Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 811
Filter
Add more filters

Publication year range
1.
Environ Res ; 250: 118501, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38367841

ABSTRACT

This study explores the application of a tyrosinase cantilever nanobiosensor for detecting 17ß-estradiol and estrone in typical water systems. The physical-chemical parameters of water were evaluated within the Tigre River micro-basin in Erechim, RS, to determine water potability for urban populations. Water clarity, conductivity, and pH levels were essential markers, adhering to recognized standards for water quality and human consumption. The cantilever nanobiosensor demonstrated strong sensitivity and a broad linear range, with a limit of detection (<0.00051 ppb) surpassing other enzymatic biosensors and covering a range of 0.0001-100 ppb. The real water sample quality investigated in relation to contamination with 17ß-estradiol and estrone by nanobiosensor showed values below the LOD for both compounds. Recovery studies demonstrated the reliability of the nanobiosensor. Selectivity tests indicated minimal interference from structurally similar substances. This study validates the nanobiosensor's potential for environmental monitoring and hormone detection, aligning with standard practices.


Subject(s)
Biosensing Techniques , Environmental Monitoring , Monophenol Monooxygenase , Rivers , Water Pollutants, Chemical , Environmental Monitoring/methods , Environmental Monitoring/instrumentation , Rivers/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Water Pollutants, Chemical/analysis , Estradiol/analysis , Estrone/analysis , Limit of Detection
2.
Mikrochim Acta ; 191(8): 474, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39037586

ABSTRACT

A novel magnetic dispersive solid phase extraction (MDSPE) procedure based on the deep eutectic solvent (DES) modified magnetic graphene oxide/metal organic frameworks nanocomposites (MGO@ZIF-8@DES) was established and used for the efficient enrichment of estradiol, estrone, and diethylstilbestrol in cosmetics (toner, lotion, and cream) for the first time. Then, the three estrogens were separated and determined by UHPLC-UV analysis method. In order to study the features and morphology of the synthesized adsorbents, various techniques such as FT-IR, SEM, and VSM measurements were executed. The MGO@ZIF-8@DES nanocomposites combine the advantages of high adsorption capacity, adequate stability in aqueous solution, and convenient separation from the sample solution. To achieve high extraction recoveries, the Box-Behnken design and single factor experiment were applied in the experimental design. Under the optimum conditions, the method detection limits for three estrogens were 20-30 ng g-1. This approach showed a good correlation coefficient (r more than 0.9998) and reasonable linearity in the range 70-10000 ng g-1. The relative standard deviations for intra-day and inter-day were beneath 7.5% and 8.9%, respectively. The developed MDSPE-UHPLC-UV method was successfully used to determine  three estrogens in cosmetics, and acceptable recoveries in the intervals of 83.5-95.9% were obtained. Finally, three estrogens were not detected in some cosmetic samples. In addition, the Complex GAPI tool was used to evaluate the greenness of the developed pretreatment method. The developed MDSPE-UHPLC-UV method is sensitive, accurate, rapid, and eco-friendly, which provides a promising strategy for determining hormones in different complex samples.


Subject(s)
Cosmetics , Deep Eutectic Solvents , Estrogens , Graphite , Metal-Organic Frameworks , Nanocomposites , Solid Phase Extraction , Graphite/chemistry , Cosmetics/chemistry , Cosmetics/analysis , Nanocomposites/chemistry , Metal-Organic Frameworks/chemistry , Solid Phase Extraction/methods , Estrogens/analysis , Estrogens/isolation & purification , Estrogens/chemistry , Deep Eutectic Solvents/chemistry , Limit of Detection , Estradiol/chemistry , Estradiol/analysis , Estradiol/isolation & purification , Estrone/analysis , Estrone/chemistry , Estrone/isolation & purification , Adsorption , Diethylstilbestrol/analysis , Diethylstilbestrol/chemistry , Diethylstilbestrol/isolation & purification , Chromatography, High Pressure Liquid/methods
3.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792227

ABSTRACT

Progesterone (PROG) and estrone (E1) are typical reproductive hormones in dairy cows. Assessing the levels of these hormones in vivo can aid in estrus identification. In the present work, the feasibility of the qualitative and quantitative detection of PROG and E1 using terahertz time-domain spectroscopy (THz-TDS) and metamaterial technology was preliminarily investigated. First, the time domain spectra, frequency domain spectra, and absorption coefficients of PROG and E1 samples were collected and analyzed. A vibration analysis was conducted using density functional theory (DFT). Subsequently, a double-ring (DR) metamaterial structure was designed and simulated using the frequency domain solution algorithm in CST Studio Suite (CST) software. This aimed to ensure that the double resonance peaks of DR were similar to the absorption peaks of PROG and E1. Finally, the response of DR to different concentrations of PROG/E1 was analyzed and quantitatively modeled. The results show that a qualitative analysis can be conducted by comparing the corresponding DR resonance peak changes in PROG and E1 samples at various concentrations. The best R2 for the PROG quantitative model was 0.9872, while for E1, it was 0.9828. This indicates that terahertz spectral-metamaterial technology for the qualitative and quantitative detection of the typical reproductive hormones PROG and E1 in dairy cows is feasible and worthy of in-depth exploration. This study provides a reference for the identification of dairy cow estrus.


Subject(s)
Estrone , Progesterone , Terahertz Spectroscopy , Cattle , Animals , Progesterone/analysis , Female , Terahertz Spectroscopy/methods , Estrone/analysis , Dairying
4.
Int J Environ Health Res ; 34(5): 2213-2229, 2024 May.
Article in English | MEDLINE | ID: mdl-37437042

ABSTRACT

A Search was conducted in international databases including Scopus, PubMed, Embase, and Web of Science from 10 January 2005 to 15 January 2023. The risk quotient (RQ) of Estrone (E1), 17ß-E2 (E2), and Estriol (E3) on the surface water resources of China was calculated by Monte Carlo Simulation (MCS) technique. The rank order of steroid hormones based on pooled (weighted average) concentration in surface water was E3 (2.15 ng/l) > E2 (2.01 ng/l) > E1 (1.385 ng/l). The concentration of E1 in Dianchi lake (236.50.00 ng/l), 17ß-E2 in Licun river (78.50 ng/l), and E3 in Dianchi lake (103.1 ng/l) were higher than in other surface water resources in China. RQ related to E1, 17ß-E2 and E3 in 68.00%, 88.89% and 3.92% of surface water resources were high ecological risk, respectively. Therefore, carrying out source control plans for steroid hormones in surface water sources should be conducted continuously.


Subject(s)
Water Pollutants, Chemical , Water Resources , Estrone/analysis , Rivers , Water/analysis , Risk Assessment , China , Water Pollutants, Chemical/analysis , Estradiol/analysis , Environmental Monitoring/methods
5.
Environ Res ; 231(Pt 1): 116097, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37182827

ABSTRACT

Endocrine disrupting chemicals (EDCs) are toxic compounds that occur naturally or are the output of anthropogenic activities that negatively impact both humans and wildlife. A number of diseases are associated with these disruptors, including reproductive disorders, cardiovascular disorders, kidney disease, neurological disorders, autoimmune disorders, and cancer. Due to their integral role in pharmaceuticals and cosmetics, packaging companies, agro-industries, pesticides, and plasticizers, the scientific awareness on natural and artificial EDCs are increasing. As these xenobiotic compounds tend to bioaccumulate in body tissues and may also persist longer in the environment, the concentrations of these organic compounds may increase far from their original point of concentrations. Water remains as the major sources of how humans and animals are exposed to EDCs. However, these toxic compounds cannot be completely biodegraded nor bioremediated from the aqueous medium with conventional treatment strategies thereby requiring much more efficient strategies to combat EDC contamination. Recently, genetically engineered microorganism, genome editing, and the knowledge of protein and metabolic engineering has revolutionized the field of bioremediation thereby helping to breakdown EDCs effectively. This review shed lights on understanding the importance of aquatic mediums as a source of EDCs exposure. Furthermore, the review sheds light on the consequences of these EDCs on human health as well as highlights the importance of different remediation and bioremediation approaches. Particular attention is paid to the recent trends and perspectives in order to attain sustainable approaches to the bioremediation of EDCs. Additionally, rigorous restrictions to preclude the discharge of estrogenic chemicals into the environment should be followed in efforts to combat EDC pollution.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Humans , Water , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Biodegradation, Environmental , Estrone/analysis , Water Pollutants, Chemical/analysis
6.
Environ Res ; 235: 116673, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37454796

ABSTRACT

We quantified the occurrences and seasonal variations of the target endocrine disrupting chemicals (EDCs) at four (two major municipals, and two academic institutions) WWTPs in Dehradun city, Uttarakhand, India. The results showed estrone in higher concentrations at µgL-1 levels in influent among the WWTPs, compared to triclosan (TCS) at ngL-1 levels. An astounding concentration of 123.95 µgL-1 was recorded for the estrone in the influent, which is to date the highest ever recorded, globally. Statistical data treatment was performed to test the distribution of the data (Shapiro-Wilk, Anderson-Darling, Lilliefors, and Jarque-Bera tests), and the significant difference between the mean of the wastewater sample population (ANOVA: F statistics, p values, Mann-Whitney test, Tukey's and Dunn's post hoc analysis). Statistical data treatment indicated EDCs concentration with a bi-modal distribution. The Shapiro-Wilk, Anderson-Darling, Lilliefors, and Jarque-Bera tests elucidate a non-normal distribution for the EDCs sample data. A statistically significant difference (F = 8.46; p < 0.0001) in the seasonal data for the abundance of the target EDCs at the WWTPs have been observed. Highest and significantly different mean EDCs concentrations were recorded during the monsoon, compared to the spring (p = 0.025) and summer (p = 0.0004) seasons in the influent waters. The mean influent concentrations of TCS and estrone in monsoon were 66.45 ngL-1 and 78.02 µgL-1, respectively. Maximum removals were recorded for TCS, while maximum negative removal of ∼293% was observed for estrone in the WWTPs. Particularly, the high levels of estrone in the wastewater pose a significant threat as estrone presence could be led to feminization, dysregulation of reproduction in organisms, and carcinogenesis processes in the environment. This study critically highlights the limitation of the WWTPs in the treatment, degradation, and assimilation of EDCs leading to their hyperaccumulation at WWTP effluents, thereby posing a substantial threat to nearby aquatic ecosystems, human health, and the ecological balance of the region.


Subject(s)
Endocrine Disruptors , Triclosan , Water Pollutants, Chemical , Water Purification , Humans , Estrone/analysis , Wastewater , Endocrine Disruptors/analysis , Waste Disposal, Fluid/methods , Prevalence , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , India
7.
Biodegradation ; 34(1): 43-51, 2023 02.
Article in English | MEDLINE | ID: mdl-36396827

ABSTRACT

Endocrine disrupting compounds (EDCs) are emerging contaminants that persist and contaminate the environment. They mimic hormones, block hormones, or modulate their synthesis, metabolism, transport, and action, affecting living organisms and their progeny. Steroid hormones from exogenous sources like water bodies are important EDCs. Their biodegradation is an urgent global need. The present study is a preliminary work to maximize the estrone degradation potential of Spirulina CPCC-695 and study the effect of optimized conditions on its laccase activity. It was observed that the exponential phase culture at pH 10.0, 30 ℃, and 200 rpm of agitation speed resulted in the maximum growth, estrone degradation efficiency (93.12%), and highest laccase activity (74%) of Spirulina CPCC-695.


Subject(s)
Endocrine Disruptors , Spirulina , Water Pollutants, Chemical , Estrone/analysis , Laccase/chemistry , Laccase/metabolism , Spirulina/metabolism , Biodegradation, Environmental , Endocrine Disruptors/metabolism , Water Pollutants, Chemical/analysis
8.
Ecotoxicol Environ Saf ; 260: 115083, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37269613

ABSTRACT

Bisphenols, parabens, alkylphenols and triclosan are anthropogenic substances with a phenolic group that have been introduced to the environment in recent decades. As they possess hormone-like effects, they have been termed endocrine disruptors (EDs), and can interfere with steroid pathways in organisms. To evaluate the potential impact of EDs on steroid biosynthesis and metabolism, sensitive and robust methods enabling the concurrent measurement of EDs and steroids in plasma are needed. Of crucial importance is the analysis of unconjugated EDs, which possess biological activity. The aim of the study was to develop and validate LC-MS/MS methods with and without a derivatization step for the analysis of unconjugated steroids (estrone-E1, estradiol-E2, estriol-E3, aldosterone-ALDO) and different groups of EDs (bisphenols, parabens, nonylphenol-NP and triclosan-TCS), and compare these methods on a set of 24 human plasma samples using Passing-Bablok regression analysis. Both methods were validated according to FDA and EMA guidelines. The method with dansyl chloride derivatization allowed 17 compounds to be measured: estrogens (E1, E2, E3), bisphenols (bisphenol A-BPA, BPS, BPF, BPAF, BPAP, BPZ, BPP), parabens (methylparaben-MP, ethylparaben-EP, propylparaben-PP, butylparaben-BP, benzylparaben-BenzylP), TCS and NP, with lower limits of quantification (LLOQs) between 4 and 125 pg/mL. The method without derivatization enabled 15 compounds to be analyzed: estrogens (E1, E2, E3), ALDO, bisphenols (BPA, BPS, BPF, BPAF, BPAP, BPZ), parabens (MP, EP, PP, BP, BenzylP) with LLOQs between 2 and 63 pg/mL, and NP and BPP in semiquantitative mode. Adding 6 mM ammonium fluoride post column into mobile phases in the method without derivatization achieved similar or even better LLOQs than the method with the derivatization step. The uniqueness of the methods lies in the simultaneous determination of different classes of unconjugated (bioactive) fraction of EDs together with selected steroids (estrogens + ALDO in the method without derivatization), which provides a useful tool for evaluating the relationships between EDs and steroid metabolism.


Subject(s)
Endocrine Disruptors , Triclosan , Humans , Parabens/analysis , Estrogens/analysis , Chromatography, Liquid , Endocrine Disruptors/analysis , Triclosan/analysis , Tandem Mass Spectrometry/methods , Estrone/analysis , Benzhydryl Compounds/analysis
9.
World J Microbiol Biotechnol ; 39(8): 218, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37269502

ABSTRACT

Owing to the increased population and their overuse, estrogens are being detected in the environment at alarming levels. They act as endocrine disrupting compounds (EDC's) posing adverse effects on animals and humans. In this study, a strain belonging to Enterobacter sp. strain BHUBP7 was recovered from a Sewage Treatment Plant (STP) situated in Varanasi city, U.P., India, and was capable of metabolizing both 17 α-Ethynylestradiol (EE2) and 17 ß-Estradiol (E2) separately as a sole carbon source. The strain BHUBP7 exhibited high rates of E2 degradation as compared to EE2 degradation. The degradation of E2 (10 mg/L) was 94.3% after four days of incubation, whereas the degradation of EE2 (10 mg/L) under similar conditions was 98% after seven days of incubation. The kinetics of EE2 and E2 degradation fitted well with the first-order reaction rate. FTIR analysis revealed the involvement of functional groups like C = O, C-C, C-OH during the degradation process. The metabolites generated during degradation of EE2 and E2 were identified using HRAMS and a plausible pathway was elucidated. It was observed that metabolism of both E2 and EE2 proceeded with the formation of estrone, which was then hydroxylated to 4-hydroxy estrone, followed by ring opening at the C4-C5 position, and was further metabolized by the 4,5 seco pathway leading to the formation of 3-(7a-methyl-1,5-dioxooctahydro-1H-inden-4-yl) propanoic acid (HIP). It is the first report on the complete pathway of EE2 and E2 degradation in Enterobacter sp. strain BHUBP7. Moreover, the formation of Reactive Oxygen Species (ROS) during the degradation of EE2 and E2 was observed. It was concluded that both hormones elicited the generation of oxidative stress in the bacterium during the degradation process.


Subject(s)
Estradiol , Water Pollutants, Chemical , Humans , Estradiol/analysis , Estradiol/metabolism , Estrone/analysis , Estrone/metabolism , Ethinyl Estradiol/analysis , Ethinyl Estradiol/metabolism , Bacteria/metabolism , India , Water Pollutants, Chemical/metabolism
10.
Arch Environ Contam Toxicol ; 82(1): 21-36, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34748030

ABSTRACT

Bioanalytical tools, namely in vitro bioassays, can be employed in tandem with chemical analyses to assess the efficacy of wastewater treatment and the potential for adverse effects from the discharges of wastewater into receiving waters. In the present study, samples of untreated wastewater (i.e., influent) and treated wastewater (i.e., effluent) were collected from two wastewater treatment plants and a wastewater treatment lagoon to investigate potential differences in treatment performance. In addition, grab samples of surface water were collected downstream of the lagoon discharge to evaluate the water quality in the receiving stream. After solid-phase extraction (SPE) using ion exchange columns for basic/neutral and acidic compounds, respectively, the extracts were analyzed for a suite of 16 indicator compounds. The two SPE extracts were combined for analysis of biological responses in four in vitro cell-based bioassays. The concentrations of several indicator compounds, including the estrogens, 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2), were below the limits of detection. However, androstenedione and estrone were detected in several influent samples. The concentrations of these steroid hormones and some of the other indicator compounds declined during treatment, but acesulfame K, carbamazepine, trimethoprim and DEET persisted in the effluent. The MTS-CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) indicated that cell viability was not affected by exposure to the extracts. The Qiagen Nuclear Receptors 10-Pathway Reporter Array indicated that several cellular pathways were upregulated, with the greatest upregulation observed with the estrogen receptor (i.e., induction ratios of 12 to 47) and the liver X receptor (i.e., induction ratios of 10 to 45). The ERα CALUX assay indicated that estrogenic activity was lower in effluents compared to influents, but the expected improved removal of estrogenic activity during nitrification was not observed. The results of the Nrf2 Luciferase Luminescence Assay indicated a lower oxidative stress in the effluent samples, except for the lagoon. Overall, the present study further demonstrates that bioassays provide complementary information to chemical analyses and offer a way to assess treatment performance, even when target contaminants are not detected. There are thus advantages to using a combination of chemical analyses and in vitro bioassays to monitor the treatment efficiency of wastewater treatment plants and to predict the potential impacts of wastewater discharges into receiving waters.


Subject(s)
Water Pollutants, Chemical , Water Purification , Estrogens/toxicity , Estrone/analysis , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
11.
J Environ Manage ; 301: 113708, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34619591

ABSTRACT

Estrone (E1), 17α-estradiol (17α-E2), 17ß-estradiol (17ß-E2), and estriol (E3) are persistent in livestock manure and present serious pollution concerns because they can trigger endocrine disruption at part-per-trillion levels. This study conducted a global analysis of estrogen occurrence in manure using all literature data over the past 20 years. Besides, predicted environmental concentration (PEC) in soil and water was estimated using fate models, and risk/harm quotient (RQ/HQ) methods were applied to screen risks on children as well as on sensitive aquatic and soil species. The estradiol equivalent values ranged from 6.6 to 4.78 × 104 ng/g and 12.4 to 9.46 × 104 ng/L in the solid and liquid fraction. The estrogenic potency ranking in both fractions were 17ß-E2> E1>17α-E2>E3. RQs of measured environmental concentration in the liquid fraction pose medium (E3) to high risk (E1, 17α-E2 & 17ß-E2) to fish but are lower than risks posed by xenoestrogens. However, the RQ of PECs on both soil organisms and aquatic species were insignificant (RQ < 0.01), and HQs of contaminated water and soil ingestion were within acceptable limits. Nevertheless, meticulous toxicity studies are still required to confirm (or deny) the findings because endocrine disruption potency from mixtures of these classes of compounds cannot be ignored.


Subject(s)
Manure , Water Pollutants, Chemical , Animals , Child , Environmental Monitoring , Estradiol/toxicity , Estrogens/analysis , Estrogens/toxicity , Estrone/analysis , Humans , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
12.
Water Sci Technol ; 86(4): 814-833, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36038979

ABSTRACT

During the last decades, livestock and animal feeding operations have been expanded. In parallel, these activities are among the major sources of estrogens in the environment. Thus, considering the environmental and health risks associated with estrogenic compounds, this work reviews the fate, occurrence, and removal of free and conjugated E1, E2, and E3 in livestock wastewaters. A systematic literature review was carried out, and after applying the eligibility criteria, 66 peer-reviewed papers were selected. Results suggest high estrogen concentrations and, consequently, high estrogenic activity, especially in samples from swine farming. E1 and E2 are frequently found in wastewaters from bovine, swine, and other livestock effluents. Aerobic treatment processes were more efficient for estrogen removal, whereas anaerobic systems seem poorly effective. Removal efficiencies of estrogens and estrogenic activity of up to 90% were reported for constructed wetlands, advanced pond systems, trickling filters, membrane bioreactors, aerated and nitrifying reactors, combined air flotation, and vegetable oil capture processes. High concentrations found in wastewaters from livestock allied to the removal efficiencies reported for anaerobic processes (usually used to treat livestock wastewaters) evidence the importance of monitoring these compounds in environmental matrices.


Subject(s)
Wastewater , Water Pollutants, Chemical , Animals , Cattle , Estrogens , Estrone/analysis , Livestock , Swine , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis
13.
Environ Sci Technol ; 55(10): 6729-6739, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33909413

ABSTRACT

Diverse organic compounds, many derived from consumer products, are found in sewage sludge worldwide. Understanding which of these poses the most significant environmental threat following land application can be investigated through a variety of predictive and cell-based toxicological techniques. Nontargeted analysis using high-resolution mass spectrometry with predictive estrogenic activity modeling was performed on sewage sludge samples from 12 wastewater treatment plants in California. Diisobutyl phthalate and dextrorphan were predicted to exhibit estrogenic activity and identified in >75% of sludge samples, signifying their universal presence and persistence. Additionally, the application of an estrogen-responsive cell bioassay revealed reductions in agonistic activity during mesophilic and thermophilic treatment but significant increases in antagonism during thermophilic treatment, which warrants further research. Ten nontarget features were identified (metoprolol, fenofibric acid, erythrohydrobupropion, oleic acid, mestranol, 4'-chlorobiphenyl-2,3-diol, medrysone, scillarenin, sudan I, and N,O-didesmethyltramadol) in treatment set samples and are considered to have influenced the in vitro estrogenic activity observed. The combination of predictive and in vitro estrogenicity with nontargeted analysis has led to confirmation of 12 estrogen-active contaminants in California sewage sludge and has highlighted the importance of evaluating both agonistic and antagonistic responses when evaluating the bioactivity of complex samples.


Subject(s)
Water Pollutants, Chemical , Water Purification , Estrogens , Estrone/analysis , Sewage , Water Pollutants, Chemical/analysis
14.
Environ Sci Technol ; 55(20): 14115-14125, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34460232

ABSTRACT

The same class of steroid estrogen mixtures, coexisting in the environment of 17ß-estradiol, estrone (E1), and ethinyl estradiol (EE2), have strong ability to disrupt the human endocrine system and are seriously prejudicial to the health of the organism and environmental safety. Herein, a highly sensitive and group-targeting environmental monitoring sensor was fabricated for a comprehensive analysis of multicomponent steroid estrogens (multi-SEs) in complex systems. This breakthrough was based on the highly sensitive photoelectrochemical response composite material CdSe NPs-TiO2 nanotube and highly group-specific aptamers. The optimized procedure exhibited not only high sensitivity in a wide range of concentrations from 0.1 to 50 nM, indeed, the minimum detection limit was 33 pM, but also strong resistance to interference. The affinity and consistent action pockets of this sensor enable selective detection of multi-SEs in complex systems. It subsequently was applied for the analysis of multi-SEs from three real samples in the environment including medical wastewater, river water, and tap water to provide a means to clarify the fate of multi-SEs in the process of migration and transformation. This monitoring sensor has a brilliant application prospect for the identification and monitoring of the same class of endocrine-disrupting chemical mixtures in environmental complex systems.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Endocrine Disruptors/analysis , Environmental Monitoring , Estradiol/analysis , Estrogens/analysis , Estrone/analysis , Ethinyl Estradiol/analysis , Humans , Water Pollutants, Chemical/analysis
15.
Arch Toxicol ; 95(2): 557-571, 2021 02.
Article in English | MEDLINE | ID: mdl-33083868

ABSTRACT

The application of anticancer drugs during pregnancy is associated with placenta-related adverse pregnancy outcomes. Therefore, it is important to study placental toxicity of anticancer drugs. The aim of this study was to compare effects on viability and steroidogenesis in placental tissue explants and trophoblast cell lines. Third trimester placental tissue explants were exposed for 72 h (culture day 4-7) to a concentration range of doxorubicin, paclitaxel, cisplatin, carboplatin, crizotinib, gefitinib, imatinib, or sunitinib. JEG-3, undifferentiated BeWo, and syncytialised BeWo cells were exposed for 48 h to the same drugs and concentrations. After exposure, tissue and cell viability were assessed and progesterone and estrone levels were quantified in culture medium. Apart from paclitaxel, all compounds affected both cell and tissue viability at clinically relevant concentrations. Paclitaxel affected explant viability moderately, while it reduced cell viability by 50% or more in all cell lines, at 3-10 nM. Doxorubicin (1 µM) reduced viability in explants to 83 ± 7% of control values, whereas it fully inhibited viability in all cell types. Interference with steroid release in explants was difficult to study due to large variability in measurements, but syncytialised BeWo cells proved suitable for this purpose. We found that 1 µM sunitinib reduced progesterone release to 76 ± 6% of control values, without affecting cell viability. While we observed differences between the models for paclitaxel and doxorubicin, most anticancer drugs affected viability significantly in both placental explants and trophoblast cell lines. Taken together, the placenta should be recognized as a potential target organ for toxicity of anticancer drugs.


Subject(s)
Antineoplastic Agents/toxicity , Estrone/analysis , Placenta/drug effects , Progesterone/analysis , Trophoblasts/drug effects , Cell Line, Tumor , Cell Survival , Cells, Cultured , Cytostatic Agents/toxicity , Female , Humans , Pregnancy , Pregnancy Trimester, Third/drug effects
16.
J Sci Food Agric ; 101(4): 1666-1675, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-32888325

ABSTRACT

BACKGROUND: Endocrine disrupting chemicals (EDCs), proved to be potential carcinogenic threats to human health, have received great concerns in food field. It was essential to develop effective methods to detect EDCs in food samples. The present study proposed an efficient method to determine trace EDCs including estrone (E1), 17ß-estradiol (E2), estriol (E3) and bisphenol A (BPA) based on magnetic solid-phase extraction (MSPE) coupled high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in meat samples. RESULTS: Fe3 O4 @COF(TpBD)/TiO2 nanocomposites were synthesized via functionalization of magnetic covalent organic frameworks (COFs) with titanium dioxide (TiO2 ) nanoparticles, and used as absorbents of MSPE to enrich EDCs. The efficient EDCs enrichment relies on π-π stacking interaction, hydrogen bonding, and the interaction between titanium ions (IV, Ti4+ ) and hydroxyl groups in EDCs, which improves the selectivity and sensitivity. Under the optimized conditions, target EDCs were rapidly extracted through MSPE with 5 min. Combining Fe3 O4 @COF(TpBD)/TiO2 based MSPE and HPLC-MS/MS to determine EDCs, good linearities were observed with correlation coefficient (R2 ) ≥ 0.9989. The limits of detection (LODs) and limits of quantification (LOQs) were 0.13-0.41 µg kg-1 and 0.66-1.49 µg kg-1 , respectively. Moreover, the proposed method was successfully applied to real samples analysis. CONCLUSIONS: The established MSPE-HPLC-MS/MS method was successfully applied to determine EDCs in meat samples with rapidness, improved selectivity and sensitivity. It shows great prospects for EDCs detection in other complicated matrices. © 2020 Society of Chemical Industry.


Subject(s)
Chromatography, High Pressure Liquid/methods , Endocrine Disruptors/analysis , Endocrine Disruptors/isolation & purification , Food Contamination/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Benzhydryl Compounds/analysis , Benzhydryl Compounds/isolation & purification , Estradiol/analysis , Estradiol/isolation & purification , Estriol/analysis , Estriol/isolation & purification , Estrone/analysis , Estrone/isolation & purification , Limit of Detection , Phenols/analysis , Phenols/isolation & purification , Solid Phase Extraction/instrumentation
17.
Environ Monit Assess ; 193(12): 812, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34786612

ABSTRACT

The aim of the present study was to investigate steroid hormone residues from livestock farms and assess their risks to the surface water of Phayao Lake. These steroid hormones are endocrine-disrupting compounds (EDCs), which can be found in natural and synthetic forms. This research focused on examining the residues of seven steroid hormones (five estrogens and two androgens-estrone (E1), 17α-estradiol (αE2), 17ß-estradiol (ßE2), estriol (E3), 17α-ethinyl estradiol (EE2), testosterone (T), and 17α-methyltestosterone (MT)) from four types of livestock farms around Phayao Lake, Thailand. The samples collected from the livestock farms included feces, soil, and wastewater and were extracted by the solid phase extraction (SPE) technique and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The risks from the residual steroid hormones were also characterized by estradiol equivalents (EEQs), testosterone equivalents (TEQs), and risk quotients (RQs). The results indicated that most hormone contamination from the farms' livestock was due to the estrogen hormones E1 (1.38-97.10 ng/g), ßE2 (10.08-1366 ng/g), and EE2 (1.50-99.92 ng/g), which originate from the natural excretion and admixture of steroids in feedstock or medicines. Steroid hormones were not detected in the wastewater from cleaning processes on farms with wastewater treatment plants, whereas farms without wastewater treatment plants showed high values of estrogen hormone contamination, with EEQs of 128.8-472.9 ng/L and RQs of 208.3-294.3. However, the analysis of steroid hormone residues in Phayao Lake demonstrated that the residues did not severely affect aquatic organisms (with RQs of 0.002-144.5), and no estrogen or androgen residues were observed in the water treatment plant or tap water.


Subject(s)
Lakes , Water Pollutants, Chemical , Androgens , Animals , Chromatography, Liquid , Environmental Monitoring , Estrogens/analysis , Estrone/analysis , Farms , Livestock , Tandem Mass Spectrometry , Thailand , Water Pollutants, Chemical/analysis
18.
Gen Comp Endocrinol ; 299: 113607, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32882210

ABSTRACT

Pangolins are 'keystone species' driven towards extinction due to a lack of profound awareness and illegal trade. The drivers urge for immediate development in the understanding of demographics and reproductive dynamics of this species. In this study, we developed and validated a quantitative method to measure pangolin fecal extracts using the electrospray (ESI-MS/MS) interface in positive ionization mode. The method aids in the measurement of hormones from the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axis, making it a possibly appropriate technique to understand the cross-talk between the axes. The study aims to measure the relative abundance of adrenal and gonadal hormones such as corticosterone, cortisol, estrone, estradiol-17ß, progesterone, testosterone, and a number of its metabolites. From the dried fecal extract, the principal metabolite identified from the estrogen family was estradiol-17ß, whereas the gestagen family revealed that the pregnane series is predominated in 5α-configuration. On the other hand, epiandrosterone was seen as the dominant form in the male fecal extracts. Additionally, the glucocorticoids are excreted majorly as corticosterone, but traces of cortisol are also present in both the male and female fecal samples. The physiological validation confirmed that the ESI-MS/MS technique is suitable to determine physiologically caused differences in the fecal steroid concentrations. Physiologically, the age structure in pangolin is not responsible for causing differences within gender. However, the results revealed that glucocorticoids might vary between the sexes, i.e., males have a higher relative abundance of glucocorticoids over females. Therefore, our studies show that some of the main adrenal and gonadal metabolites can be predicted by exploiting MS/MS, which can steer research to potentially assess the reproductive status of captive and free-ranging pangolin species.


Subject(s)
Endangered Species , Feces/chemistry , Pangolins/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Steroids/analysis , Steroids/metabolism , Tandem Mass Spectrometry/methods , Animals , Corticosterone/analysis , Corticosterone/metabolism , Estradiol/analysis , Estradiol/metabolism , Estrogens/analysis , Estrogens/metabolism , Estrone/analysis , Estrone/metabolism , Female , Glucocorticoids/analysis , Glucocorticoids/metabolism , Hydrocortisone/analysis , Hydrocortisone/metabolism , Male , Progesterone/analysis , Progesterone/metabolism , Testosterone/analysis
19.
Arch Environ Contam Toxicol ; 79(4): 461-477, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33128586

ABSTRACT

Coastal ecosystems are receiving environments for micropollutants due to high levels of associated anthropogenic activities. Effluent discharges from wastewater treatment plants are a significant source of micropollutants to coastal environments. Wastewater effluents, seawater, sediments, and green-lipped mussels (Perna canaliculus) in Lyttelton Harbour (Te Whakaraupo), Christchurch, New Zealand, were analysed for a suite of personal care products and steroid hormones during a 1-year period. In wastewater effluents, the concentration of methyl paraben (mParaben), ethyl paraben (eParaben), propyl paraben (pParaben), butyl paraben (bParaben), 4-t-octylphenol (OP), 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), benzophenone-1 (BP-1), triclosan, methyl triclosan (mTric), Bisphenol A (BPA), Estrone (E1), 17ß-estradiol (E2), 17α-ethinyl estradiol (EE2), and Estriol (E3) ranged from < 0.6 to 429 ng L-1 and was dominated by OP, 4-MBC, BP-3, triclosan, BP-1, and BPA. In seawater, 4-MBC, BP-3, BPA, and E1 were the most frequently detected contaminants (< 0.2-9.4 ng L-1). Coastal sediment samples contained mParaben, OP, 4-MBC, BP-3, BP-1, BPA, OMC, and E1 (< 0.2-11 ng g-1 d.w.), and mParaben, OP, and BP-3 were found to bioaccumulate (3.8-21.3 ng g-1 d.w.) in green lipped mussels.


Subject(s)
Environmental Monitoring , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Benzhydryl Compounds , Benzophenones , Ecosystem , Estradiol/analysis , Estrone/analysis , Ethinyl Estradiol/analysis , New Zealand , Phenols , Triclosan/analogs & derivatives , Wastewater/analysis
20.
Anal Chem ; 91(12): 7639-7647, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31144808

ABSTRACT

Steroid estrogens, including 17ß-estradiol (TE2), estrone (TE1), and ethinyl estradiol (TEE2), which are the strongest endocrine disruptors and coexist in the environment, seriously harm the health of organisms; thus, the monitoring of total steroid estrogens (TEs) has attracted growing attention. Herein, a method based on surface-enhanced Raman spectroscopy (SERS) group-targeting detection is established to detect TEs in natural water for the first time. The TEs response detection range and detection limit were 0.01-50 nM and 5 pM, respectively. An anti-interference ability was observed: even if coexisting interfering species were present in the system at 100-fold the concentration of estrogens, the detection error of the method was less than 0.276. In addition, the association constants between the aptamers and TE1, TE2, and TEE2 were similar, and therefore, the recognition of TE1, TE2, and TEE2 by the aptamers was consistent. Furthermore, the interaction sites A44, T72, and G69 between the aptamers and TE1, TE2, and TEE2 were investigated by molecular docking. On this basis, the estrogens in environmental water samples, including animal farm wastewater, maternity hospital wastewater, surface water from near an animal farm, and surface water from near a maternity hospital, were successfully determined.


Subject(s)
Estrogens/analysis , Spectrum Analysis, Raman/methods , Environmental Monitoring/methods , Estradiol/analysis , Estrone/analysis , Ethinyl Estradiol/analysis , Fresh Water/analysis , Humans , Limit of Detection , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL