs) that continue to produce neurons throughout life. Developmentally, the V-SVZ neurogenic niche arises during corticogenesis following the terminal differentiation of telencephalic radial glial cells (RGCs) into either adult neural stem cells (aNSCs) or ependymal cells. In mice, these two cellular populations form rosettes during the late embryonic and early postnatal period, with ependymal cells surrounding aNSCs. These aNSCs and ependymal cells serve a number of key purposes, including the generation of neurons throughout life (aNSCs), and acting as a barrier between the CSF and the parenchyma and promoting CSF bulk flow (ependymal cells). Interestingly, the development of this neurogenic niche, as well as its ongoing function, has been shown to be reliant on different aspects of lipid biology. In this review we discuss the developmental origins of the rodent V-SVZ neurogenic niche, and highlight research which has implicated a role for lipids in the physiology of this part of the brain. We also discuss the role of lipids in the maintenance of the V-SVZ niche, and discuss new research which has suggested that alterations to lipid biology could contribute to ependymal cell dysfunction in aging and disease.


Subject(s)
Aging/genetics , Ependyma/metabolism , Lipids/genetics , Neural Stem Cells/metabolism , Aging/pathology , Animals , Cell Proliferation/genetics , Central Nervous System/growth & development , Central Nervous System/metabolism , Central Nervous System/pathology , Ependyma/growth & development , Ependyma/pathology , Humans , Lateral Ventricles/growth & development , Lateral Ventricles/metabolism , Lateral Ventricles/pathology , Mice , Neural Stem Cells/physiology , Neurogenesis/genetics , Neurons/metabolism , Neurons/pathology , Telencephalon/metabolism , Telencephalon/pathology
15.
Cell Tissue Res ; 392(2): 535-551, 2023 May.
Article in English | MEDLINE | ID: mdl-36764939

ABSTRACT

Motile cilia are protruding organelles on specialized epithelia that beat in a synchronous fashion to propel extracellular fluids. Coordination and orientation of cilia beating on individual cells and across tissues is a complex process dependent on planar cell polarity (PCP) signaling. Asymmetric sorting of PCP pathway components, essential to establish planar polarity, involves trafficking along the endocytic path, but the underlying regulatory processes remain incompletely understood. Here, we identified the endocytic receptor LRP2 as regulator of PCP component trafficking in ependyma, a multi-ciliated cell type that is involved in facilitating flow of the cerebrospinal fluid in the brain ventricular system. Lack of receptor expression in gene-targeted mice results in a failure to sort PCP core proteins to the anterior or posterior cell side and, consequently, in the inability to coordinate cilia arrangement and to aligned beating (loss of rotational and translational polarity). LRP2 deficiency coincides with a failure to sort NHERF1, a cytoplasmic LRP2 adaptor to the anterior cell side. As NHERF1 is essential to translocate PCP core protein Vangl2 to the plasma membrane, these data suggest a molecular mechanism whereby LRP2 interacts with PCP components through NHERF1 to control their asymmetric sorting along the endocytic path. Taken together, our findings identified the endocytic receptor LRP2 as a novel regulator of endosomal trafficking of PCP proteins, ensuring their asymmetric partition and establishment of translational and rotational planar cell polarity in the ependyma.


Subject(s)
Cell Polarity , Cilia , Animals , Mice , Cilia/metabolism , Ependyma/metabolism , Cerebral Ventricles/metabolism , Carrier Proteins/metabolism , Wnt Signaling Pathway , Low Density Lipoprotein Receptor-Related Protein-2/metabolism
16.
Ann Neurol ; 92(4): 670-685, 2022 10.
Article in English | MEDLINE | ID: mdl-35748636

ABSTRACT

Leptomeningeal and perivenular infiltrates are important contributors to cortical grey matter damage and disease progression in multiple sclerosis (MS). Whereas perivenular inflammation induces vasculocentric lesions, leptomeningeal involvement follows a subpial "surface-in" gradient. To determine whether similar gradient of damage occurs in deep grey matter nuclei, we examined the dorsomedial thalamic nuclei and cerebrospinal fluid (CSF) samples from 41 postmortem secondary progressive MS cases compared with 5 non-neurological controls and 12 controls with other neurological diseases. CSF/ependyma-oriented gradient of reduction in NeuN+ neuron density was present in MS thalamic lesions compared to controls, greatest (26%) in subventricular locations at the ependyma/CSF boundary and least with increasing distance (12% at 10 mm). Concomitant graded reduction in SMI31+ axon density was observed, greatest (38%) at 2 mm from the ependyma/CSF boundary and least at 10 mm (13%). Conversely, gradient of major histocompatibility complex (MHC)-II+ microglia density increased by over 50% at 2 mm at the ependyma/CSF boundary and only by 15% at 10 mm and this gradient inversely correlated with the neuronal (R = -0.91, p < 0.0001) and axonal (R = -0.79, p < 0.0001) thalamic changes. Observed gradients were also detected in normal-appearing thalamus and were associated with rapid/severe disease progression; presence of leptomeningeal tertiary lymphoid-like structures; large subependymal infiltrates, enriched in CD20+ B cells and occasionally containing CXCL13+ CD35+ follicular dendritic cells; and high CSF protein expression of a complex pattern of soluble inflammatory/neurodegeneration factors, including chitinase-3-like-1, TNFR1, parvalbumin, neurofilament-light-chains and TNF. Substantial "ependymal-in" gradient of pathological cell alterations, accompanied by presence of intrathecal inflammation, compartmentalized either in subependymal lymphoid perivascular infiltrates or in CSF, may play a key role in MS progression. SUMMARY FOR SOCIAL MEDIA: Imaging and neuropathological evidences demonstrated the unique feature of "surface-in" gradient of damage in multiple sclerosis (MS) since early pediatric stages, often associated with more severe brain atrophy and disease progression. In particular, increased inflammation in the cerebral meninges has been shown to be strictly associated with an MS-specific gradient of neuronal, astrocyte, and oligodendrocyte loss accompanied by microglial activation in subpial cortical layers, which is not directly related to demyelination. To determine whether a similar gradient of damage occurs in deep grey matter nuclei, we examined the potential neuronal and microglia alterations in the dorsomedial thalamic nuclei from postmortem secondary progressive MS cases in combination with detailed neuropathological characterization of the inflammatory features and protein profiling of paired CSF samples. We observed a substantial "subependymal-in" gradient of neuro-axonal loss and microglia activation in active thalamic lesions of progressive MS cases, in particular in the presence of increased leptomeningeal and cerebrospinal fluid (CSF) inflammation. This altered graded pathology was found associated with more severe and rapid progressive MS and increased inflammatory degree either in large perivascular subependymal infiltrates, enriched in B cells, or within the paired CSF, in particular with elevated levels of a complex pattern of soluble inflammatory and neurodegeneration factors, including chitinase 3-like-1, TNFR1, parvalbumin, neurofilament light-chains and TNF. These data support a key role for chronic, intrathecally compartmentalized inflammation in specific disease endophenotypes. CSF biomarkers, together with advance imaging tools, may therefore help to improve not only the disease diagnosis but also the early identification of specific MS subgroups that would benefit of more personalized treatments. ANN NEUROL 2022;92:670-685.


Subject(s)
Chitinases , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Cerebral Cortex/metabolism , Disease Progression , Ependyma , Humans , Inflammation/complications , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/complications , Parvalbumins/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Thalamus/pathology
17.
Cell Mol Neurobiol ; 43(8): 4103-4116, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37620636

ABSTRACT

Heterozygous mutations affecting FOXJ1, a transcription factor governing multiciliated cell development, have been associated with obstructive hydrocephalus in humans. However, factors that disrupt multiciliated ependymal cell function often cause communicating hydrocephalus, raising questions about whether FOXJ1 mutations cause hydrocephalus primarily by blocking cerebrospinal fluid (CSF) flow or by different mechanisms. Here, we show that heterozygous FOXJ1 mutations are also associated with communicating hydrocephalus in humans and cause communicating hydrocephalus in mice. Disruption of one Foxj1 allele in mice leads to incomplete ependymal cell differentiation and communicating hydrocephalus. Mature ependymal cell number and motile cilia number are decreased, and 12% of motile cilia display abnormal axonemes. We observed decreased microtubule attachment to basal bodies, random localization and orientation of basal body patches, loss of planar cell polarity, and a disruption of unidirectional CSF flow. Thus, heterozygous FOXJ1 mutations impair ventricular multiciliated cell differentiation, thereby causing communicating hydrocephalus. CSF flow obstruction may develop secondarily in some patients harboring FOXJ1 mutations. Heterozygous FOXJ1 mutations impair motile cilia structure and basal body alignment, thereby disrupting CSF flow dynamics and causing communicating hydrocephalus.


Subject(s)
Hydrocephalus , Mice , Humans , Animals , Hydrocephalus/genetics , Ependyma/metabolism , Gene Expression Regulation , Mutation/genetics , Cell Differentiation , Cilia/genetics , Cilia/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
18.
Cell Mol Life Sci ; 79(2): 90, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35072772

ABSTRACT

The choroid plexus (CP) consists of specialized ependymal cells and underlying blood vessels and stroma producing the bulk of the cerebrospinal fluid (CSF). CP epithelial cells are considered the site of the internal blood-cerebrospinal fluid barrier, show epithelial characteristics (basal lamina, tight junctions), and express aquaporin-1 (AQP1) apically. In this study, we analyzed the expression of aquaporins in the human CP using immunofluorescence and qPCR. As previously reported, AQP1 was expressed apically in CP epithelial cells. Surprisingly, and previously unknown, many cells in the CP epithelium were also positive for aquaporin-4 (AQP4), normally restricted to ventricle-lining ependymal cells and astrocytes in the brain. Expression of AQP1 and AQP4 was found in the CP of all eight body donors investigated (3 males, 5 females; age 74-91). These results were confirmed by qPCR, and by electron microscopy detecting orthogonal arrays of particles. To find out whether AQP4 expression correlated with the expression pattern of relevant transport-related proteins we also investigated expression of NKCC1, and Na/K-ATPase. Immunostaining with NKCC1 was similar to AQP1 and revealed no particular pattern related to AQP4. Co-staining of AQP4 and Na/K-ATPase indicated a trend for an inverse correlation of their expression. We hypothesized that AQP4 expression in the CP was caused by age-related changes. To address this, we investigated mouse brains from young (2 months), adult (12 months) and old (30 months) mice. We found a significant increase of AQP4 on the mRNA level in old mice compared to young and adult animals. Taken together, we provide evidence for AQP4 expression in the CP of the aging brain which likely contributes to the water flow through the CP epithelium and CSF production. In two alternative hypotheses, we discuss this as a beneficial compensatory, or a detrimental mechanism influencing the previously observed CSF changes during aging.


Subject(s)
Aquaporin 4/metabolism , Astrocytes/metabolism , Brain/metabolism , Choroid Plexus/metabolism , Ependyma/metabolism , Epithelial Cells/metabolism , Aged , Animals , Aquaporin 4/genetics , Cadaver , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged
19.
Neurol Sci ; 44(6): 2223-2225, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36823245

ABSTRACT

Ring-shaped lateral ventricular nodules (RSLVN) are small and round nodules attached on the ependyma of lateral ventricles with unknown nature. They are considered "leave me alone lesions" and differential diagnosis includes subependymal grey matter heterotopia, subependymomas, subependymal hamartomas, and subependymal giant cell astrocytomas. In this short article, we report imaging findings of RSLNVs discovered in five patients, underlining the pivotal role of neuroimaging in the diagnostic path.


Subject(s)
Astrocytoma , Lateral Ventricles , Humans , Lateral Ventricles/diagnostic imaging , Magnetic Resonance Imaging , Ependyma , Tomography, X-Ray Computed
20.
PLoS Genet ; 16(12): e1009232, 2020 12.
Article in English | MEDLINE | ID: mdl-33347437

ABSTRACT

Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types.


Subject(s)
Axonemal Dyneins/metabolism , Axoneme/metabolism , Biological Transport, Active/genetics , Cell Movement/genetics , Cilia/metabolism , Embryo, Mammalian/metabolism , Microtubules/metabolism , Animals , Axonemal Dyneins/genetics , Axoneme/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cilia/genetics , Embryo, Mammalian/physiology , Embryo, Mammalian/ultrastructure , Ependyma/embryology , Ependyma/metabolism , Ependyma/physiology , Fluorescent Antibody Technique , Genotype , Immunoprecipitation , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Microtubules/genetics , Mutation , Phenotype , Trachea/embryology , Trachea/metabolism , Trachea/physiology , Trachea/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL