Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90.098
Filter
Add more filters

Publication year range
1.
Cell ; 185(8): 1287-1289, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35385686

ABSTRACT

From mRNA vaccines to community interventions in global child health, the 2022 Canada Gairdner awards demonstrate the importance of fundamental science and its translation into improved human health and well-being.


Subject(s)
Awards and Prizes , Biomedical Research , Canada , Child , Family , Global Health , Humans
2.
Cell ; 179(6): 1424-1435.e8, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31761530

ABSTRACT

The increasing proportion of variance in human complex traits explained by polygenic scores, along with progress in preimplantation genetic diagnosis, suggests the possibility of screening embryos for traits such as height or cognitive ability. However, the expected outcomes of embryo screening are unclear, which undermines discussion of associated ethical concerns. Here, we use theory, simulations, and real data to evaluate the potential gain of embryo screening, defined as the difference in trait value between the top-scoring embryo and the average embryo. The gain increases very slowly with the number of embryos but more rapidly with the variance explained by the score. Given current technology, the average gain due to screening would be ≈2.5 cm for height and ≈2.5 IQ points for cognitive ability. These mean values are accompanied by wide prediction intervals, and indeed, in large nuclear families, the majority of children top-scoring for height are not the tallest.


Subject(s)
Embryo, Mammalian/metabolism , Genetic Testing , Multifactorial Inheritance/genetics , Adult , Family , Genome-Wide Association Study , Humans , Phenotype
3.
Cell ; 173(1): 6-7, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29570998

ABSTRACT

By examining the genomes of present-day people from Asia, researchers show that modern humans met and interbred with Denisovans, distant relatives to Neanderthals, on at least two occasions. As a result, people today carry DNA from two different Denisovan populations.


Subject(s)
Family , Asia , Humans
4.
Cell ; 175(3): 848-858.e6, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30318150

ABSTRACT

In familial searching in forensic genetics, a query DNA profile is tested against a database to determine whether it represents a relative of a database entrant. We examine the potential for using linkage disequilibrium to identify pairs of profiles as belonging to relatives when the query and database rely on nonoverlapping genetic markers. Considering data on individuals genotyped with both microsatellites used in forensic applications and genome-wide SNPs, we find that ∼30%-32% of parent-offspring pairs and ∼35%-36% of sib pairs can be identified from the SNPs of one member of the pair and the microsatellites of the other. The method suggests the possibility of performing familial searches of microsatellite databases using query SNP profiles, or vice versa. It also reveals that privacy concerns arising from computations across multiple databases that share no genetic markers in common entail risks, not only for database entrants, but for their close relatives as well.


Subject(s)
Family , Forensic Genetics/methods , Genetics, Population/methods , Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Female , Humans , Linkage Disequilibrium , Male , Microsatellite Repeats , Models, Genetic , Models, Statistical , Pedigree
5.
Cell ; 172(5): 897-909.e21, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474918

ABSTRACT

X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease that is endemic to the Philippines and is associated with a founder haplotype. We integrated multiple genome and transcriptome assembly technologies to narrow the causal mutation to the TAF1 locus, which included a SINE-VNTR-Alu (SVA) retrotransposition into intron 32 of the gene. Transcriptome analyses identified decreased expression of the canonical cTAF1 transcript among XDP probands, and de novo assembly across multiple pluripotent stem-cell-derived neuronal lineages discovered aberrant TAF1 transcription that involved alternative splicing and intron retention (IR) in proximity to the SVA that was anti-correlated with overall TAF1 expression. CRISPR/Cas9 excision of the SVA rescued this XDP-specific transcriptional signature and normalized TAF1 expression in probands. These data suggest an SVA-mediated aberrant transcriptional mechanism associated with XDP and may provide a roadmap for layered technologies and integrated assembly-based analyses for other unsolved Mendelian disorders.


Subject(s)
Dystonic Disorders/genetics , Genetic Diseases, X-Linked/genetics , Genome, Human , Transcriptome/genetics , Alternative Splicing/genetics , Alu Elements/genetics , Base Sequence , CRISPR-Cas Systems/genetics , Cohort Studies , Family , Female , Genetic Loci , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Introns/genetics , Male , Minisatellite Repeats/genetics , Models, Genetic , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Neural Stem Cells/metabolism , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Short Interspersed Nucleotide Elements , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism
6.
Nature ; 612(7939): 292-300, 2022 12.
Article in English | MEDLINE | ID: mdl-36385527

ABSTRACT

Teosinte, the wild ancestor of maize (Zea mays subsp. mays), has three times the seed protein content of most modern inbreds and hybrids, but the mechanisms that are responsible for this trait are unknown1,2. Here we use trio binning to create a contiguous haplotype DNA sequence of a teosinte (Zea mays subsp. parviglumis) and, through map-based cloning, identify a major high-protein quantitative trait locus, TEOSINTE HIGH PROTEIN 9 (THP9), on chromosome 9. THP9 encodes an asparagine synthetase 4 enzyme that is highly expressed in teosinte, but not in the B73 inbred, in which a deletion in the tenth intron of THP9-B73 causes incorrect splicing of THP9-B73 transcripts. Transgenic expression of THP9-teosinte in B73 significantly increased the seed protein content. Introgression of THP9-teosinte into modern maize inbreds and hybrids greatly enhanced the accumulation of free amino acids, especially asparagine, throughout the plant, and increased seed protein content without affecting yield. THP9-teosinte seems to increase nitrogen-use efficiency, which is important for promoting a high yield under low-nitrogen conditions.


Subject(s)
Nitrogen , Zea mays , Zea mays/genetics , Family , Seeds/genetics
7.
Nature ; 610(7932): 519-525, 2022 10.
Article in English | MEDLINE | ID: mdl-36261548

ABSTRACT

Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.


Subject(s)
Neanderthals , Animals , Female , Humans , Caves , Genome/genetics , Hybridization, Genetic , Neanderthals/genetics , Siberia , DNA, Mitochondrial/genetics , Y Chromosome/genetics , Male , Family , Homozygote
8.
EMBO J ; 42(13): e113796, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37161785

ABSTRACT

In the last two decades, the term synaptopathy has been largely used to underline the concept that impairments of synaptic structure and function are the major determinant of brain disorders, including neurodevelopmental disorders. This notion emerged from the progress made in understanding the genetic architecture of neurodevelopmental disorders, which highlighted the convergence of genetic risk factors onto molecular pathways specifically localized at the synapse. However, the multifactorial origin of these disorders also indicated the key contribution of environmental factors. It is well recognized that inflammation is a risk factor for neurodevelopmental disorders, and several immune molecules critically contribute to synaptic dysfunction. In the present review, we highlight this concept, which we define by the term "immune-synaptopathy," and we discuss recent evidence suggesting a bi-directional link between the genetic architecture of individuals and maternal activation of the immune system in modulating brain developmental trajectories in health and disease.


Subject(s)
Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Synapses/metabolism , Family
9.
Annu Rev Genomics Hum Genet ; 24: 333-346, 2023 08 25.
Article in English | MEDLINE | ID: mdl-36630592

ABSTRACT

This article reviews evolving legal implications for clinicians and researchers as genomics is used more widely in both the clinic and in translational research, reflecting rapid changes in scientific knowledge as well as the surrounding cultural and political environment. Professionals will face new and changing duties to make or act upon a genetic diagnosis, address direct-to-consumer genetic testing in patient care, consider the health implications of results for patients' family members, and recontact patients when test results change over time. Professional duties in reproductive genetic testing will need to be recalibrated in response to disruptive changes to reproductive rights in the United States. We also review the debate over who controls the flow of genetic information and who is responsible for its protection, considering the globally influential European Union General Data Protection Regulation and the rapidly evolving data privacy law landscape of the United States.


Subject(s)
Ambulatory Care Facilities , Direct-To-Consumer Screening and Testing , Humans , European Union , Family , Genomics
10.
Am J Hum Genet ; 110(5): 895-900, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36990084

ABSTRACT

Genome sequencing (GS) is a powerful test for the diagnosis of rare genetic disorders. Although GS can enumerate most non-coding variation, determining which non-coding variants are disease-causing is challenging. RNA sequencing (RNA-seq) has emerged as an important tool to help address this issue, but its diagnostic utility remains understudied, and the added value of a trio design is unknown. We performed GS plus RNA-seq from blood using an automated clinical-grade high-throughput platform on 97 individuals from 39 families where the proband was a child with unexplained medical complexity. RNA-seq was an effective adjunct test when paired with GS. It enabled clarification of putative splice variants in three families, but it did not reveal variants not already identified by GS analysis. Trio RNA-seq decreased the number of candidates requiring manual review when filtering for de novo dominant disease-causing variants, allowing for the exclusion of 16% of gene-expression outliers and 27% of allele-specific-expression outliers. However, clear diagnostic benefit from the trio design was not observed. Blood-based RNA-seq can facilitate genome analysis in children with suspected undiagnosed genetic disease. In contrast to DNA sequencing, the clinical advantages of a trio RNA-seq design may be more limited.


Subject(s)
Family , Rare Diseases , Humans , Child , Base Sequence , Sequence Analysis, DNA , Exome Sequencing , Rare Diseases/genetics , Sequence Analysis, RNA
11.
Am J Hum Genet ; 110(12): 2015-2028, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37979581

ABSTRACT

We examined more than 97,000 families from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents contributing to neurodevelopmental disease risk in children. We identified within- and cross-disorder correlations between six phenotypes in parents and children, such as obsessive-compulsive disorder (R = 0.32-0.38, p < 10-126). We also found that measures of sub-clinical autism features in parents are associated with several autism severity measures in children, including biparental mean Social Responsiveness Scale scores and proband Repetitive Behaviors Scale scores (regression coefficient = 0.14, p = 3.38 × 10-4). We further describe patterns of phenotypic similarity between spouses, where spouses show correlations for six neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R = 0.24-0.68, p < 0.001) and a cross-disorder correlation between anxiety and bipolar disorder (R = 0.09-0.22, p < 10-92). Using a simulated population, we also found that assortative mating can lead to increases in disease liability over generations and the appearance of "genetic anticipation" in families carrying rare variants. We identified several families in a neurodevelopmental disease cohort where the proband inherited multiple rare variants in disease-associated genes from each of their affected parents. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse relationship with variant pathogenicity and propose that parental relatedness modulates disease risk by increasing genome-wide homozygosity in children (R = 0.05-0.26, p < 0.05). Our results highlight the utility of assessing parent phenotypes and genotypes toward predicting features in children who carry rare variably expressive variants and implicate assortative mating as a risk factor for increased disease severity in these families.


Subject(s)
Autistic Disorder , Bipolar Disorder , Child , Humans , Virulence , Parents , Family , Autistic Disorder/genetics , Bipolar Disorder/genetics
12.
Genome Res ; 33(9): 1455-1464, 2023 09.
Article in English | MEDLINE | ID: mdl-37793781

ABSTRACT

Assisted reproductive technologies (ARTs), including in vitro maturation and fertilization (IVF), are increasingly used in human and animal reproduction. Whether these technologies directly affect the rate of de novo mutation (DNM), and to what extent, has been a matter of debate. Here we take advantage of domestic cattle, characterized by complex pedigrees that are ideally suited to detect DNMs and by the systematic use of ART, to study the rate of de novo structural variation (dnSV) in this species and how it is impacted by IVF. By exploiting features of associated de novo point mutations (dnPMs) and dnSVs in clustered DNMs, we provide strong evidence that (1) IVF increases the rate of dnSV approximately fivefold, and (2) the corresponding mutations occur during the very early stages of embryonic development (one- and two-cell stage), yet primarily affect the paternal genome.


Subject(s)
Embryonic Development , Family , Pregnancy , Female , Animals , Cattle , Humans , Mutation , Pedigree , Genome, Human
13.
Blood ; 144(4): 435-444, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38767511

ABSTRACT

ABSTRACT: Hereditary angioedema (HAE), caused by C1 inhibitor protein deficiency, was recently shown to be associated with an increased risk for venous thromboembolism (VTE). To our knowledge, this is the first national family study of HAE, which aimed to determine the familial risk of VTE. The Swedish Multi-Generation Register was linked to the Swedish National Patient Register for the period of 1964 to 2018. Only patients with HAE with a validated diagnosis were included in the study and were linked to their family members. Hazard ratios (HRs) and 95% confidence intervals (CIs) for VTE were calculated for patients with HAE in comparison with relatives without HAE. Among 2006 individuals (from 276 pedigrees of 365 patients with HAE), 103 individuals were affected by VTE. In total, 35 (9.6%) patients with HAE were affected by VTE, whereas 68 (4.1%) non-HAE relatives were affected (P < .001). The adjusted HR for VTE among patients with HAE was 2.51 (95% CI, 1.67-3.77). Patients with HAE were younger at the first VTE than their non-HAE relatives (mean age, 51 years vs 63 years; P < .001). Before the age of 70 years, the HR for VTE among patients with HAE was 3.62 (95% CI, 2.26-5.80). The HR for VTE for patients with HAE born after 1964 was 8.29 (95% CI, 2.90-23.71). The HR for VTE for patients with HAE who were born in 1964 or earlier was 1.82 (95% CI, 1.14-2.91). HAE is associated with VTE among young and middle-aged individuals in Swedish families with HAE. The effect size of the association is in the order of other thrombophilias. We suggest that HAE may be considered a new rare thrombophilia.


Subject(s)
Angioedemas, Hereditary , Venous Thromboembolism , Humans , Angioedemas, Hereditary/genetics , Angioedemas, Hereditary/epidemiology , Angioedemas, Hereditary/complications , Female , Male , Venous Thromboembolism/epidemiology , Venous Thromboembolism/genetics , Venous Thromboembolism/etiology , Middle Aged , Adult , Sweden/epidemiology , Risk Factors , Aged , Pedigree , Registries , Young Adult , Family , Adolescent
14.
Cell ; 144(5): 635-7, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21376225

ABSTRACT

Two years ago, NIH's Undiagnosed Diseases Program began delivering genomics to the clinic on an unprecedented scale. Now, with 128 exomes sequenced and 39 rare diseases diagnosed, the program's success is paving the way for widespread personal genomics while pioneering new techniques for reigning in the "tsunami" of genomics data.


Subject(s)
Exons , Genome, Human , Molecular Diagnostic Techniques , Rare Diseases/diagnosis , Sequence Analysis, DNA/methods , Family , Gene Expression Profiling , Humans , Male , National Institutes of Health (U.S.) , Sequence Analysis, DNA/economics , Sequence Analysis, DNA/trends , United States
15.
Nature ; 582(7812): 384-388, 2020 06.
Article in English | MEDLINE | ID: mdl-32555485

ABSTRACT

The nature and distribution of political power in Europe during the Neolithic era remains poorly understood1. During this period, many societies began to invest heavily in building monuments, which suggests an increase in social organization. The scale and sophistication of megalithic architecture along the Atlantic seaboard, culminating in the great passage tomb complexes, is particularly impressive2. Although co-operative ideology has often been emphasised as a driver of megalith construction1, the human expenditure required to erect the largest monuments has led some researchers to emphasize hierarchy3-of which the most extreme case is a small elite marshalling the labour of the masses. Here we present evidence that a social stratum of this type was established during the Neolithic period in Ireland. We sampled 44 whole genomes, among which we identify the adult son of a first-degree incestuous union from remains that were discovered within the most elaborate recess of the Newgrange passage tomb. Socially sanctioned matings of this nature are very rare, and are documented almost exclusively among politico-religious elites4-specifically within polygynous and patrilineal royal families that are headed by god-kings5,6. We identify relatives of this individual within two other major complexes of passage tombs 150 km to the west of Newgrange, as well as dietary differences and fine-scale haplotypic structure (which is unprecedented in resolution for a prehistoric population) between passage tomb samples and the larger dataset, which together imply hierarchy. This elite emerged against a backdrop of rapid maritime colonization that displaced a unique Mesolithic isolate population, although we also detected rare Irish hunter-gatherer introgression within the Neolithic population.


Subject(s)
Consanguinity , Hierarchy, Social/history , Incest/history , Societies/history , Adult , Burial/history , DNA, Ancient/analysis , Family/history , Female , Genome, Human/genetics , Haplotypes/genetics , History, Ancient , Humans , Ireland , Male
16.
Proc Natl Acad Sci U S A ; 120(27): e2300926120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364122

ABSTRACT

A lineage of 422,374 English people (1600 to 2022) contains correlations in social outcomes among relatives as distant as 4th cousins. These correlations show striking patterns. The first is the strong persistence of social status across family trees. Correlations decline by a factor of only 0.79 across each generation. Even fourth cousins, with a common ancestor only five generations earlier, show significant status correlations. The second remarkable feature is that the decline in correlation with genetic distance in the lineage is unchanged from 1600 to 2022. Vast social changes in England between 1600 and 2022 would have been expected to increase social mobility. Yet people in 2022 remain correlated in outcomes with their lineage relatives in exactly the same way as in preindustrial England. The third surprising feature is that the correlations parallel those of a simple model of additive genetic determination of status, with a genetic correlation in marriage of 0.57.


Subject(s)
Social Mobility , Social Status , Humans , Inheritance Patterns , Family , England
17.
Proc Natl Acad Sci U S A ; 120(39): e2217769120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37725642

ABSTRACT

Early-life adversity affects long-term health outcomes but there is considerable interindividual variability in susceptibility to environmental influences. We proposed that positive psychological characteristics that reflect engagement with context, such as being concerned about people or performance on tasks (i.e., empathic concern), could moderate the interindividual variation in sensitivity to the quality of the early environment. We studied 526 children of various Asian nationalities in Singapore (46.6% female, 13.4% below the poverty line) with longitudinal data on perinatal and childhood experiences, maternal report on empathic concern of the child, and a comprehensive set of physiological measures reflecting pediatric allostatic load assessed at 6 y of age. The perinatal and childhood experiences included adversities and positive experiences. We found that cumulative adverse childhood experience was positively associated with allostatic load of children at 6 y of age at higher levels of empathic concern but not significantly associated at lower levels of empathic concern. This finding reveals evidence for the importance of empathic concern as a psychological characteristic that moderates the developmental impact of environmental influences, serving as a source for vulnerability to adversities in children.


Subject(s)
Adverse Childhood Experiences , Allostasis , Pregnancy , Humans , Child , Female , Male , Asian , Empathy , Family
18.
Proc Natl Acad Sci U S A ; 120(52): e2315722120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38113253

ABSTRACT

Demographers have long attempted to project future changes in the size and composition of populations, but have ignored what these processes will mean for the size, composition, and age distribution of family networks. Kinship structures matter because family solidarity-a crucial source of informal care for millions of people around the world-is conditional on kin being alive. Here, we present innovative projections of biological kin for the 1950 to 2100 period and discuss what they imply for the availability of informal care. Overall, we project that the number of living kin for individuals will decline dramatically worldwide. While a 65-yo woman in 1950 could expect to have 41 living kin, a 65-yo woman in 2095 is projected to have just 25 [18.8 to 34.7] relatives (lower and upper 80% projection intervals). This represents a 38% [15 to 54] global decline. The composition of family networks is also expected to change, with the numbers of living grandparents and great-grandparents markedly increasing, and the numbers of cousins, nieces and nephews, and grandchildren declining. Family networks will age considerably, as we project a widening age gap between individuals and their kin due to lower and later fertility and longer lifespans. In Italy, for example, the average age of a grandmother of a 35-yo woman is expected to increase from 77.9 y in 1950 to 87.7 y [87.1 to 88.5] in 2095. The projected changes in kin supply will put pressure on the already stretched institutional systems of social support, as more individuals age with smaller and older family networks.


Subject(s)
Family , Grandparents , Female , Humans , Social Support , Longevity , Fertility
19.
Am J Hum Genet ; 109(6): 981-988, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35659933

ABSTRACT

The underrepresentation of non-European ancestry groups in current genomic databases complicates interpretation of their genetic test results, yielding a much higher prevalence of variants of uncertain significance (VUSs). Such VUS findings can frustrate the goals of genetic testing, create anxiety in patients, and lead to unnecessary medical interventions. Approaches to addressing underrepresentation of people with genetic ancestries other than European are being undertaken by broad-based recruitment efforts. However, some underrepresented groups have concerns that might preclude participation in such efforts. We describe here two initiatives aimed at meeting the needs of underrepresented ancestry groups in genomic datasets. The two communities, the Sephardi Jewish community in New York and First Peoples of Canada, have very different concerns about contributing to genomic research and datasets. Sephardi concerns focus on the possible negative effects of genetic findings on the marriage prospects of family members. Canadian Indigenous populations seek control over the research uses to which their genetic data would be put. Both cases involve targeted efforts to respond to the groups' concerns; these efforts include governance models aimed at ensuring that the data are used primarily to inform clinical test analyses and at achieving successful engagement and participation of community members. We suggest that these initiatives could provide models for other ancestral groups seeking to improve the accuracy and utility of clinical genetic testing while respecting the underlying preferences and values of community members with regard to the use of their genetic data.


Subject(s)
Ethnicity , Genetic Testing , Canada , Ethnicity/genetics , Family , Genomics , Humans
20.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051358

ABSTRACT

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Subject(s)
BRCA1 Protein/genetics , Germ-Line Mutation , Loss of Function Mutation , Mutation, Missense , Neurodevelopmental Disorders/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Adolescent , BRCA1 Protein/immunology , Child , Child, Preschool , Chromatin/chemistry , Chromatin/immunology , Chromatin Assembly and Disassembly/genetics , Chromatin Assembly and Disassembly/immunology , Family , Female , Gene Expression Regulation , Heterozygote , Histones/genetics , Histones/immunology , Host Cell Factor C1/genetics , Host Cell Factor C1/immunology , Humans , Infant , Male , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/pathology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/immunology , Ubiquitin/genetics , Ubiquitin/immunology , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL