Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Publication year range
1.
Nature ; 581(7808): 310-315, 2020 05.
Article in English | MEDLINE | ID: mdl-32433607

ABSTRACT

Microbiome community typing analyses have recently identified the Bacteroides2 (Bact2) enterotype, an intestinal microbiota configuration that is associated with systemic inflammation and has a high prevalence in loose stools in humans1,2. Bact2 is characterized by a high proportion of Bacteroides, a low proportion of Faecalibacterium and low microbial cell densities1,2, and its prevalence varies from 13% in a general population cohort to as high as 78% in patients with inflammatory bowel disease2. Reported changes in stool consistency3 and inflammation status4 during the progression towards obesity and metabolic comorbidities led us to propose that these developments might similarly correlate with an increased prevalence of the potentially dysbiotic Bact2 enterotype. Here, by exploring obesity-associated microbiota alterations in the quantitative faecal metagenomes of the cross-sectional MetaCardis Body Mass Index Spectrum cohort (n = 888), we identify statin therapy as a key covariate of microbiome diversification. By focusing on a subcohort of participants that are not medicated with statins, we find that the prevalence of Bact2 correlates with body mass index, increasing from 3.90% in lean or overweight participants to 17.73% in obese participants. Systemic inflammation levels in Bact2-enterotyped individuals are higher than predicted on the basis of their obesity status, indicative of Bact2 as a dysbiotic microbiome constellation. We also observe that obesity-associated microbiota dysbiosis is negatively associated with statin treatment, resulting in a lower Bact2 prevalence of 5.88% in statin-medicated obese participants. This finding is validated in both the accompanying MetaCardis cardiovascular disease dataset (n = 282) and the independent Flemish Gut Flora Project population cohort (n = 2,345). The potential benefits of statins in this context will require further evaluation in a prospective clinical trial to ascertain whether the effect is reproducible in a randomized population and before considering their application as microbiota-modulating therapeutics.


Subject(s)
Dysbiosis/epidemiology , Dysbiosis/prevention & control , Gastrointestinal Microbiome/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Bacteroides/isolation & purification , Cohort Studies , Cross-Sectional Studies , Faecalibacterium/isolation & purification , Feces/microbiology , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Inflammatory Bowel Diseases/microbiology , Male , Obesity/microbiology , Prevalence
2.
Gastroenterology ; 165(3): 670-681, 2023 09.
Article in English | MEDLINE | ID: mdl-37263307

ABSTRACT

BACKGROUND & AIMS: The cause of Crohn's disease (CD) is unknown, but the current hypothesis is that microbial or environmental factors induce gut inflammation in genetically susceptible individuals, leading to chronic intestinal inflammation. Case-control studies of patients with CD have cataloged alterations in the gut microbiome composition; however, these studies fail to distinguish whether the altered gut microbiome composition is associated with initiation of CD or is the result of inflammation or drug treatment. METHODS: In this prospective cohort study, 3483 healthy first-degree relatives (FDRs) of patients with CD were recruited to identify the gut microbiome composition that precedes the onset of CD and to what extent this composition predicts the risk of developing CD. We applied a machine learning approach to the analysis of the gut microbiome composition (based on 16S ribosomal RNA sequencing) to define a microbial signature that associates with future development of CD. The performance of the model was assessed in an independent validation cohort. RESULTS: In the validation cohort, the microbiome risk score (MRS) model yielded a hazard ratio of 2.24 (95% confidence interval, 1.03-4.84; P = .04), using the median of the MRS from the discovery cohort as the threshold. The MRS demonstrated a temporal validity by capturing individuals that developed CD up to 5 years before disease onset (area under the curve > 0.65). The 5 most important taxa contributing to the MRS included Ruminococcus torques, Blautia, Colidextribacter, an uncultured genus-level group from Oscillospiraceae, and Roseburia. CONCLUSION: This study is the first to demonstrate that gut microbiome composition is associated with future onset of CD and suggests that gut microbiome is a contributor in the pathogenesis of CD.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Inflammation , Humans , Inflammation/genetics , Prospective Studies , Faecalibacterium , Leukocyte L1 Antigen Complex
3.
Arch Microbiol ; 206(7): 287, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833010

ABSTRACT

Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.


Subject(s)
Akkermansia , Faecalibacterium , Hepcidins , Macrophages , Humans , Caco-2 Cells , Gastrointestinal Microbiome , Hep G2 Cells , Hepcidins/genetics , Hepcidins/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Iron/metabolism , Macrophage Activation , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , THP-1 Cells
4.
Article in English | MEDLINE | ID: mdl-38848117

ABSTRACT

Two Gram-stain-negative, straight rods, non-motile, asporogenous, catalase-negative and obligately anaerobic butyrate-producing strains, HLW78T and CYL33, were isolated from faecal samples of two healthy Taiwanese adults. Phylogenetic analyses of 16S rRNA and DNA mismatch repair protein MutL (mutL) gene sequences revealed that these two novel strains belonged to the genus Faecalibacterium. On the basis of 16S rRNA and mutL gene sequence similarities, the type strains Faecalibacterium butyricigenerans AF52-21T(98.3-98.1 % and 79.0-79.5 % similarity), Faecalibacterium duncaniae A2-165T(97.8-97.9 % and 70.9-80.1 %), Faecalibacterium hattorii APC922/41-1T(97.1-97.3 % and 80.3-80.5 %), Faecalibacterium longum CM04-06T(97.8-98.0% and 78.3 %) and Faecalibacterium prausnitzii ATCC 27768T(97.3-97.4 % and 82.7-82.9 %) were the closest neighbours to the novel strains HLW78T and CYL33. Strains HLW78T and CYL33 had 99.4 % both the 16S rRNA and mutL gene sequence similarities, 97.9 % average nucleotide identity (ANI), 96.3 % average amino acid identity (AAI), and 80.5 % digital DNA-DNA hybridization (dDDH) values, indicating that these two strains are members of the same species. Phylogenomic tree analysis indicated that strains HLW78T and CYL33 formed an independent robust cluster together with F. prausnitzii ATCC 27768T. The ANI, AAI and dDDH values between strain HLW78T and its closest neighbours were below the species delineation thresholds of 77.6-85.1 %, 71.4-85.2 % and 28.3-30.9 %, respectively. The two novel strains could be differentiated from the type strains of their closest Faecalibacterium species based on their cellular fatty acid compositions, which contained C18 : 1 ω7c and lacked C15 : 0 and C17 : 1 ω6c, respectively. Phenotypic, chemotaxonomic and genotypic test results demonstrated that the two novel strains HLW78T and CYL33 represented a single, novel species within the genus Faecalibacterium, for which the name Faecalibacterium taiwanense sp. nov. is proposed. The type strain is HLW78T (=BCRC 81397T=NBRC 116372T).


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Faecalibacterium , Fatty Acids , Feces , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Feces/microbiology , Humans , RNA, Ribosomal, 16S/genetics , Taiwan , DNA, Bacterial/genetics , Fatty Acids/analysis , Adult , Faecalibacterium/genetics , Faecalibacterium/isolation & purification , Faecalibacterium/classification , Base Composition , MutL Proteins/genetics
5.
Appl Environ Microbiol ; 89(7): e0060623, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37382539

ABSTRACT

Obligate anaerobic bacteria in genus Faecalibacterium are among the most dominant taxa in the colon of healthy individuals and contribute to intestinal homeostasis. A decline in the abundance of this genus is associated with the occurrence of various gastrointestinal disorders, including inflammatory bowel diseases. In the colon, these diseases are accompanied by an imbalance between the generation and elimination of reactive oxygen species (ROS), and oxidative stress is closely linked to disruptions in anaerobiosis. In this work, we explored the impact of oxidative stress on several strains of faecalibacteria. An in silico analysis of complete genomes of faecalibacteria revealed the presence of genes encoding O2- and/or ROS-detoxifying enzymes, including flavodiiron proteins, rubrerythrins, reverse rubrerythrins, superoxide reductases, and alkyl peroxidase. However, the presence and the number of these detoxification systems varied greatly among faecalibacteria. These results were confirmed by O2 stress survival tests, in which we found that strains differed widely in their sensitivity. We showed the protective role of cysteine, which limited the production of extracellular O2•- and improved the survival of Faecalibacterium longum L2-6 under high O2 tension. In the strain F. longum L2-6, we observed that the expression of genes encoding detoxifying enzymes was upregulated in the response to O2 or H2O2 stress but with different patterns of regulation. Based on these results, we propose a first model of the gene regulatory network involved in the response to oxidative stress in F. longum L2-6. IMPORTANCE Commensal bacteria in the genus Faecalibacterium have been proposed for use as next-generation probiotics, but efforts to cultivate and exploit the potential of these strains have been limited by their sensitivity to O2. More broadly, little is known about how commensal and health-associated bacterial species in the human microbiome respond to the oxidative stress that occurs as a result of inflammation in the colon. In this work, we provide insights regarding the genes that encode potential mechanisms of protection against O2 or ROS stress in faecalibacteria, which may facilitate future advances in work with these important bacteria.


Subject(s)
Hydrogen Peroxide , Oxidative Stress , Humans , Reactive Oxygen Species/metabolism , Faecalibacterium/metabolism , Hydrogen Peroxide/metabolism , Proteins/metabolism , Bacteria/metabolism
6.
Article in English | MEDLINE | ID: mdl-35416766

ABSTRACT

Faecalibacterium prausnitzii is one of the most important butyrate-producing bacteria in the human gut. Previous studies have suggested the presence of several phylogenetic groups, with differences at the species level, in the species, and a taxonomic re-evaluation is thus essential for further understanding of ecology of the important human symbiont. Here we examine the phenotypic, physiological, chemotaxonomic and phylogenomic characteristics of six F. prausnitzii strains (BCRC 81047T=ATCC 27768T, A2-165T=JCM 31915T, APC918/95b=JCM 39207, APC942/30-2=JCM 39208, APC924/119=JCM 39209 and APC922/41-1T=JCM 39210T) deposited in public culture collections with two reference strains of Faecalibacterium butyricigenerans JCM 39212T and Faecalibacterium longum JCM 39211T. Faecalibacterium sp. JCM 17207T isolated from caecum of broiler chicken was also included. Three strains of F. prausnitzii (BCRC 81047T, JCM 39207 and JCM 39209) shared more than 96.6 % average nucleotide identity (ANI) and 69.6 % digital DNA-DNA hybridization (dDDH) values, indicating that the three strains are members of the same species. On the other hand, the remaining three strains of F. prausnitzii (JCM 31915T, JCM 39208 and JCM 39210T) were clearly separated from the above three strains based on the ANI and dDDH values. Rather, JCM 39208 showed ANI and dDDH values over the cut-off values of species discrimination (>70 % dDDH and >95-96 % ANI) with F. longum JCM 39211T, whereas JCM 31915T, JCM 39210T and JCM 17207T did not share dDDH and ANI values over the currently accepted cut-off values with any of the tested strains, including among them. Furthermore, the cellular fatty acid patterns of these strains were slightly different from other F. prausnitzii strains. Based on the collected data, F. prausnitzii JCM 31915T, F. prausnitzii JCM 39210T and Faecalibacterium sp. JCM 17207T represent three novel species of the genus Faecalibacterium, for which the names Faecalibacterium duncaniae sp. nov. (type strain JCM 31915T=DSM 17677T=A2-165T), Faecalibacterium hattorii sp. nov. (type strain JCM 39210T=DSM 107841T=APC922/41-1T) and Faecalibacterium gallinarum sp. nov. (type strain JCM 17207T=DSM 23680T=ic1379T) are proposed.


Subject(s)
Chickens , Fatty Acids , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Faecalibacterium , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
Dig Dis ; 40(6): 793-795, 2022.
Article in English | MEDLINE | ID: mdl-35168239

ABSTRACT

Faecalibacterium and Roseburia are major producers of butyrate in the intestine. A reduced abundance of the organisms and a concurrent reduction in butyrate levels are associated with inflammatory bowel disease.


Subject(s)
Butyrates , Inflammatory Bowel Diseases , Humans , Faecalibacterium , Feces/microbiology
8.
Gut ; 70(6): 1162-1173, 2021 06.
Article in English | MEDLINE | ID: mdl-32998876

ABSTRACT

OBJECTIVE: Altered bacterial composition is associated with disease progression in cirrhosis but the role of virome, especially phages, is unclear. DESIGN: Cross-sectional and pre/post rifaximin cohorts were enrolled. Cross-sectional: controls and cirrhotic outpatients (compensated, on lactulose (Cirr-L), on rifaximin (Cirr-LR)) were included and followed for 90-day hospitalisations. Pre/post: compensated cirrhotics underwent stool collection pre/post 8 weeks of rifaximin. Stool metagenomics for bacteria and phages and their correlation networks were analysed in controls versus cirrhosis, within cirrhotics, hospitalised/not and pre/post rifaximin. RESULTS: Cross-sectional: 40 controls and 163 cirrhotics (63 compensated, 43 Cirr-L, 57 Cirr-LR) were enrolled. Cirr-L/LR groups were similar on model for end-stage liver disease (MELD) score but Cirr-L developed greater hospitalisations versus Cirr-LR (56% vs 30%, p=0.008). Bacterial alpha/beta diversity worsened from controls through Cirr-LR. While phage alpha diversity was similar, beta diversity was different between groups. Autochthonous bacteria linked negatively, pathobionts linked positively with MELD but only modest phage-MELD correlations were seen. Phage-bacterial correlation network complexity was highest in controls, lowest in Cirr-L and increased in Cirr-LR. Microviridae and Faecalibacterium phages were linked with autochthonous bacteria in Cirr-LR, but not Cirr-L hospitalised patients had greater pathobionts, lower commensal bacteria and phages focused on Streptococcus, Lactococcus and Myoviridae. Pre/post: No changes in alpha/beta diversity of phages or bacteria were seen postrifaximin. Phage-bacterial linkages centred around urease-producing Streptococcus species collapsed postrifaximin. CONCLUSION: Unlike bacteria, faecal phages are sparsely linked with cirrhosis characteristics and 90-day outcomes. Phage and bacterial linkages centred on urease-producing, ammonia-generating Streptococcus species were affected by disease progression and rifaximin therapy and were altered in patients who experienced 90-day hospitalisations.


Subject(s)
Anti-Bacterial Agents/therapeutic use , End Stage Liver Disease/microbiology , Firmicutes/virology , Hepatic Encephalopathy/microbiology , Liver Cirrhosis/microbiology , Rifaximin/therapeutic use , Aged , Anti-Bacterial Agents/pharmacology , Cross-Sectional Studies , Disease Progression , End Stage Liver Disease/etiology , Faecalibacterium/genetics , Faecalibacterium/virology , Feces/microbiology , Female , Firmicutes/genetics , Gastrointestinal Agents/therapeutic use , Hospitalization , Humans , Lactococcus/genetics , Lactococcus/virology , Lactulose/therapeutic use , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Male , Metagenome/drug effects , Metagenomics , Microbial Interactions , Microviridae/genetics , Middle Aged , Myoviridae/genetics , Patient Acuity , Rifaximin/pharmacology , Streptococcus/genetics , Streptococcus/virology , Virome/drug effects
9.
Psychosom Med ; 83(7): 679-692, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34117156

ABSTRACT

OBJECTIVE: This systematic review sought to comprehensively summarize gut microbiota research in psychiatric disorders following PRISMA guidelines. METHODS: Literature searches were performed on databases using keywords involving gut microbiota and psychiatric disorders. Articles in English with human participants up until February 13, 2020, were reviewed. Risk of bias was assessed using a modified Newcastle-Ottawa Scale for microbiota studies. RESULTS: Sixty-nine of 4231 identified studies met the inclusion criteria for extraction. In most studies, gut microbiota composition differed between individuals with psychiatric disorders and healthy controls; however, limited consistency was observed in the taxonomic profiles. At the genus level, the most replicated findings were higher abundance of Bifidobacterium and lower abundance of Roseburia and Faecalibacterium among patients with psychiatric disorders. CONCLUSIONS: Gut bacteria that produce short-chain fatty acids, such as Roseburia and Faecalibacterium, could be less abundant in patients with psychiatric disorders, whereas commensal genera, for example, Bifidobacterium, might be more abundant compared with healthy controls. However, most included studies were hampered by methodological shortcomings including small sample size, unclear diagnostics, failure to address confounding factors, and inadequate bioinformatic processing, which might contribute to inconsistent results. Based on our findings, we provide recommendations to improve quality and comparability of future microbiota studies in psychiatry.


Subject(s)
Gastrointestinal Microbiome , Mental Disorders , Bacteria , Bifidobacterium , Faecalibacterium , Humans
10.
Microb Cell Fact ; 20(1): 233, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34963452

ABSTRACT

BACKGROUND: Anxiety and depression are complications in Irritable bowel syndrome (IBS) patients. In this study, we recruited 18 IBS patients with mild-modest anxiety and depression behaviors, and after the screening, we defined the FMT treatment group (n = 9) and the control group (n = 9). The IBS symptom severity scale (IBS-SSS), Hamilton Anxiety Rating Scale (HAM-A), Hamilton Depression Rating Scale (HAM-D), Irritable Bowel Syndrome Quality of Life (IBS-QOL) and Bristol stool scale (BSS) were evaluated one week before FMT (baseline), one-week-, one-month-, two-month-, and three-month-following FMT. Meanwhile, we determined the SCFAs in the patient's feces and serum and continued the metagenomic analysis of the microorganisms in the patient's feces. RESULTS: The results showed that the patient's anxiety and depression behavior gradually improved with FMT treatment. Moreover, the illness and quality of life had also been relieved significantly. The content of isovaleric acid and valeric acid was significantly reduced in the FMT group compared to the Col group. Metagenomic analysis showed that FMT treatment decreased the abundance of Faecalibacterium, Eubacterium and Escherichia. From KEGG functional analysis, we confirmed that the top five abundant pathways were "bacterial chemotaxis, "flagellar assembly", "glycine, serine and threonine metabolism", "apoptosis", and "bacterial invasion of epithelial cells". CONCLUSIONS: FMT treatment can effectively alleviate the anxiety and depression behaviors of IBS-D patients and reduce the IBS-SSS score, indicating that FMT can improve patients' symptoms. The high throughput sequencing results show that Bifidobacterium and Escherichia play the most critical role in the formation and recovery of IBS-D patients. The GC/MS data indicated that faeces isovaleric acid and valeric acid might be more suitable as a metabolic indicator of IBS-D remission. Trial registration ChiCTR, ChiCTR1900024924, Registered 3 August 2019, https://www.chictr.org.cn/showproj.aspx?proj=41676 .


Subject(s)
Anxiety/microbiology , Anxiety/therapy , Depression/microbiology , Depression/therapy , Fecal Microbiota Transplantation , Irritable Bowel Syndrome/microbiology , Metagenome , Adult , Aged , Diarrhea/microbiology , Diarrhea/therapy , Escherichia/classification , Eubacterium/classification , Faecalibacterium/classification , Feces/microbiology , Female , Gastrointestinal Microbiome , Hemiterpenes/metabolism , High-Throughput Nucleotide Sequencing , Humans , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/therapy , Male , Middle Aged , Pentanoic Acids/metabolism , Quality of Life
11.
Gut ; 69(3): 513-522, 2020 03.
Article in English | MEDLINE | ID: mdl-31900289

ABSTRACT

OBJECTIVE: Pre-eclampsia (PE) is one of the malignant metabolic diseases that complicate pregnancy. Gut dysbiosis has been identified for causing metabolic diseases, but the role of gut microbiome in the pathogenesis of PE remains unknown. DESIGN: We performed a case-control study to compare the faecal microbiome of PE and normotensive pregnant women by 16S ribosomal RNA (rRNA) sequencing. To address the causative relationship between gut dysbiosis and PE, we used faecal microbiota transplantation (FMT) in an antibiotic-treated mouse model. Finally, we determined the microbiome translocation and immune responses in human and mouse placental samples by 16S rRNA sequencing, quantitative PCR and in situ hybridisation. RESULTS: Patients with PE showed reduced bacterial diversity with obvious dysbiosis. Opportunistic pathogens, particularly Fusobacterium and Veillonella, were enriched, whereas beneficial bacteria, including Faecalibacterium and Akkermansia, were markedly depleted in the PE group. The abundances of these discriminative bacteria were correlated with blood pressure (BP), proteinuria, aminotransferase and creatinine levels. On successful colonisation, the gut microbiome from patients with PE triggered a dramatic, increased pregestational BP of recipient mice, which further increased after gestation. In addition, the PE-transplanted group showed increased proteinuria, embryonic resorption and lower fetal and placental weights. Their T regulatory/helper-17 balance in the small intestine and spleen was disturbed with more severe intestinal leakage. In the placenta of both patients with PE and PE-FMT mice, the total bacteria, Fusobacterium, and inflammatory cytokine levels were significantly increased. CONCLUSIONS: This study suggests that the gut microbiome of patients with PE is dysbiotic and contributes to disease pathogenesis.


Subject(s)
Bacterial Translocation , Dysbiosis/complications , Gastrointestinal Microbiome , Placenta/immunology , Placenta/microbiology , Pre-Eclampsia/microbiology , Animals , Blood Pressure , CD4 Lymphocyte Count , Case-Control Studies , Chemokines/genetics , Creatinine/blood , Cytokines/genetics , Disease Models, Animal , Dysbiosis/physiopathology , Faecalibacterium , Feces/microbiology , Female , Fetal Resorption/microbiology , Fusobacteria , Humans , Intestine, Small/immunology , Mice , Placenta/metabolism , Pre-Eclampsia/physiopathology , Pregnancy , Proteinuria/urine , RNA, Messenger/metabolism , T-Lymphocytes, Regulatory , Th17 Cells , Veillonella
12.
J Cell Mol Med ; 24(22): 13356-13369, 2020 11.
Article in English | MEDLINE | ID: mdl-33058365

ABSTRACT

Alternations of gut microbiota (GM) in atrial fibrillation (AF) with elevated diversity, perturbed composition and function have been described previously. The current work aimed to assess the association of GM composition with AF recurrence (RAF) after ablation based on metagenomic sequencing and metabolomic analyses and to construct a GM-based predictive model for RAF. Compared with non-AF controls (50 individuals), GM composition and metabolomic profile were significantly altered between patients with recurrent AF (17 individuals) and non-RAF group (23 individuals). Notably, discriminative taxa between the non-RAF and RAF groups, including the families Nitrosomonadaceae and Lentisphaeraceae, the genera Marinitoga and Rufibacter and the species Faecalibacterium spCAG:82, Bacillus gobiensis and Desulfobacterales bacterium PC51MH44, were selected to construct a taxonomic scoring system based on LASSO analysis. After incorporating the clinical factors of RAF, taxonomic score retained a significant association with RAF incidence (HR = 2.647, P = .041). An elevated AUC (0.954) and positive NRI (1.5601) for predicting RAF compared with traditional clinical scoring (AUC = 0.6918) were obtained. The GM-based taxonomic scoring system theoretically improves the model performance, and the nomogram and decision curve analysis validated the clinical value of the predicting model. These data provide novel possibility that incorporating the GM factor into future recurrent risk stratification.


Subject(s)
Atrial Fibrillation/microbiology , Atrial Fibrillation/pathology , Gastrointestinal Microbiome , Gene Expression Profiling , Metabolome , Aged , Area Under Curve , Bacillus , Faecalibacterium , Female , Humans , Incidence , Kaplan-Meier Estimate , Male , Metabolomics , Middle Aged , Nitrosomonadaceae , Recurrence , Risk Assessment , Treatment Outcome
13.
Gastroenterology ; 157(1): 97-108, 2019 07.
Article in English | MEDLINE | ID: mdl-30940523

ABSTRACT

BACKGROUND & AIMS: Irritable bowel syndrome (IBS) is common but difficult to treat. Altering the gut microbiota has been proposed as a strategy for treatment of IBS, but the association between the gut microbiome and IBS symptoms has not been well established. We performed a systematic review to explore evidence for this association. METHODS: We searched databases, including MEDLINE, EMBASE, Cochrane CDSR, and CENTRAL, through April 2, 2018 for case-control studies comparing the fecal or colon microbiomes of adult or pediatric patients with IBS with microbiomes of healthy individuals (controls). The primary outcome was differences in specific gut microbes between patients with IBS and controls. RESULTS: The search identified 2631 citations; 24 studies from 22 articles were included. Most studies evaluated adults presenting with various IBS subtypes. Family Enterobacteriaceae (phylum Proteobacteria), family Lactobacillaceae, and genus Bacteroides were increased in patients with IBS compared with controls, whereas uncultured Clostridiales I, genus Faecalibacterium (including Faecalibacterium prausnitzii), and genus Bifidobacterium were decreased in patients with IBS. The diversity of the microbiota was either decreased or not different in IBS patients compared with controls. More than 40% of included studies did not state whether cases and controls were comparable (did not describe sex and/or age characteristics). CONCLUSIONS: In a systematic review, we identified specific bacteria associated with microbiomes of patients with IBS vs controls. Studies are needed to determine whether these microbes are a product or cause of IBS.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome/microbiology , Bacteroides , Bifidobacterium , Clostridiales , Enterobacteriaceae , Faecalibacterium , Humans , Lactobacillaceae
14.
Proc Natl Acad Sci U S A ; 114(3): E367-E375, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28049818

ABSTRACT

Directed modulation of the colonic bacteria to metabolize lactose effectively is a potentially useful approach to improve lactose digestion and tolerance. A randomized, double-blind, multisite placebo-controlled trial conducted in human subjects demonstrated that administration of a highly purified (>95%) short-chain galactooligosaccharide (GOS), designated "RP-G28," significantly improved clinical outcomes for lactose digestion and tolerance. In these individuals, stool samples were collected pretreatment (day 0), after GOS treatment (day 36), and 30 d after GOS feeding stopped and consumption of dairy products was encouraged (day 66). In this study, changes in the fecal microbiome were investigated using 16S rRNA amplicon pyrosequencing and high-throughput quantitative PCR. At day 36, bifidobacterial populations were increased in 27 of 30 of GOS subjects (90%), demonstrating a bifidogenic response in vivo. Relative abundance of lactose-fermenting Bifidobacterium, Faecalibacterium, and Lactobacillus were significantly increased in response to GOS. When dairy was introduced into the diet, lactose-fermenting Roseburia species increased from day 36 to day 66. The results indicated a definitive change in the fecal microbiome of lactose-intolerant individuals, increasing the abundance of lactose-metabolizing bacteria that were responsive to dietary adaptation to GOS. This change correlated with clinical outcomes of improved lactose tolerance.


Subject(s)
Gastrointestinal Microbiome/drug effects , Lactose/metabolism , Oligosaccharides/administration & dosage , Adult , Bifidobacterium/drug effects , Colon/metabolism , Double-Blind Method , Faecalibacterium/drug effects , Feces/microbiology , Female , Humans , Lactobacillus/drug effects , Male , RNA, Ribosomal, 16S/metabolism
15.
J Dairy Sci ; 103(5): 4262-4274, 2020 May.
Article in English | MEDLINE | ID: mdl-32171510

ABSTRACT

We previously demonstrated that dairy calves having access to drinking water since birth (W0) achieved greater body weight, fiber digestibility, and feed efficiency than those that first received drinking water at 17 d of age (W17). Since gut microbiota composition could be linked to growth and development of animals, the objective of this study was to examine the effect of offering drinking water to newborn calves on composition of bacteria in the gut using a fecal microbiota analysis. Fresh feces were collected directly from the rectum of calves in W0 (n = 14) and W17 (n = 15) at 2, 6, and 10 wk of age. All of the calves were fed pasteurized waste milk, weaned at 7 wk of age, and offered tap water according to the treatment. The DNA was sequenced using 16S rRNA gene-amplicon sequencing on an Illumina MiSeq system (Illumina Inc., San Diego, CA). The sequences were clustered into operational taxonomic units (OTU) with a 99% similarity threshold. Treatment effects on α-diversity indices and relative abundance of the 10 most abundant genera were analyzed using GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). Statistical significance (q-value) of treatment effects on the 50 most abundant OTU was determined with a false discovery rate analysis. At 2 wk of age, W0 had a greater number of observed OTU (5,908 vs. 4,698) and species richness (Chao 1 index) than W17. The number of OTU and richness indices increased from wk 2 to 6, but the increment of W17 was greater than that of W0. The Shannon and inverse-Simpson indices increased linearly with age, but no difference was observed between W0 and W17 at any time point. The Firmicutes to Bacteroidetes ratios were also similar at every time point but decreased markedly when calves were weaned. The relative abundance of genera Faecalibacterium and Bacteroides was greater in W0 than W17 at 2 wk of age. The genus Faecalibacterium continued to be more abundant in W0 than W17 at 6 wk of age but had similar abundance 3 wk after weaning (10 wk of age). The abundance of Faecalibacterium at wk 6 was positively correlated with apparent total-tract digestibility of acid detergent fiber at 10 wk of age. Calves receiving water since birth had greater abundance of OTU related to Faecalibacterium prausnitzii, and Bifidobacterium breve at 6 wk of age (q < 0.085). These species are known to improve growth in preweaned calves. The abundance of none of the genera and OTU was different between W0 at W17 at 10 wk of age (q > 0.100). Overall, beginning to offer drinking water at birth has a potential to modulate gut microbiota composition and thereby positively affect performance of young dairy heifer calves (≤10 wk of age).


Subject(s)
Bifidobacterium/growth & development , Cattle , Drinking Water , Faecalibacterium/growth & development , Gastrointestinal Microbiome , Animal Feed/analysis , Animals , Bifidobacterium/genetics , Biodiversity , Body Weight , Dietary Fiber , Feces/microbiology , Female , RNA, Ribosomal, 16S , Weaning
16.
Am J Drug Alcohol Abuse ; 46(1): 4-12, 2020.
Article in English | MEDLINE | ID: mdl-31689142

ABSTRACT

Background: A growing body of evidence highlights the role of the intestine in the development of various alcohol use disorder (AUD) complications. The intestinal microbiome has been proposed as an essential factor in mediating the development of AUD complications such as alcoholic liver disease.Objectives: To provide a comprehensive description of alcohol-induced intestinal microbiome alterations.Methods: We conducted a systematic review of studies investigating the effect of alcohol on the intestinal microbiome using the PRISMA checklist. We searched the Medline database on the PubMed platform for studies determining the effect of alcohol on microbiota in individuals with AUD. The manual search included references of retrieved articles. Only human studies examining the intestinal bacterial microbiome using 16S ribosomal RNA sequencing were included. Data comparing relative abundances of bacteria comprising intestinal microbiota was extracted.Results: We retrieved 17 studies investigating intestinal microbiome alterations in individuals with AUD. Intestinal microbiome alterations in individuals with AUD included depletion of Akkermansia muciniphila and Faecalibacterium prausnitzii and an increase of Enterobacteriaceae. At the phylum level, a higher abundance of Proteobacteria and lower of Bacteroidetes were found. Mixed results regarding Bifidobacterium were obtained. Several species of short-chain fatty acids producing bacteria had a lower abundance in individuals with alcohol use disorder.Conclusion: Intestinal microbiome alterations associated with dysbiosis in individuals with AUD are generally consistent across studies, making it a promising target in potential AUD complications treatment.


Subject(s)
Alcoholism/microbiology , Bacterial Physiological Phenomena/drug effects , Dysbiosis/microbiology , Gastrointestinal Microbiome , Akkermansia/drug effects , Bacteria/classification , Bacteroidetes/drug effects , Enterobacteriaceae/drug effects , Faecalibacterium/drug effects , Fibrosis/microbiology , Hepatitis, Alcoholic/microbiology , Humans , Proteobacteria/drug effects
17.
Pediatr Hematol Oncol ; 37(6): 475-488, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32427521

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer with high cure rates leading to rising numbers of long-term survivors. Adult survivors of childhood ALL are at increased risk of obesity, cardiovascular disease, and other chronic illnesses. We hypothesize that ALL therapy is associated with long-term gut microbiome alterations that contribute to predisposition to chronic medical conditions. We conducted a pilot study to test whether differences can be detected between stool microbiota of pediatric ALL survivors and their siblings. Stool samples were collected from 38 individuals under age 19 who were at least 1 year after completion of therapy for ALL. Stool samples collected from 16 healthy siblings served as controls. 16S ribosomal RNA gene sequencing was performed on the stool samples. Comparing microbiota of survivors to sibling controls, no statistically significant differences were found in alpha or beta diversity. However, among the top 10 operational taxonomic units (OTUs) from component 1 in sparse partial least squares discriminant analysis (sPLS-DA) with different relative abundance in survivors versus siblings, OTUs mapping to the genus Faecalibacterium were depleted in survivors. Differences in gut microbial composition were found between pediatric survivors of childhood ALL and their siblings. Specifically, the protective Faecalibacterium is depleted in survivors, which is reminiscent of gut microbiota alteration found in adult survivors of childhood ALL and reported in obesity, suggesting that microbiota alterations in pediatric ALL survivors start in childhood and may play a role in predisposition to chronic illness in later years of survivorship.


Subject(s)
Cancer Survivors , Faecalibacterium , Feces/microbiology , Gastrointestinal Microbiome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/microbiology , Siblings , Adolescent , Child , Child, Preschool , Faecalibacterium/classification , Faecalibacterium/growth & development , Female , Humans , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
18.
Gut ; 68(8): 1417-1429, 2019 08.
Article in English | MEDLINE | ID: mdl-30782617

ABSTRACT

OBJECTIVE: To investigate whether diets differing in fat content alter the gut microbiota and faecal metabolomic profiles, and to determine their relationship with cardiometabolic risk factors in healthy adults whose diet is in a transition from a traditional low-fat diet to a diet high in fat and reduced in carbohydrate. METHODS: In a 6-month randomised controlled-feeding trial, 217 healthy young adults (aged 18-35 years; body mass index <28 kg/m2; 52% women) who completed the whole trial were included. All the foods were provided during the intervention period. The three isocaloric diets were: a lower-fat diet (fat 20% energy), a moderate-fat diet (fat 30% energy) and a higher-fat diet (fat 40% energy). The effects of the dietary interventions on the gut microbiota, faecal metabolomics and plasma inflammatory factors were investigated. RESULTS: The lower-fat diet was associated with increased α-diversity assessed by the Shannon index (p=0.03), increased abundance of Blautia (p=0.007) and Faecalibacterium (p=0.04), whereas the higher-fat diet was associated with increased Alistipes (p=0.04), Bacteroides (p<0.001) and decreased Faecalibacterium (p=0.04). The concentration of total short-chain fatty acids was significantly decreased in the higher-fat diet group in comparison with the other groups (p<0.001). The cometabolites p-cresol and indole, known to be associated with host metabolic disorders, were decreased in the lower-fat diet group. In addition, the higher-fat diet was associated with faecal enrichment in arachidonic acid and the lipopolysaccharide biosynthesis pathway as well as elevated plasma proinflammatory factors after the intervention. CONCLUSION: Higher-fat consumption by healthy young adults whose diet is in a state of nutrition transition appeared to be associated with unfavourable changes in gut microbiota, faecal metabolomic profiles and plasma proinflammatory factors, which might confer adverse consequences for long-term health outcomes. TRIAL REGISTRATION NUMBER: NCT02355795; Results.


Subject(s)
Bacteroides , Cardiovascular Diseases , Diet, High-Fat/adverse effects , Faecalibacterium , Feces/microbiology , Gastrointestinal Microbiome/physiology , Adult , Bacteroides/isolation & purification , Bacteroides/physiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/prevention & control , China , Dietary Fats , Faecalibacterium/isolation & purification , Faecalibacterium/physiology , Female , Healthy Volunteers , Humans , Inflammation/blood , Male , Metabolomics/methods , Nutritional Status , Outcome Assessment, Health Care
19.
Gac Med Mex ; 155(5): 447-452, 2019.
Article in English | MEDLINE | ID: mdl-32091022

ABSTRACT

INTRODUCTION: Common variable immunodeficiency (CVID) is the main symptomatic primary immunodeficiency and is associated with complex immune disorders. Gut microbiota interacts closely with the immune system, and intestinal dysbiosis is related to multiple diseases. OBJECTIVE: To describe for the first time the composition of gut microbiota in Mexican patients with CVID. METHODS: Fecal samples from five patients with CVID were collected and massive sequencing of the V3-V4 region of 16S rRNA gene was carried out using illumina technology. RESULTS: Bacterial relative abundance was observed at all taxonomic levels. Firmicutes, Actinobacteria and Verrucomicrobia were the predominant phyla. The Clostridia class and the Clostridial order were the most common in their respective taxon; the Ruminococcaceae family predominated. A total of 166 genera were reported, with the most abundant being Faecalibacterium. Five species were identified, but only Bifidobacterium longum was present in all patients. CONCLUSIONS: Unlike healthy subjects' gut microbiota, where Firmicutes and Bacteroidetes predominate, the microbiota of the patients with CVID considered in this study was abundant in Firmicutes, Actinobacteria and Verrucomicrobia. The low presence of Bacteroidetes and high abundance of Firmicutes might indicate the existence of intestinal dysbiosis in these patients.


Subject(s)
Common Variable Immunodeficiency/microbiology , Gastrointestinal Microbiome , Actinobacteria/isolation & purification , Adult , Bacteria/classification , Bacteroidetes/isolation & purification , Bifidobacterium longum/isolation & purification , Clostridiales/isolation & purification , Clostridium/isolation & purification , Dysbiosis/immunology , Dysbiosis/microbiology , Faecalibacterium/isolation & purification , Feces/microbiology , Firmicutes/isolation & purification , Gastrointestinal Microbiome/immunology , Humans , Mexico , RNA, Ribosomal, 16S/genetics , Ruminococcus/isolation & purification , Verrucomicrobia/isolation & purification
20.
BMC Microbiol ; 18(1): 28, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29621980

ABSTRACT

BACKGROUND: We and others have previously shown that alterations in the mammalian gut microbiome are associated with diet, notably early life exposure to a maternal high fat diet (HFD). Here, we aimed to further these studies by examining alterations in the gut microbiome of juvenile Japanese macaques (Macaca fuscata) that were exposed to a maternal HFD, weaned onto a control diet, and later supplemented with a synbiotic comprised of psyllium seed and Enterococcus and Lactobacillus species. RESULTS: Eighteen month old offspring (n = 7) of 36% HFD fed dams were fed a control (14% fat) diet post weaning, then were synbiotic supplemented for 75 days and longitudinal stool and serum samples were obtained. All stool samples were subjected to 16S rRNA metagenomic sequencing, and microbiome profiles and serum lipids and triglycerides were compared to untreated, healthy age matched and diet matched controls (n = 7). Overall, 16S-based metagenomic analysis revealed that supplementation exerted minimal alterations to the gut microbiome including transient increased abundance of Lactobacillus species and decreased abundance of few bacterial genera, including Faecalibacterium and Anaerovibrio. However, serum lipid analysis revealed significant decreases in triglycerides, cholesterol, and LDL (p < 0.05). Nevertheless, supplemented juveniles challenged 4 months later were not protected from HFD-induced gut dysbiosis. CONCLUSIONS: Synbiotic supplementation is temporally associated with alterations in the gut microbiome and host lipid profiles of juvenile Japanese macaques that were previously exposed to a maternal HFD. Despite these presumptive temporal benefits, a protective effect against later HFD-challenge gut dysbiosis was not observed.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Diet, High-Fat , Gastrointestinal Microbiome/physiology , Primates/microbiology , Synbiotics , Animals , Bacteria/genetics , Dysbiosis/microbiology , Enterococcus/physiology , Faecalibacterium , Feces/microbiology , Female , Firmicutes , Gastrointestinal Microbiome/genetics , Lactobacillus/physiology , Lipids/blood , Macaca/microbiology , Male , Metabolic Networks and Pathways , Metagenomics , Probiotics , Psyllium , RNA, Ribosomal, 16S/genetics , Species Specificity , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL