Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.345
Filter
Add more filters

Publication year range
1.
Anal Chem ; 96(23): 9416-9423, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38809415

ABSTRACT

A noninvasive sampling technology was conceived, employing a disposable acupuncture needle in conjunction with high-resolution mass spectrometry (termed as noninvasive direct sampling extractive electrospray ionization mass spectrometry, NIDS-EESI-MS) to scrutinize the epidermal mucus of Nile tilapia for insights into the metabolic dysregulation induced by polypropylene nano- and microplastics. This analytical method initiates with the dispensing of an extraction solvent onto the needles coated with the mucus sample, almost simultaneously applying a high voltage to generate analyte ions. This innovative strategy obliterates the necessitation for laborious sample preparation, thereby simplifying the sampling process. Employing this technique facilitated the delineation of a plethora of metabolites, encompassing, but not confined to, amino acids, peptides, carbohydrates, ketones, fatty acids, and their derivatives. Follow-up pathway enrichment analysis exposed notable alterations within key metabolic pathways, including the biosynthesis of phenylalanine, tyrosine, and tryptophan, lysine degradation, as well as the biosynthesis and metabolism of valine, leucine, and isoleucine pathways in Nile tilapia, consequent to increased concentrations of polypropylene nanoplastics. These metabolic alterations portend potential implications such as immune suppression, among other deleterious outcomes. This trailblazing application of this methodology not only spares aquatic life from sacrifice but also inaugurates an ethical paradigm for conducting longitudinal studies on the same organisms, facilitating detailed investigations into the long-term effects of environmental pollutants. This technique enhances the ability to observe and understand the subtle yet significant impacts of such contaminants over time.


Subject(s)
Cichlids , Microplastics , Mucus , Polypropylenes , Animals , Microplastics/analysis , Polypropylenes/chemistry , Cichlids/metabolism , Mucus/metabolism , Mucus/chemistry , Epidermis/metabolism , Epidermis/chemistry , Spectrometry, Mass, Electrospray Ionization
2.
Nature ; 564(7736): 359-365, 2018 12.
Article in English | MEDLINE | ID: mdl-30518862

ABSTRACT

Ichthyosaurs are extinct marine reptiles that display a notable external similarity to modern toothed whales. Here we show that this resemblance is more than skin deep. We apply a multidisciplinary experimental approach to characterize the cellular and molecular composition of integumental tissues in an exceptionally preserved specimen of the Early Jurassic ichthyosaur Stenopterygius. Our analyses recovered still-flexible remnants of the original scaleless skin, which comprises morphologically distinct epidermal and dermal layers. These are underlain by insulating blubber that would have augmented streamlining, buoyancy and homeothermy. Additionally, we identify endogenous proteinaceous and lipid constituents, together with keratinocytes and branched melanophores that contain eumelanin pigment. Distributional variation of melanophores across the body suggests countershading, possibly enhanced by physiological adjustments of colour to enable photoprotection, concealment and/or thermoregulation. Convergence of ichthyosaurs with extant marine amniotes thus extends to the ultrastructural and molecular levels, reflecting the omnipresent constraints of their shared adaptation to pelagic life.


Subject(s)
Biological Evolution , Body Temperature Regulation , Dinosaurs/anatomy & histology , Dinosaurs/physiology , Fossils , Homeostasis , Adaptation, Physiological , Adipose Tissue/anatomy & histology , Adipose Tissue/chemistry , Animals , Dermis/anatomy & histology , Dermis/chemistry , Dolphins , Epidermis/anatomy & histology , Epidermis/chemistry , Female , Keratinocytes/chemistry , Lipids/analysis , Male , Melanins/analysis , Melanophores/chemistry , Porpoises , Proteins/analysis
3.
Dermatology ; 240(2): 233-242, 2024.
Article in English | MEDLINE | ID: mdl-37939682

ABSTRACT

BACKGROUND: Detergent is a chemical product commonly used in people's daily life. Contact with detergent solutions can damage the human skin barrier and cause skin diseases. Skin surface lipids (SSLs) play a decisive role in skin barrier function. This study aimed to observe the changes of SSLs in young adults after exposure to detergent solutions to explore the underlying mechanism of skin barrier function damage. METHODS: A self-controlled study on youth adults was conducted in Zhengzhou, China, in November 2020. The study lasted for a total of 1 week, and skin barrier function was assessed by trans-epidermal water loss (TEWL) values. The changes of SSLs before and after exposure to the detergent with subjects were measured using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry. RESULTS: The skin barrier function of subjects' hands was impaired after exposure to detergent (TEWL value increased, p < 0.001). A total of 520 SSLs were detected, divided into 6 main categories. The average relative abundance of these 6 major lipids decreased after exposure. Sphingolipids (mainly ceramides), free fatty acids (mainly long-chain fatty acids), cholesterol lipids, and glycerophospholipids are the most severely damaged lipids. CONCLUSION: Detergent solutions can damage the skin barrier function and SSLs of young hands; interventions targeting SSLs to eliminate detergent damage to human skin may be of value.


Subject(s)
Detergents , Lipidomics , Humans , Young Adult , Adolescent , Detergents/adverse effects , Detergents/analysis , Skin , Epidermis/chemistry , Water , Lipids/analysis , Lipids/chemistry , Lipids/pharmacology
4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928177

ABSTRACT

This work is the first one that provides not only evidence for the existence of free volumes in the human stratum corneum but also focuses on comparing these experimental data, obtained through the unique positron annihilation lifetime spectroscopy (PALS) method, with theoretical values published in earlier works. The mean free volume of 0.269 nm was slightly lower than the theoretical value of 0.4 nm. The lifetime τ3 (1.83 ns with a coefficient of variation CV of 3.21%) is dependent on the size of open sites in the skin. This information was used to calculate the free volume radius R (0.269 nm with CV 2.14%), free volume size Vf (0.081 nm3 with CV 4.69%), and the intensity I3 (9.01% with CV 10.94%) to estimate the relative fractional free volume fv (1.32 a.u. with CV 13.68%) in human skin ex vivo. The relation between the lifetime of o-Ps (τ3) and the radius of free volume (R) was formulated using the Tao-Eldrup model, which assumes spherical voids and applies to sites with radii smaller than 1 nm. The results indicate that PALS is a powerful tool for confirming the existence of free volumes and determining their size. The studies also focused on describing the probable locations of these nanospaces in SC lipid bilayers. According to the theory, these play an essential role in dynamic processes in biological systems, including the diffusion of low-molecular-weight hydrophobic and moderately hydrophilic molecules. The mechanism of their formation has been determined by the molecular dynamics of the lipid chains.


Subject(s)
Epidermis , Lipid Bilayers , Spectrum Analysis , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Spectrum Analysis/methods , Epidermis/metabolism , Epidermis/chemistry , Skin/metabolism , Skin/chemistry
5.
Langmuir ; 39(6): 2347-2357, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36716111

ABSTRACT

The barrier function of the skin is mainly assured by its outermost layer, stratum corneum (SC). One key aspect in predicting dermal drug delivery and in safety assessment of skin exposure to chemicals is the need to determine the amount of chemical that is taken up into the SC. We here present a strategy that allows for direct measures of the amount of various solid chemicals that can be dissolved in the SC in any environmental relative humidity (RH). A main advantage of the presented method is that it distinguishes between molecules that are dissolved within the SC and molecules that are not dissolved but might be present at, for example, the skin surface. In addition, the method allows for studies of uptake of hydrophobic chemicals without the need to use organic solvents. The strategy relies on the differences in the molecular properties of the added molecules in the dissolved and the excess states, employing detection methods that act as a dynamic filter to spot only one of the fractions, either the dissolved molecules or the excess solid molecules. By measuring the solubility in SC and delipidized SC at the same RHs, the same method can be used to estimate the distribution of the added chemical between the extracellular lipids and corneocytes at different hydration conditions. The solubility in porcine SC is shown to vary with hydration, which has implications for the molecular uptake and transport across the skin. The findings highlight the importance of assessing the chemical uptake at hydration conditions relevant to the specific applications. The methodology presented in this study can also be generalized to study the solubility and partitioning of chemicals in other heterogeneous materials with complex composition and structure.


Subject(s)
Epidermis , Skin , Animals , Swine , Solubility , Epidermis/chemistry , Skin/metabolism , Skin Absorption , Solvents
6.
Pediatr Allergy Immunol ; 34(11): e14045, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38010004

ABSTRACT

BACKGROUND: Trajectories of stratum corneum (SC) lipid subclasses and their associations with infant atopic dermatitis (AD) are unclear. This study aimed to quantify the trajectories of 15 SC subclasses and carbon chain lengths and their associations with AD within 12 months. METHODS: In total, 213 newborns were enrolled at birth with nonlesional skin samples collected from the inner forearm at birth, 42 days, 3, 6, and 12 months, respectively. Lesional skin samples were collected from 120 AD patients at clinic with the disease onset within the first year of life. Mass spectrometry was applied to assess relative contents of 12 ceramide (CER), three free fatty acid (FFA) subclasses, and average carbon chain length (CCL). AD incident within 1 year old was diagnosed by dermatologists according to UK criteria. RESULTS: Sixty-four (30.0%) cases of ADs occurred in the cohort. All SC lipid subclasses and CCLs, but EOP varied significantly during the first year. AD infants showed lower NP but higher NS, NH, AP, hydroxy FFA, and CCL of FFAs compared with nonaffected infants. After normalization by age, the differences remained and were more pronounced in lesional skin of clinical AD infants compared with non-ADs. NS, NH, and CCL of FFAs in lesional skin of AD infants showed positive and significant correlations with the levels of transepidermal water loss at 3 month; some evidence supports a negative correlation for NP. CONCLUSIONS: We provide an overview of developmental trajectories of 15 CER and FFA subclasses across the first year of healthy infants and a link between the imbalance of some subclasses with the development of AD.


Subject(s)
Dermatitis, Atopic , Infant , Humans , Infant, Newborn , Prospective Studies , Epidermis/chemistry , Skin , Fatty Acids, Nonesterified/analysis , Ceramides/analysis , Ceramides/chemistry , Carbon/analysis
7.
Skin Res Technol ; 29(11): e13507, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38009042

ABSTRACT

BACKGROUND: The Stratum Corneum (SC) is the first barrier of the skin. The properties of individual cells are crucial in understanding how the SC at different anatomical regions maintains a healthy mechanical barrier. The aim of the current study is to present a comprehensive description of the maturation and mechanical properties of superficial corneocytes at different anatomical sites in the nominal dry state. MATERIALS AND METHODS: Corneocytes were collected from five anatomical sites: forearm, cheek, neck, sacrum and medial heel of 10 healthy young participants. The surface topography was analysed using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). The level of positive-involucrin cornified envelopes (CEs) and desmoglein-1 (Dsg1) were used as indirect measures of immature CEs and corneodesmosomes, respectively. In addition, AFM nanoindentation and stress-relaxation experiments were performed to characterise the mechanical properties. RESULTS: Volar forearm, neck and sacrum corneocytes presented similar topographies (ridges and valleys) and levels of Dsg1 (13-37%). In contrast, cheek cells exhibited circular nano-objects, while medial heel cells were characterized by villi-like structures. Additionally, medial heel samples also showed the greatest level of immature CEs (32-56%, p < 0.001) and Dsg1 (59-78%, p < 0.001). A large degree of inter-subject variability was found for the Young's moduli of the cells (0.19-2.03 GPa), which was correlated with the level of immature CEs at the cheek, neck and sacrum (p < 0.05). CONCLUSION: It is concluded that a comprehensive study of the mechanical and maturation properties of corneocytes may be used to understand the barrier functions of the SC at different anatomical sites.


Subject(s)
Epidermis , Skin , Humans , Epidermis/chemistry , Keratinocytes , Epidermal Cells , Forearm
8.
Skin Res Technol ; 29(3): e13218, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36973986

ABSTRACT

BACKGROUND: Skin measurements of transepidermal water loss (TEWL) and stratum corneum hydration (SCH) reflect different aspects of skin physiology. Since epidermal water loss depends on epidermal-to-air water vapor gradients, a possible quantitative relationship between TEWL and SCH may exist. This investigation's purpose was to test the possible TEWL-SCH relationship. MATERIALS AND METHODS: SCH and TEWL were measured noninvasively on forearm and palmer thenar eminence (hand) in 40 young adults (20 males) along with total body fat percentage (FAT) via bioimpedance. RESULTS: A significant positive nonlinear correlation (p < 0.001) was detected between SCH and TEWL in hands of the male cohort that occurred when SCH exceeded a threshold level. This threshold level was not exceeded in male or female forearms and forearms did not display a SCH-TEWL correlation. There was a weak inverse dependence of TEWL on FAT on both forearm and hand (p < 0.05), but no SCH-FAT relationship was observed. TEWL values on the forearm and hand were moderately correlated with each other (p = 0.002) but SCH values were not. CONCLUSION: The findings clarify the relationship between forearm and palmer hydration and TEWL values, and their relationship to total body fat percentages in young healthy adults. The significant correlation between palmer stratum corneum hydration and palmer TEWL that was discovered in the male but not the female cohort suggests a threshold hydration level for which TEWL depends both on skin barrier function and stratum corneum hydration. This implies that conditions with increased SCH may in part account for elevated TEWL values.


Subject(s)
Epidermis , Forearm , Hand , Water Loss, Insensible , Female , Humans , Male , Young Adult , Epidermis/chemistry , Epidermis/metabolism , Epidermis/physiology , Forearm/physiology , Hand/physiology , Skin/chemistry , Skin/metabolism , Skin Physiological Phenomena , Water Loss, Insensible/physiology , Steam/analysis , Organism Hydration Status
9.
Skin Pharmacol Physiol ; 36(3): 125-139, 2023.
Article in English | MEDLINE | ID: mdl-36754026

ABSTRACT

INTRODUCTION: The stratum corneum (SC) matrix is composed of free fatty acids, cholesterol, and ceramides (CERs), which play a key role in the skin barrier function. Changes in the composition and content of skin lipids will affect the function of the skin barrier. The effect of a glycerol/petrolatum-based emollient (G/P-emollient) cream on the lipid profiles of isolated ex vivo human SC and the SC of a reconstructed human epidermis (RHE) model was measured. METHODS: The spatial organization of the cream and the isolated SC intercellular matrix were studied using X-ray diffraction. The inter-bilayer distances in the multi-lamellar lipid structures and lattice type were analyzed using small-angle X-ray scattering and wide-angle X-ray scattering (WAXS), respectively. Lipidomic analysis using shotgun lipidomics was performed on RHE models to quantify CER classes and chain lengths. This technology enables the analysis of thousands of lipids in a single biological sample. RESULTS: The crystallized components of the cream are lipids, which were mainly packed in orthorhombic lattices, as well as hexagonal lattices and were similar to the SC structure. The cream penetrated the SC but did not alter the WAXS profile. It increased the amount of higher carbon number CERs (>42 carbons) and decreased lower carbon number CERs (<42 carbons). All chain length of CERs and acyl-CER classes (CER EOS, EOH, EOP, EOdS) were increased as the total CER classes. A decrease of the CER C34 for hydroxylated and non-hydroxylated CERs was also observed. The cream altered the S and P CER forms (increased the NP/NS and AP/AS ratios), indicating it could reduce the relative feedback mechanism observed in inflammatory pathologies, for example, atopic dermatitis. The cream increased CER NP, which is decreased in dry skin. CONCLUSION: G/P-emollient cream may be beneficial for skin pathologies by modifying SC lipids, balancing CER levels and ratios, and improving the barrier function. Importantly, the cream structure mimics that of the SC and penetrated the lower SC layers without compromising its lamellar structure.


Subject(s)
Emollients , Lipidomics , Humans , Emollients/pharmacology , Lipids/chemistry , Skin/chemistry , Epidermis/chemistry , Ceramides/chemistry
10.
Chem Pharm Bull (Tokyo) ; 71(1): 31-40, 2023.
Article in English | MEDLINE | ID: mdl-36596510

ABSTRACT

Intercellular lipids fill the interstices of corneocytes and serve a barrier function. The amount of transdermal water evaporation varies depending on the packing structure of intercellular lipids, as this structure is important for maintaining barrier efficacy. This packing structure consists of a mixture of crystals (orthorhombic and hexagonal) and liquid crystals (fluid phase), and the proportion of these phases is thought to affect barrier function. However, there have been no methods to visualize the actual distribution of the domains formed by packing structure in intercellular lipids. In this study, the planar distribution of intercellular lipid structures was determined using focal plane array (FPA)-based Fourier transform (FT) IR imaging analysis of stratum corneum cell units obtained by grid stripping. The lipid composition of ceramides was revealed by electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based shotgun lipidomics. The distribution of domains formed by packing structures and the lipid composition of ceramides was compared in skin with high- or low-transepidermal water loss (TEWL). The orthorhombic proportion was lower in high-TEWL skin than in low-TEWL skin. ESI-MS/MS-based shotgun lipidomics analysis showed that the alpha-hydroxyceramide content in the low- and high-TEWL groups differed regarding the distribution of fatty acid chain lengths. The evaluation of stratum corneum cell units using FPA-based FTIR imaging is an innovative technology that can visualize the distribution of domains formed by intercellular lipid-packing structures. Increased proportions of alpha-hydroxyceramide subclasses such as alpha-hydroxy-sphingosine ceramide and alpha-hydroxy-phytosphingosine ceramide were associated with a reduced proportion of the orthorhombic packing structure domain.


Subject(s)
Epidermis , Tandem Mass Spectrometry , Epidermis/chemistry , Skin/chemistry , Fatty Acids , Ceramides/chemistry , Water/chemistry
11.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902463

ABSTRACT

Attached to the outer surface of the corneocyte lipid envelope (CLE), omega-hydroxy ceramides (ω-OH-Cer) link to involucrin and function as lipid components of the stratum corneum (SC). The integrity of the skin barrier is highly dependent on the lipid components of SC, especially on ω-OH-Cer. Synthetic ω-OH-Cer supplementation has been utilized in clinical practice for epidermal barrier injury and related surgeries. However, the mechanism discussion and analyzing methods are not keeping pace with its clinical application. Though mass spectrometry (MS) is the primary choice for biomolecular analysis, method modifications for ω-OH-Cer identification are lacking in progress. Therefore, finding conclusions on ω-OH-Cer biological function, as well as on its identification, means it is vital to remind further researchers of how the following work should be done. This review summarizes the important role of ω-OH-Cer in epidermal barrier functions and the forming mechanism of ω-OH-Cer. Recent identification methods for ω-OH-Cer are also discussed, which could provide new inspirations for study on both ω-OH-Cer and skin care development.


Subject(s)
Ceramides , Epidermis , Ceramides/chemistry , Epidermis/chemistry , Epidermal Cells , Skin/chemistry , Mass Spectrometry
12.
J Lipid Res ; 63(3): 100177, 2022 03.
Article in English | MEDLINE | ID: mdl-35143845

ABSTRACT

Desulfation of cholesterol sulfate (CholS) to cholesterol (Chol) is an important event in epidermal homeostasis and necessary for stratum corneum (SC) barrier function. The CholS/Chol ratio decreases during SC maturation but remains high in pathological conditions, such as X-linked ichthyosis, characterized by dry and scaly skin. The aim of this study was to characterize the influence of the CholS/Chol molar ratio on the structure, dynamics, and permeability of SC lipid model mixtures. We synthesized deuterated CholS and investigated lipid models with specifically deuterated components using 2H solid-state NMR spectroscopy at temperatures from 25°C to 80°C. Although the rigid acyl chains in ceramides and fatty acids remained essentially rigid upon variation of the CholS/Chol ratio, both sterols were increasingly fluidized in lipid models containing higher CholS concentrations. We also show the X-ray repeat distance of the lipid lamellar phase (105 Å) and the orthorhombic chain packing of the ceramide's acyl chains and long free fatty acids did not change upon the variation of the CholS content. However, the Chol phase separation visible in models with high Chol concentration disappeared at the 50:50 CholS/Chol ratio. This increased fluidity resulted in higher permeabilities to model markers of these SC models. These results reveal that a high CholS/Chol ratio fluidizes the sterol fraction and increases the permeability of the SC lipid phase while maintaining the lamellar lipid arrangement with an asymmetric sterol distribution.


Subject(s)
Cholesterol Esters , Sterols , Ceramides/chemistry , Cholesterol/chemistry , Epidermis/chemistry , Permeability , Skin/chemistry
13.
J Lipid Res ; 63(9): 100258, 2022 09.
Article in English | MEDLINE | ID: mdl-35931203

ABSTRACT

Understanding the lipid arrangement within the skin's outermost layer, the stratum corneum (SC), is important for advancing knowledge on the skin barrier function. The SC lipid matrix consists of ceramides (CERs), cholesterol, and free fatty acids, which form unique crystalline lamellar phases, referred to as the long periodicity phase (LPP) and short periodicity phases. As the SC lipid composition is complex, lipid model systems that mimic the properties of native SC are used to study the SC lipid organization and molecular arrangement. In previous studies, such lipid models were used to determine the molecular organization in the trilayer structure of the LPP unit cell. The aim of this study was to examine the location of CER N-(tetracosanoyl)-phytosphingosine (CER NP) in the unit cell of this lamellar phase and compare its position with CER N-(tetracosanoyl)-sphingosine (CER NS). We selected CER NP as it is the most prevalent CER subclass in the human SC, and its location in the LPP is not known. Our neutron diffraction results demonstrate that the acyl chain of CER NP was positioned in the central part of the trilayer structure, with a fraction also present in the outer layers, the same location as determined for the acyl chain of CER NS. In addition, our Fourier transformed infrared spectroscopy results are in agreement with this molecular arrangement, suggesting a linear arrangement for the CER NS and CER NP. These findings provide more detailed insight into the lipid organization in the SC lipid matrix.


Subject(s)
Ceramides , Sphingosine , Ceramides/chemistry , Cholesterol/chemistry , Epidermis/chemistry , Fatty Acids, Nonesterified/chemistry , Humans , Skin/chemistry , Sphingosine/analogs & derivatives , Sphingosine/analysis
14.
Langmuir ; 38(24): 7496-7511, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35671175

ABSTRACT

Molecular dynamics simulations of mixtures of the ceramide nonhydroxy-sphingosine (NS), cholesterol, and a free fatty acid are performed to gain molecular-level understanding of the structure of the lipids found in the stratum corneum layer of skin. A new coarse-grained force field for cholesterol was developed using the multistate iterative Boltzmann inversion (MS-IBI) method. The coarse-grained cholesterol force field is compatible with previously developed coarse-grained force fields for ceramide NS, free fatty acids, and water and validated against atomistic simulations of these lipids using the CHARMM force field. Self-assembly simulations of multilayer structures using these coarse-grained force fields are performed, revealing that a large fraction of the ceramides adopt extended conformations, which cannot occur in the single bilayer in water structures typically studied using molecular simulation. Cholesterol fluidizes the membrane by promoting packing defects, and an increase in cholesterol content is found to reduce the bilayer thickness due to an increase in interdigitation of the C24 lipid tails, consistent with experimental observations. Using a reverse-mapping procedure, a self-assembled coarse-grained multilayer system is used to construct an equivalent structure with atomistic resolution. Simulations of this atomistic structure are found to closely agree with experimentally derived neutron scattering length density profiles. Significant interlayer hydrogen bonding is observed in the inner layers of the atomistic multilayer structure that are not found in the outer layers in contact with water or in equivalent bilayer structures. This work highlights the importance of simulating multilayer structures, as compared to the more commonly studied bilayer systems, to enable more appropriate comparisons with multilayer experimental membranes. These results also provide validation of the efficacy of the MS-IBI derived coarse-grained force fields and the framework for multiscale simulation.


Subject(s)
Epidermis , Lipid Bilayers , Ceramides/chemistry , Cholesterol/chemistry , Epidermis/chemistry , Fatty Acids, Nonesterified , Lipid Bilayers/chemistry , Water/chemistry
15.
Anal Bioanal Chem ; 414(12): 3675-3685, 2022 May.
Article in English | MEDLINE | ID: mdl-35314876

ABSTRACT

The presence of a new ceramide subclass, the 1-O-acyl omega-linoleoyloxy ceramides [1-O-E (EO) Cer], has been previously highlighted in reconstructed human epidermis (RHE). These ceramides are double esterified on two positions. The first is the 1-O position of the sphingoid base moiety with a long to very long chain of acyl residues (1-O-E), and the second is the position of the ω-hydroxyl group of the fatty acid moiety with linoleic acid (EO). Considering its chemical structure and hydrophobicity, this subclass can contribute to the skin barrier. Thus, it is important to determine whether this subclass is also present in native human stratum corneum (SC). This work compares ceramide structures of this novel subclass between RHE (in vitro) and two sources of human SC (in vivo and ex vivo) using normal-phase high-performance liquid chromatography coupled to high-resolution mass spectrometry (NP-HPLC/HR-MSn). The results confirm the presence of this double esterified ceramide subclass [1-O-E (EO) Cer] in human SC. The molecular profile obtained from the RHE was very close to that found in the human SC (in vivo and ex vivo). In addition, thanks to the targeted MS2/MS3 analysis, a new ceramide subclass was discovered and characterized in the three studied samples. We propose to name it [A-1-O-E (EO) Cer] because in these ceramides species, the fatty acid-esterified with the sphingoid base on the 1-O position-is hydroxylated on the α position. These results highlight the potential of both the analytical method and the characterization approach employed in this study.


Subject(s)
Ceramides , Skin , Ceramides/analysis , Chromatography, High Pressure Liquid/methods , Epidermis/chemistry , Fatty Acids/analysis , Humans , Skin/chemistry
16.
Biomed Chromatogr ; 36(5): e5331, 2022 May.
Article in English | MEDLINE | ID: mdl-35000209

ABSTRACT

Gleditsiae Spina, the thorn of Gleditsia sinensis Lam., has a long history of being used as a traditional medicine in East Asian countries. However, only a few biologically active substances have been identified from it. In this study, the epidermis, xylem and pith of Gleditsiae Spina, respectively Gs-E, Gs-X and Gs-P, were studied. We used a widely targeted metabolomics method to investigate the chemical composition of Gs-E, Gs-X and Gs-P. A total of 728 putative metabolites were identified from Gleditsiae Spina, including 211 primary metabolites and 517 secondary metabolites. These primary and secondary metabolites could be categorized into more than 10 different classes. Flavonoids, phenolic acids, lipids, amino acids and derivatives, and organic acids constituted the main metabolite groups. Multivariate statistical analysis showed that the Gs-E, Gs-X and Gs-P samples could be clearly separated. Differential accumulated metabolite (DAM) analysis revealed that more than half of the DAMs exhibited the highest relative concentrations in Gs-E, and most of the DAMs showed the lowest relative concentrations in Gs-X. Moreover, 11 common differential primary metabolites and 79 common differential secondary metabolites were detected in all comparison groups. These results further our understanding of chemical composition and metabolite accumulation of Gleditsiae Spina.


Subject(s)
Drugs, Chinese Herbal , Metabolomics , Epidermis/chemistry , Flavonoids/analysis , Xylem/chemistry , Xylem/metabolism
17.
Skin Pharmacol Physiol ; 35(2): 112-123, 2022.
Article in English | MEDLINE | ID: mdl-34348350

ABSTRACT

INTRODUCTION: The stratum corneum (SC) is a skin barrier that consists of corneocytes, intercellular lipids, and corneodesmosomes. Ceramides are composed of sphingoid bases linked with various types of fatty acids (FAs), and they are an essential constituent of SC intercellular lipids. Among their subtypes, ceramide NP with a phytosphingosine base is especially important. Most of the previous studies on barrier recovery have focused on a specific ceramide with a single chain FA, not with diverse chain lengths. Skin barrier function is impaired by various factors, including topical corticosteroid. OBJECTIVE: We evaluated whether a lipid mixture enriched by ceramide NP with FAs of diverse chain lengths (CER [NP]*) can restore the skin barrier function impaired by topical corticosteroid. METHODS: Twenty-seven healthy adult male volunteers were recruited. Topical corticosteroid was applied on both volar forearms of volunteers. Then, the test cream containing a lipid mixture with CER (NP)* was applied on the left forearm, and a vehicle cream without a lipid mixture was applied on the right forearm of each subject. The functional parameters of the skin barrier were compared before and after the treatment. Epidermal differentiation markers, hyaluronic acid synthase 3 (HAS3), cytokine levels, and the lipid profiles in the SC were analyzed. RESULTS: The functional parameters of the skin barrier, such as barrier recovery rate, SC integrity, and SC hydration were significantly improved in the test cream-applied site compared to the vehicle cream-applied sites. Filaggrin and HAS3 levels were significantly higher in the sites applied with the test cream. Interleukin (IL)-1α levels were also significantly increased in these sites. IL-2, IL-6, IL-10, and IL-13 levels were significantly decreased in the test cream-applied sites. Lipid analyses showed that C18, C20, and total ceramide NP levels significantly increased in the sites where the test cream was applied. Also, C16, C18, C20, C24, and total ceramide NP levels were significantly elevated in the test cream-applied sites after acute barrier disruption. CONCLUSION: Our results demonstrate that a lipid mixture enriched by CER (NP)* could recover the barrier function impaired by topical corticosteroid.


Subject(s)
Epidermis , Fatty Acids , Adult , Ceramides/analysis , Epidermis/chemistry , Glucocorticoids , Humans , Male , Skin/chemistry
18.
Int J Cosmet Sci ; 44(2): 166-176, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35141910

ABSTRACT

INTRODUCTION: We report on the differences in ceramide composition and levels of omega-O-acylceramide processing enzymes of sun-exposed and sun-protected facialstratum corneum (SC) among Albino African, Black African and Caucasian women living in South Africa. METHODS: Tape strippings were taken from the sun-exposed cheek and the sunprotected postauricular site (PA). In two subsets proteomic (n = 18) and lipidomic (n = 24) analysis were performed using mass-spectrometry-based shotgun platforms. RESULTS: No significant differences in total ceramide levels or ceramide subtypes were found between the Black African and Caucasian women in either the cheek or PA samples. Compared to the other two groups the levels of total ceramide as well as selected omega-O-acylceramide species were increased in Albino Africans. On the cheek, ceramide (CER) EOS, EOH along with CER AS were increased relative to the Caucasian women, while CER EOP and EOdS were elevated relative to the Black African women. Moreover, on the PA site CER EOP and EOdS were elevated compared with the Black African women and CER EOdS in Caucasians. Decreasesin masslevels of 12R-LOX and eLOX3 were observed on cheeks compared with the PA sites in all ethnic groups. On the PA sites 12R-LOX was particularly lower in the Albino Africans compared with the Black African and Caucasian women. On the cheeks mass levels of SDR9C7 was also lower in the Albino Africans. CONCLUSION: The mass levels of the ceramides were similar between Black African and Caucasian women. However, elevated total ceramides and excessively elevated selected omega-O-acylceramides were apparent in the Albino African women. The findings in the Albino African women were unexpected as these participants suffer from impaired skin barrier function. However, the elevated levels omega-O-acylceramides can contribute to barrier insufficiency by directly impacting SC lipid phase behaviour and/or secondly elevated omegaO-acylceramide levels may indicate a reduced attachment of ceramides to the corneocyte lipid envelope and reduced corneocyte maturation that can also impair the barrier. Indeed, differences in the mass levels of omega-O-acylceramide processing enzymes were observed for 12R-LOX and SDR9C7 for the Albino Africans. This indicates a corneocyte lipid scaffold disorder in this population.


INTRODUCTION: Nous décrivons les différences de composition en céramides et de niveaux des enzymes du métabolisme des oméga-O-acylcéramides du stratum corneum facial (SC) photo-exposé et photo-protégé chez des femmes Albinos Africaines, Noires Africaines et Caucasiennes vivant en Afrique du Sud. MÉTHODES: Les prélèvements ont été effectués sur la joue photo-exposée et sur le site post-auriculaire (PA) photo-protégé à l'aide de disques adhésifs. Dans deux sous-groupes, des analyses protéomiques (n = 18) et lipidomiques (n = 24) ont été réalisées à l'aide de plateformes de spectrométrie de masse non-ciblées. RÉSULTATS: Aucune différence significative de quantité globale de céramides ou dans les différentes classes de céramides n'a été observée entre les femmes Noires Africaines et les femmes Caucasiennes, quels que soient les échantillons (Joue ou de PA). Comparativement aux deux autres groupes, les quantités de céramides totales, ainsi que certaines espèces d'oméga-O-acylcéramides, étaient plus élevés chez les femmes Albinos Africaines. Sur la joue, les céramides (CER) EOS, EOH et CER AS étaient plus élevés que chez les femmes Caucasiennes, tandis que les CER EOP et EOdS étaient plus élevés que chez les femmes Noires Africaines. De plus, sur le site PA, les CER EOP et EOdS étaient plus élevés que chez les femmes Noires Africaines et les CER EOdS chez les Caucasiennes. Des diminutions des niveaux d'enzymes 12R-LOX et eLOX3 ont été observées sur les joues par rapport aux sites PA dans tous les groupes ethniques. Sur les sites PA, le niveau de 12RLOX était notablement plus faible chez les femmes Albinos Africaines comparativement aux femmes Noires Africaines et Caucasiennes. Sur les joues, le niveau de SDR9C7 était également plus faible chez les Albinos Africaines. CONCLUSION: La masse des céramides totaux était similaire entre les femmes Noires Africaines et Caucasiennes. Cependant, des niveaux élevés de céramides totaux et excessivement élevés des oméga-O-acylcéramides sélectionnés, ont été observés chez les femmes Albinos Africaines. Les résultats obtenus chez les femmes Albinos Africaines étaient surprenants car ces participantes souffrent d'une altération de la fonction de la barrière cutanée. Néanmoins, les niveaux élevés d'oméga-O-acylcéramides peuvent en premier lieu contribuer à l'insuffisance de la barrière en ayant un impact direct sur le comportement de la phase lipidique du SC et/ou, deuxièmement, peuvent indiquer une fixation réduite des céramides à l'enveloppe lipidique des cornéocytes et une maturation réduite des cornéocytes pouvant aussi altérer la barrière. En outre, des différences dans les niveaux d'expression des enzymes de transformation de l'oméga-O-acylcéramide ont été observées pour 12R-LOX et SDR9C7 chez les femmes Albinos Africaines. Ceci indique une désorganisation de l'échafaudage lipidique des cornéocytes dans cette population.


Subject(s)
Ethnicity , Proteomics , Ceramides , Epidermis/chemistry , Female , Humans , Skin
19.
Chem Res Toxicol ; 34(9): 2087-2099, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34370447

ABSTRACT

Chemical skin and respiratory allergies are becoming a major health problem. To date our knowledge on the process of protein haptenation is still limited and mainly derived from studies performed in solution using model nucleophiles. In order to better understand chemical interactions between chemical allergens and the skin, we have investigated the reactivity of phthalic anhydride 1 (PA), a chemical respiratory sensitizer, toward reconstructed human epidermis (RHE). This study was performed using a new approach combining HRMAS NMR to investigate the in situ chemical reactivity and LC-MS/MS to identify modified epidermal proteins. In RHE, the reaction of PA appeared to be quite fast and the major product formed was phthalic acid. Two amide type adducts on lysine residues were observed and after 8h of incubation, we also observed the formation of an imide type cyclized adducts with lysine. In parallel, RHE samples topically exposed to phthalic anhydride (13C)-1 were analyzed using the shotgun proteomics method. Thus, 948 different proteins were extracted and identified, 135 of which being modified by PA, i.e., 14.2% of the extracted proteome. A total of 211 amino acids were modified by PA and validated by fragmentation spectra. We thus identified 154 modified lysines, 22 modified histidines, 30 modified tyrosines, and 5 modified arginines. The rate of modified residues, as a proportion of the total number of modifiable nucleophilic residues in RHE, was rather low (1%). At the protein level, modified proteins were mainly type I and type II keratins and other proteins which are abundant in the epidermis such as protein S100A, Caspase 14, annexin A2, serpin B3, fatty-acid binding protein 5, histone H2, H3, H4, etc. However, the most modified protein, mainly on histidine residues, was filaggrin, a protein that is of low abundance (0.0266 mol %) and rich in histidine.


Subject(s)
Allergens/chemistry , Epidermis/chemistry , Phthalic Anhydrides/chemistry , Proteins/analysis , Carbon Isotopes/chemistry , Chromatography, Liquid , Humans , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Proteomics , Tandem Mass Spectrometry
20.
Amino Acids ; 53(3): 429-434, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33608821

ABSTRACT

Taurine, a sulfur-containing amino acid, occurs at high concentrations in the skin, and plays a role in maintaining the homeostasis of the skin. We investigated the effects of aging on the content and localization of taurine in the skin of mice and rats. Taurine was extracted from the skin samples of hairless mice and Sprague Dawley rats, and the taurine content of the skin was determined by high-performance liquid chromatography (HPLC). The results of the investigation revealed that the taurine content in both the dermis and epidermis of hairless mice declined significantly with age. Similar age-related decline in the skin taurine content was also observed in rats. In contrast, the taurine content in the sole remained unchanged with age. An immunohistochemical analysis also revealed a decreased skin taurine content in aged animals compared with younger animals, although no significant differences in the localization of taurine were observed between the two age groups. Supplementation of the drinking water of aged mice with 3% (w/v) taurine for 4 weeks increased the taurine content of the epidermis, but not the dermis. The present study showed for the first time that the taurine content of the skin decreased with age in mice and rats, which may be related to the impairment of the skin homeostasis observed with aging. The decreased taurine content of the epidermis in aged animals was able to be rescued by taurine supplementation.


Subject(s)
Aging/pathology , Skin/chemistry , Taurine/analysis , Aging/drug effects , Animals , Dietary Supplements , Epidermis/chemistry , Homeostasis/drug effects , Male , Mice , Mice, Hairless , Rats , Rats, Sprague-Dawley , Taurine/administration & dosage , Taurine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL