Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.442
Filter
Add more filters

Publication year range
1.
Nature ; 618(7964): 374-382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225988

ABSTRACT

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Subject(s)
Extracellular Vesicles , Fatty Acids , Fatty Liver , Liver , Pancreatic Neoplasms , Animals , Mice , Cytochrome P-450 Enzyme System/genetics , Extracellular Vesicles/metabolism , Fatty Acids/metabolism , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/prevention & control , Liver/metabolism , Liver/pathology , Liver/physiopathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Liver Neoplasms/secondary , Humans , Inflammation/metabolism , Palmitic Acid/metabolism , Kupffer Cells , Oxidative Phosphorylation , rab27 GTP-Binding Proteins/deficiency
2.
Nature ; 574(7776): 63-68, 2019 10.
Article in English | MEDLINE | ID: mdl-31554967

ABSTRACT

The gp130 receptor cytokines IL-6 and CNTF improve metabolic homeostasis but have limited therapeutic use for the treatment of type 2 diabetes. Accordingly, we engineered the gp130 ligand IC7Fc, in which one gp130-binding site is removed from IL-6 and replaced with the LIF-receptor-binding site from CNTF, fused with the Fc domain of immunoglobulin G, creating a cytokine with CNTF-like, but IL-6-receptor-dependent, signalling. Here we show that IC7Fc improves glucose tolerance and hyperglycaemia and prevents weight gain and liver steatosis in mice. In addition, IC7Fc either increases, or prevents the loss of, skeletal muscle mass by activation of the transcriptional regulator YAP1. In human-cell-based assays, and in non-human primates, IC7Fc treatment results in no signs of inflammation or immunogenicity. Thus, IC7Fc is a realistic next-generation biological agent for the treatment of type 2 diabetes and muscle atrophy, disorders that are currently pandemic.


Subject(s)
Cytokine Receptor gp130/metabolism , Cytokines/chemical synthesis , Cytokines/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Immunoglobulin G/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Adaptor Proteins, Signal Transducing/metabolism , Animals , Binding, Competitive , Cytokines/chemistry , Diabetes Mellitus, Type 2/metabolism , Drug Design , Fatty Liver/prevention & control , Glucose Tolerance Test , Humans , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Incretins/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Male , Mice , Muscle, Skeletal/drug effects , Obesity/metabolism , Pancreas/metabolism , Phosphoproteins/metabolism , Protein Engineering , Receptors, Interleukin-6/metabolism , Signal Transduction , Transcription Factors , Weight Gain/drug effects , YAP-Signaling Proteins
3.
Proc Natl Acad Sci U S A ; 119(48): e2202934119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36417437

ABSTRACT

The molecular mechanisms by which dietary fruits and vegetables confer cardiometabolic benefits remain poorly understood. Historically, these beneficial properties have been attributed to the antioxidant activity of flavonoids. Here, we reveal that the host metabolic benefits associated with flavonoid consumption hinge, in part, on gut microbial metabolism. Specifically, we show that a single gut microbial flavonoid catabolite, 4-hydroxyphenylacetic acid (4-HPAA), is sufficient to reduce diet-induced cardiometabolic disease (CMD) burden in mice. The addition of flavonoids to a high fat diet heightened the levels of 4-HPAA within the portal plasma and attenuated obesity, and continuous delivery of 4-HPAA was sufficient to reverse hepatic steatosis. The antisteatotic effect was shown to be associated with the activation of AMP-activated protein kinase α (AMPKα). In a large survey of healthy human gut metagenomes, just over one percent contained homologs of all four characterized bacterial genes required to catabolize flavonols into 4-HPAA. Our results demonstrate the gut microbial contribution to the metabolic benefits associated with flavonoid consumption and underscore the rarity of this process in human gut microbial communities.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Humans , Mice , Animals , Polyphenols/pharmacology , Gastrointestinal Microbiome/physiology , Fatty Liver/prevention & control , Obesity/metabolism , Diet, High-Fat/adverse effects , Flavonoids/pharmacology
4.
Am J Physiol Cell Physiol ; 327(3): C737-C749, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39069827

ABSTRACT

The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on SLC25A1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of SLC25A1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for 4 wk, whereas Nile tilapia received intraperitoneal injections of dsRNA to knock down slc25a1b for 7 days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Of note, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride (TAG) accumulation by deacetylating carnitine palmitoyltransferase 1a (Cpt1a). In addition, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of nonhistone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.NEW & NOTEWORTHY The mitochondrial citrate shuttle is a crucial physiological process for maintaining metabolic homeostasis. In the present study, we found that inhibition of mitochondrial citrate shuttle (Slc25a1) could alleviate metabolic syndromes induced by high-fat diet (HFD) through remodeling hepatic protein acetylation modification. Briefly, Slc25a1 inhibition reduces hepatic triglyceride deposition by deacetylating Cpt1a and reduces glucose oxidative catabolism by acetylating Pdhe1α. Our study provides new insights into the treatment of diet-induced metabolic syndromes.


Subject(s)
Citric Acid , Diet, High-Fat , Zebrafish , Animals , Diet, High-Fat/adverse effects , Citric Acid/metabolism , Metabolic Syndrome/metabolism , Metabolic Syndrome/prevention & control , Metabolic Syndrome/genetics , Metabolic Syndrome/etiology , Mitochondria/metabolism , Mitochondria/drug effects , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Obesity/metabolism , Obesity/prevention & control , Obesity/genetics , Obesity/etiology , Acetylation , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Liver/metabolism , Liver/drug effects , Liver/pathology , Male , Insulin Resistance , Fatty Liver/metabolism , Fatty Liver/prevention & control , Fatty Liver/pathology , Fatty Liver/etiology , Lipid Metabolism/drug effects
5.
J Lipid Res ; 65(8): 100590, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981572

ABSTRACT

Mitochondria can contact lipid droplets (LDs) to form peridroplet mitochondria (PDM) which trap fatty acids in LDs by providing ATP for triglyceride synthesis and prevent lipotoxicity. However, the role of PDM in metabolic dysfunction associated steatotic liver disease (MASLD) is not clear. Here, the features of PDM in dietary MASLD models with different severity in mice were explored. Electron microscope photographs show that LDs and mitochondria rarely come into contact with each other in normal liver. In mice fed with high-fat diet, PDM can be observed in the liver as early as the beginning of steatosis in hepatocytes. For the first time, we show that PDM in mouse liver varies with the severity of MASLD. PDM and cytosolic mitochondria were isolated from the liver tissue of MASLD and analyzed by quantitative proteomics. Compared with cytosolic mitochondria, PDM have enhanced mitochondrial respiration and ATP synthesis. Diethyldithiocarbamate (DDC) alleviates choline-deficient, L-amino acid-defined diet-induced MASLD, while increases PDM in the liver. Similarly, DDC promotes the contact of mitochondria-LDs in steatotic C3A cells in vitro. Meanwhile, DDC promotes triglyceride synthesis and improves mitochondrial dysfunction in MASLD. In addition, DDC upregulates perilipin 5 both in vivo and in vitro, which is considered as a key regulator in PDM formation. Knockout of perilipin 5 inhibits the contact of mitochondria-LDs induced by DDC in C3A cells. These results demonstrate that PDM might be associated with the progression of MASLD and the prevention of MASLD by DDC.


Subject(s)
Ditiocarb , Mitochondria , Animals , Mice , Ditiocarb/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Male , Fatty Liver/metabolism , Fatty Liver/prevention & control , Fatty Liver/pathology , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects , Humans , Diet, High-Fat/adverse effects
6.
Clin Sci (Lond) ; 138(5): 327-349, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38381799

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is always accompanied with hepatic fibrosis that could potentially progress to liver cirrhosis and hepatocellular carcinoma. Employing a rat model, we evaluated the role of human placental extract (HPE) to arrest the progression of hepatic fibrosis to cirrhosis in patients with MASH. SHRSP5/Dmcr rats were fed with a high-fat and high-cholesterol diet for 4 weeks and evaluated for the development of steatosis. The animals were divided into control and treated groups and received either saline or HPE (3.6 ml/kg body weight) subcutaneously thrice a week. A set of animals were killed at the end of 6th, 8th, and 12th weeks from the beginning of the experiment. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), hepatic malondialdehyde (MDA), and glutathione content were measured. Immunohistochemical staining was performed for α-smooth muscle actin (α-SMA), 4-hydroxy-2-nonenal (4-HNE), collagen type I, and type III. Control rats depicted progression of liver fibrosis at 6 weeks, advanced fibrosis and bridging at 8 weeks, and cirrhosis at 12 weeks, which were significantly decreased in HPE-treated animals. Treatment with HPE maintained normal levels of MDA and glutathione in the liver. There was marked decrease in the staining intensity of α-SMA, 4-HNE, and collagen type I and type III in HPE treated rats compared with control animals. The results of the present study indicated that HPE treatment mediates immunotropic, anti-inflammatory, and antioxidant responses and attenuates hepatic fibrosis and early cirrhosis. HPE depicts therapeutic potential to arrest the progression of MASH towards cirrhosis.


Subject(s)
Fatty Liver , Non-alcoholic Fatty Liver Disease , Placental Extracts , Humans , Pregnancy , Rats , Female , Animals , Placental Extracts/metabolism , Placental Extracts/therapeutic use , Collagen Type I/metabolism , Placenta/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Fatty Liver/drug therapy , Fatty Liver/prevention & control , Liver/metabolism , Fibrosis , Glutathione/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Diet, High-Fat
7.
Liver Int ; 44(10): 2807-2821, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39082383

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately 20%-30% of the general population and is linked to high-caloric western style diet. However, there are little data that specific nutrients might help to prevent steatosis. METHODS: We analysed the UK Biobank (ID 71300) 24 h-nutritional assessments and investigated the association between nutrient intake calculated from food questionnaires and hepatic steatosis indicated by imaging or ICD10-coding. The effect of manganese (Mn) on subgroups with risk single nucleotide polymorphism carriage as well as the effect on metabolomics was investigated. All analyses are corrected for age, sex, body mass index, Townsend index for socioeconomic status, kcal, alcohol, protein intake, fat intake, carbohydrate intake, energy from beverages, diabetes, physical activity and for multiple testing. RESULTS: We used a random forest classifier to analyse the feature importance of 63 nutrients and imaging-proven steatosis in a cohort of over 25 000 UK Biobank participants. Increased dietary Mn intake was associated with a lower likelihood of MRI-diagnosed steatosis. Subsequently, we conducted a cohort study in over 200 000 UK Biobank participants to explore the relationship between Mn intake and hepatic or cardiometabolic outcomes and found that higher Mn intake was associated with a lower risk of ICD-10 coded steatosis (OR = .889 [.838-.943], p < .001), independent of other potential confounders. CONCLUSION: Our study provides evidence that higher Mn intake may be associated with lower odds of steatosis in a large population-based sample. These findings underline the potential role of Mn in the prevention of steatosis, but further research is needed to confirm these findings and to elucidate the underlying mechanisms.


Subject(s)
Machine Learning , Manganese , Humans , Female , Male , Middle Aged , United Kingdom/epidemiology , Aged , Adult , Fatty Liver/prevention & control , Polymorphism, Single Nucleotide , Magnetic Resonance Imaging , Non-alcoholic Fatty Liver Disease/prevention & control , Risk Factors , Diet , Cohort Studies
8.
Diabetes Obes Metab ; 26(11): 5272-5282, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39161060

ABSTRACT

AIM: To assess the effects of a small-molecule nicotinamide N-methyltransferase (NNMT) inhibitor, 5A1MQ, on body composition, metabolic variables, fatty liver pathologies, and circulating biomarkers in diet-induced obese (DIO) mice, and characterize its plasma pharmacokinetics (PK) and tissue distribution in vivo. MATERIALS AND METHODS: DIO mice were administered vehicle or 5A1MQ once daily for 28 days. Longitudinal measures of body composition, blood glucose and plasma insulin levels, and terminal measures of liver histopathology and serum markers, were evaluated. Plasma and tissue PK were established in age- and strain-matched mice after intravenous, oral, and subcutaneous dosing of 5A1MQ. RESULTS: 5A1MQ treatment dose-dependently limited body weight and fat mass gains, improved oral glucose tolerance and insulin sensitivity, and suppressed hyperinsulinaemia in DIO mice. Liver histology from 5A1MQ-treated DIO mice showed attenuated hepatic steatosis and macrophage infiltration, and correspondingly reduced liver weight, size, and triglyceride levels. 5A1MQ treatment normalized circulating levels of alanine transaminase, aspartate transaminase, and ketone bodies, supporting an overall improvement in liver and metabolic functions. The pharmacodynamic effects of 5A1MQ were further corroborated by its high systemic exposure and effective distribution to metabolically active tissues, including adipose, muscle and liver, following subcutaneous dosing of mice. CONCLUSIONS: This work validates NNMT inhibition as a viable pharmacological approach to ameliorate metabolic imbalances and improve liver pathologies that develop with obesity.


Subject(s)
Nicotinamide N-Methyltransferase , Obesity , Animals , Nicotinamide N-Methyltransferase/antagonists & inhibitors , Nicotinamide N-Methyltransferase/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Mice , Male , Liver/metabolism , Liver/drug effects , Liver/pathology , Mice, Inbred C57BL , Insulin Resistance , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Fatty Liver/drug therapy , Fatty Liver/prevention & control , Fatty Liver/etiology , Diet, High-Fat/adverse effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Body Composition/drug effects , Mice, Obese
9.
Diabetes Obes Metab ; 26(6): 2339-2348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38504118

ABSTRACT

AIM: Dipeptidyl peptidase-4 (DPP-4) inhibitors suppress the inactivation of incretin hormones and lower blood glucose levels by inhibiting DPP-4 function. Sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels in an insulin-independent manner by inhibiting renal reabsorption of glucose. DPP-4 and SGLT2 inhibitors each have the potential to improve hepatic steatosis; however, their combined effects remain unclear. In this study, we examined the effects of the combination of these drugs on hepatic steatosis using high-fat diet-fed mice. METHOD: C57BL/6J male mice were fed a 60% high-fat diet for 2 months to induce hepatic steatosis. Mice were divided into four groups (control; DPP-4 inhibitor anagliptin; SGLT2 inhibitor luseogliflozin; anagliptin and luseogliflozin combination), and the effects of each drug and their combination on hepatic steatosis after a 4-week intervention were evaluated. RESULTS: There were no differences in blood glucose levels among the four groups. Anagliptin suppresses inflammation- and chemokine-related gene expression. It also improved macrophage fractionation in the liver. Luseogliflozin reduced body weight, hepatic gluconeogenesis and blood glucose levels in the oral glucose tolerance test. The combination treatment improved hepatic steatosis without interfering with the effects of anagliptin and luseogliflozin, respectively, and fat content and inflammatory gene expression in the liver were significantly improved in the combination group compared with the other groups. CONCLUSION: The combination therapy with the DPP-4 inhibitor anagliptin and the SGLT2 inhibitor luseogliflozin inhibits fat deposition in the liver via anti-inflammatory effects during the early phase of diet-induced liver steatosis.


Subject(s)
Diet, High-Fat , Dipeptidyl-Peptidase IV Inhibitors , Fatty Liver , Sodium-Glucose Transporter 2 Inhibitors , Animals , Male , Mice , Blood Glucose/drug effects , Blood Glucose/metabolism , Diet, High-Fat/adverse effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Drug Synergism , Drug Therapy, Combination , Fatty Liver/prevention & control , Fatty Liver/drug therapy , Glucosides/pharmacology , Glucosides/therapeutic use , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sorbitol/analogs & derivatives , Sorbitol/pharmacology , Sorbitol/therapeutic use
10.
Arterioscler Thromb Vasc Biol ; 43(2): 330-349, 2023 02.
Article in English | MEDLINE | ID: mdl-36453275

ABSTRACT

BACKGROUND: Atherosclerosis is an inflammatory vascular disease marked by hyperlipidemia and hematopoietic stem cell expansion. Activin A, a member of the Activin/GDF/TGFß/BMP (growth/differentiation factor/transforming growth factor beta/bone morphogenetic protein) family is broadly expressed and increases in human atherosclerosis, but its functional effects in vivo in this context remain unclear. METHODS: We studied LDLR-/- mice on a Western diet for 12 weeks and used adeno-associated viral vectors with a liver-specific TBG (thyroxine-binding globulin) promoter to express Activin A or GFP (control). Atherosclerotic lesions were analyzed by oil red staining. Blood lipid profiling was performed by high-performance liquid chromatography, and immune cells were evaluated by flow cytometry. Liver RNA-sequencing was performed to explore the underlying mechanisms. RESULTS: Activin A expression decreased in both livers and aortae from LDLR-/- mice fed a Western diet compared with standard laboratory diet. Adenoassociated virus-TBG-Activin A increased Activin A hepatic expression ≈10-fold at 12 weeks; P<0.001) and circulating Activin A levels ≈2000 pg/ml versus ≈50 pg/ml; P<0.001, compared with controls). Hepatic Activin A expression decreased plasma total and LDL (low-density lipoprotein) cholesterol ≈60% and ≈40%, respectively), reduced inflammatory cells in aortae and proliferating hematopoietic stem cells in bone marrow, and reduced atherosclerotic lesion and necrotic core area in aortae. Activin A also attenuated liver steatosis and expression of the lipogenesis genes, Srebp1 and Srebp2. RNA sequencing revealed Activin A not only blocked expression of genes involved in hepatic de novo lipogenesis but also fatty acid uptake and liver inflammation. In addition, Activin A expressed in the liver also reduced white fat tissue accumulation, decreased adipocyte size, and improved glucose tolerance. CONCLUSIONS: Our studies reveal hepatic Activin A expression reduces inflammation, hematopoietic stem cell expansion, liver steatosis, circulating cholesterol, and fat accumulation, which likely all contribute to the observed protection against atherosclerosis. The reduced Activin A observed in LDLR-/- mice on a Western diet seems maladaptive and deleterious for atherogenesis.


Subject(s)
Atherosclerosis , Fatty Liver , Humans , Animals , Mice , Liver/metabolism , Inflammation/genetics , Inflammation/prevention & control , Inflammation/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Activins/genetics , Activins/metabolism , Fatty Liver/genetics , Fatty Liver/prevention & control , Cholesterol/metabolism , Metabolic Networks and Pathways , Receptors, LDL/genetics , Receptors, LDL/metabolism , Mice, Knockout , Mice, Inbred C57BL
11.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791103

ABSTRACT

Menopause is characterized by a reduction in sex hormones in women and is associated with metabolic changes, including fatty liver and insulin resistance. Lifestyle changes, including a balanced diet and physical exercise, are necessary to prevent these undesirable changes. Strength training (ST) has been widely used because of the muscle and metabolic benefits it provides. Our study aims to evaluate the effects of ST on hepatic steatosis and insulin resistance in ovariectomized mice fed a high-fat diet (HFD) divided into four groups as follows: simulated sedentary surgery (SHAM-SED), trained simulated surgery (SHAM-EXE), sedentary ovariectomy (OVX-SED), and trained ovariectomy (OVX-EXE). They were fed an HFD for 9 weeks. ST was performed thrice a week. ST efficiently reduced body weight and fat percentage and increased lean mass in OVX mice. Furthermore, ST reduced the accumulation of ectopic hepatic lipids, increased AMPK phosphorylation, and inhibited the de novo lipogenesis pathway. OVX-EXE mice also showed a better glycemic profile, associated with greater insulin sensitivity identified by the euglycemic-hyperinsulinemic clamp, and reduced markers of hepatic oxidative stress compared with sedentary animals. Our data support the idea that ST can be indicated as a non-pharmacological treatment approach to mitigate metabolic changes resulting from menopause.


Subject(s)
Diet, High-Fat , Fatty Liver , Insulin Resistance , Ovariectomy , Resistance Training , Animals , Female , Ovariectomy/adverse effects , Diet, High-Fat/adverse effects , Mice , Fatty Liver/metabolism , Fatty Liver/prevention & control , Physical Conditioning, Animal , Oxidative Stress , Liver/metabolism , Mice, Inbred C57BL , Body Weight , Lipogenesis
12.
J Sci Food Agric ; 104(9): 5462-5473, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38348948

ABSTRACT

BACKGROUND: Obesity has been demonstrated as a risk factor that seriously affects health. Insoluble dietary fiber (IDF), as a major component of dietary fiber, has positive effects on obesity, inflammation and diabetes. RESULTS: In this study, complex IDF was prepared using 50% enoki mushroom IDF, 40% carrot IDF, and 10% oat IDF. The effects and potential mechanism of complex IDF on obesity were investigated in C57BL/6 mice fed a high-fat diet. The results showed that feeding diets containing 5% complex IDF for 8 weeks significantly reduced mouse body weight, epididymal lipid index, and ectopic fat deposition, and improved mouse liver lipotoxicity (reduced serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), fatty liver, and short-chain fatty acid composition. High-throughput sequencing of 16S rRNA and analysis of fecal metabolomics showed that the intervention with complex IDF reversed the high-fat-diet-induced dysbiosis of gut microbiota, which is associated with obesity and intestinal inflammation, and affected metabolic pathways, such as primary bile acid biosynthesis, related to fat digestion and absorption. CONCLUSION: Composite IDF intervention can effectively inhibit high-fat-diet-induced obesity and related symptoms and affect the gut microbiota and related metabolic pathways in obesity. Complex IDF has potential value in the prevention of obesity and metabolic syndrome. © 2024 Society of Chemical Industry.


Subject(s)
Diet, High-Fat , Dietary Fiber , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Obesity , Animals , Dietary Fiber/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Obesity/diet therapy , Obesity/microbiology , Mice , Male , Liver/metabolism , Humans , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/etiology , Avena/chemistry , Daucus carota/chemistry
13.
Arch Biochem Biophys ; 750: 109811, 2023 12.
Article in English | MEDLINE | ID: mdl-37926405

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder affecting a significant part of the global population. This study aimed to investigate the potential therapeutic effects of α-lipoic acid (α-LA) on the inflammatory response during simple steatosis development and progression into steatohepatitis. The study used the MASLD model in male Wistar rats that were fed a standard diet or a high-fat diet (HFD) for 8 weeks. Throughout the entire experiment, half of the animals received α-LA supplementation. The hepatic activity of pro-inflammatory n-6 and anti-inflammatory n-3 polyunsaturated fatty acid (PUFA) pathways and the concentration of arachidonic acid (AA) in selected lipid fractions were determined by the gas-liquid chromatography (GLC). The hepatic expression of proteins from inflammatory pathway was measured by the Western blot technique. The level of eicosanoids, cytokines and chemokines was assessed by the ELISA or multiplex assay kits. The results showed that α-LA supplementation attenuated the activity of n-6 PUFA pathway in FFA and DAG and increased the activity of n-3 PUFA pathway in PL, TAG and DAG. In addition, the administration of α-LA decreased the concentration of AA in DAG and FFA, indicating its potential protective effect on the deterioration of simple hepatic steatosis. The supplementation of α-LA also increased the expression of COX-1 and COX-2 with the lack of significant changes in prostaglandins profile. We observed an increase in the expression of 12/15-LOX, which was reflected in an increase in lipoxin A4 (LXA4) level. A decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines was also noticed in the liver of rats treated with HFD and α-LA. Our observations confirm that α-LA treatment has potential protective effects on inflammation development in the MASLD model. We believe that α-LA has a preventive impact when it comes to the progression of simple steatosis lesions to steatohepatitis.


Subject(s)
Fatty Liver , Thioctic Acid , Rats , Male , Animals , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Thioctic Acid/metabolism , Diet, High-Fat/adverse effects , Rats, Wistar , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/prevention & control , Liver/metabolism , Inflammation/drug therapy , Inflammation/prevention & control , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism
14.
PLoS Biol ; 18(3): e3000688, 2020 03.
Article in English | MEDLINE | ID: mdl-32218572

ABSTRACT

Obesity leads to multiple health problems, including diabetes, fatty liver, and even cancer. Here, we report that urolithin A (UA), a gut-microflora-derived metabolite of pomegranate ellagitannins (ETs), prevents diet-induced obesity and metabolic dysfunctions in mice without causing adverse effects. UA treatment increases energy expenditure (EE) by enhancing thermogenesis in brown adipose tissue (BAT) and inducing browning of white adipose tissue (WAT). Mechanistically, UA-mediated increased thermogenesis is caused by an elevation of triiodothyronine (T3) levels in BAT and inguinal fat depots. This is also confirmed in UA-treated white and brown adipocytes. Consistent with this mechanism, UA loses its beneficial effects on activation of BAT, browning of white fat, body weight control, and glucose homeostasis when thyroid hormone (TH) production is blocked by its inhibitor, propylthiouracil (PTU). Conversely, administration of exogenous tetraiodothyronine (T4) to PTU-treated mice restores UA-induced activation of BAT and browning of white fat and its preventive role on high-fat diet (HFD)-induced weight gain. Together, these results suggest that UA is a potent antiobesity agent with potential for human clinical applications.


Subject(s)
Adipose Tissue, Brown/metabolism , Anti-Obesity Agents/therapeutic use , Coumarins/therapeutic use , Obesity/prevention & control , Adipocytes, Brown/drug effects , Adipocytes, Brown/metabolism , Adipocytes, White/drug effects , Adipocytes, White/metabolism , Adipose Tissue, White/metabolism , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/drug effects , Fatty Liver/prevention & control , Glucose Intolerance/prevention & control , Insulin Resistance , Maillard Reaction , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Propylthiouracil/toxicity , Thermogenesis , Triiodothyronine/antagonists & inhibitors , Triiodothyronine/metabolism , Weight Gain/drug effects
15.
Biogerontology ; 24(3): 391-401, 2023 06.
Article in English | MEDLINE | ID: mdl-36802043

ABSTRACT

Non-alcoholic fatty liver disease is associated with ageing, and impaired mitochondrial homeostasis is the main cause for hepatic ageing. Caloric restriction (CR) is a promising therapeutic approach for fatty liver. The purpose of the present study was to investigate the possibility of early-onset CR in decelerating the progression of ageing-related steatohepatitis. The putative mechanism associated with mitochondria was further determined. C57BL/6 male mice at 8 weeks of age were randomly assigned to one of three treatments: Young-AL (AL, ad libitum), Aged-AL, or Aged-CR (60% intake of AL). Mice were sacrificed when they were 7 months old (Young) or 20 months old (Aged). Aged-AL mice displayed the greatest body weight, liver weight, and liver relative weight among treatments. Steatosis, lipid peroxidation, inflammation, and fibrosis coexisted in the aged liver. Mega mitochondria with short, randomly organized crista were noticed in the aged liver. The CR ameliorated these unfavourable outcomes. The level of hepatic ATP decreased with ageing, but this was reversed by CR. Ageing caused a decrease in mitochondrial-related protein expressions of respiratory chain complexes (NDUFB8 and SDHB) and fission (DRP1), but an increase in proteins related to mitochondrial biogenesis (TFAM), and fusion (MFN2). CR reversed the expression of these proteins in the aged liver. Both Aged-CR and Young-AL revealed a comparable pattern of protein expression. To summarize, this study demonstrated the potential of early-onset CR in preventing ageing-associated steatohepatitis, and maintaining mitochondrial functions may contribute to CR's protection during hepatic ageing.


Subject(s)
Caloric Restriction , Fatty Liver , Mice , Male , Animals , Mice, Inbred C57BL , Mitochondria , Fatty Liver/prevention & control , Aging/metabolism , Homeostasis
16.
BMC Gastroenterol ; 23(1): 152, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37189076

ABSTRACT

BACKGROUND: Hepatic steatosis is an increasing complication in liver transplant recipients. Currently, there is no pharmacologic therapy for treatment of hepatic steatosis after liver transplantation. The aim of this study was to determine the association between use of angiotensin receptor blockers (ARB) and hepatic steatosis in liver transplant recipients. METHODS: We conducted a case-control analysis on data from Shiraz Liver Transplant Registry. Liver transplant recipients with and without hepatic steatosis were compared for risk factors including use of ARB. RESULTS: A total of 103 liver transplant recipients were included in the study. Thirty five patients treated with ARB and 68 patients (66%) did not receive these medications. In univariate analysis, ARB use (P = 0.002), serum triglyceride (P = 0.006), weight after liver transplantation (P = 0.011) and etiology of liver disease (P = 0.008) were associated with hepatic steatosis after liver transplantation. In multivariate regression analysis, ARB use was associated with lower likelihood of hepatic steatosis in liver transplant recipients (OR = 0.303, 95% CI: 0.117-0.784; P = 0.014). Mean duration of ARB use (P = 0.024) and mean cumulative daily dose of ARB (P = 0.015) were significantly lower in patients with hepatic steatosis. CONCLUSION: Our study showed that ARB use was associated with reduced incidence of hepatic steatosis in liver transplant recipients.


Subject(s)
Fatty Liver , Liver Transplantation , Humans , Liver Transplantation/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensin Receptor Antagonists/therapeutic use , Fatty Liver/etiology , Fatty Liver/prevention & control , Risk Factors
17.
J Immunol ; 206(4): 904-916, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33441438

ABSTRACT

Age-related chronic inflammation promotes cellular senescence, chronic disease, cancer, and reduced lifespan. In this study, we wanted to explore the effects of a moderate exercise regimen on inflammatory liver disease and tumorigenesis. We used an established model of spontaneous inflammaging, steatosis, and cancer (nfkb1-/- mouse) to demonstrate whether 3 mo of moderate aerobic exercise was sufficient to suppress liver disease and cancer development. Interventional exercise when applied at a relatively late disease stage was effective at reducing tissue inflammation (liver, lung, and stomach), oxidative damage, and cellular senescence, and it reversed hepatic steatosis and prevented tumor development. Underlying these benefits were transcriptional changes in enzymes driving the conversion of tryptophan to NAD+, this leading to increased hepatic NAD+ and elevated activity of the NAD+-dependent deacetylase sirtuin. Increased SIRT activity was correlated with enhanced deacetylation of key transcriptional regulators of inflammation and metabolism, NF-κB (p65), and PGC-1α. We propose that moderate exercise can effectively reprogram pre-established inflammatory and metabolic pathologies in aging with the benefit of prevention of disease.


Subject(s)
Aging/immunology , Carcinogenesis/immunology , Fatty Liver/prevention & control , Liver Neoplasms/prevention & control , Physical Conditioning, Animal , Aging/genetics , Aging/pathology , Animals , Carcinogenesis/pathology , Cellular Senescence/immunology , Fatty Liver/immunology , Fatty Liver/pathology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Mice , Mice, Knockout , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/immunology
18.
BMC Endocr Disord ; 23(1): 9, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36624417

ABSTRACT

BACKGROUND: Studies on chemerin/chemokine-like receptor-1 have mainly focused on adipose and liver with the intestinal tissues largely overlooked. In this study conducted on obese mice, we have explored: 1) CMKLR1 expression in the ileums; 2) CMKLR1 inhibitor α-NETA on body weight and intestinal mucosa integrity hence the impact on hepatic steatosis and pathway involved. METHODS: Nineteen male C57BL/6 mice were randomly divided into five groups: normal diet group (ND), high-fat diet group (HFD), HFD + α-NETA group (NETA), HFD + PD98059 group (PD) and HFD + α-NETA + PD98059 group (NETA + PD). Mice were fed either with a chow diet or HFD for 12 weeks. At 12th week, mice of ND were put on the diet as before; mice of NETA received daily treatments of α-NETA (30 mg/kg) via gavage; mice of PD received daily treatment of PD98059 via tail vein injection; mice of NETA + PD received daily treatment of α-NETA + PD98059, all for another 4 weeks. At the time intervention ended, mice were sacrificed. The body weight, the liver pathologies were assessed. Ileal CMKLR1 mRNA was evaluated by rtPCR; ZO-1, ERK1/2 protein expression of ileal tissues by western blotting; liver TNF-α and serum endotoxin by Elisa. RESULTS: More weight gains in mice of HFD than ND (37.90 ± 3.00 g) vs (24.47 ± 0.50 g), P = 0.002; α-NETA reduced the body weight (33.22 ± 1.90 g) vs (37.90 ± 3.00 g), P = 0.033; and further reduced by NETA + PD98059: (31.20 ± 1.74 g) vs (37.30 ± 4.05 g), P = 0.032. CMKLR1 mRNA expression was up-regulated in ileum in group HFD compared with ND and down-regulated by α-NETA. Steatosis was only alleviated in group PD + NETA with less weight gain. No impact of α-NETA on ileal ZO-1 or pERK with western blotting, and no endotoxin level changes were detected. TNF-α was higher in group HFD than in group ND, while no significant difference between other groups. CONCLUSIONS: CMKLR1 mRNA was up-regulated in the ileum of obese mice and down-regulated by α-NETA along with a body weight control collaborating with ERK inhibitor PD98059. Steatosis was alleviated in a weight dependent way. α-NETA has no influence on intestinal mucosal integrity and no impact on steatohepatitis progression.


Subject(s)
Fatty Liver , Tumor Necrosis Factor-alpha , Male , Animals , Mice , Mice, Obese , Mice, Inbred C57BL , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/prevention & control , Liver , Weight Gain , Diet, High-Fat/adverse effects , Intestinal Mucosa , Ileum , Body Weight , Receptors, Chemokine
19.
PLoS Genet ; 16(4): e1008629, 2020 04.
Article in English | MEDLINE | ID: mdl-32282858

ABSTRACT

Analyzing 12,361 all-cause cirrhosis cases and 790,095 controls from eight cohorts, we identify a common missense variant in the Mitochondrial Amidoxime Reducing Component 1 gene (MARC1 p.A165T) that associates with protection from all-cause cirrhosis (OR 0.91, p = 2.3*10-11). This same variant also associates with lower levels of hepatic fat on computed tomographic imaging and lower odds of physician-diagnosed fatty liver as well as lower blood levels of alanine transaminase (-0.025 SD, 3.7*10-43), alkaline phosphatase (-0.025 SD, 1.2*10-37), total cholesterol (-0.030 SD, p = 1.9*10-36) and LDL cholesterol (-0.027 SD, p = 5.1*10-30) levels. We identified a series of additional MARC1 alleles (low-frequency missense p.M187K and rare protein-truncating p.R200Ter) that also associated with lower cholesterol levels, liver enzyme levels and reduced risk of cirrhosis (0 cirrhosis cases for 238 R200Ter carriers versus 17,046 cases of cirrhosis among 759,027 non-carriers, p = 0.04) suggesting that deficiency of the MARC1 enzyme may lower blood cholesterol levels and protect against cirrhosis.


Subject(s)
Fatty Liver/genetics , Fatty Liver/prevention & control , Genetic Predisposition to Disease , Liver Cirrhosis/genetics , Liver Cirrhosis/prevention & control , Mitochondrial Proteins/genetics , Mutation, Missense/genetics , Oxidoreductases/genetics , Alleles , Cholesterol, LDL/blood , Coronary Artery Disease/genetics , Datasets as Topic , Fatty Liver/blood , Fatty Liver/enzymology , Female , Homozygote , Humans , Liver/enzymology , Liver Cirrhosis/blood , Liver Cirrhosis/enzymology , Liver Cirrhosis, Alcoholic/blood , Liver Cirrhosis, Alcoholic/enzymology , Liver Cirrhosis, Alcoholic/genetics , Liver Cirrhosis, Alcoholic/prevention & control , Loss of Function Mutation/genetics , Male , Middle Aged
20.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139133

ABSTRACT

Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.


Subject(s)
Berberine , Fatty Liver , Gastrointestinal Microbiome , Animals , Female , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Diet, Protein-Restricted , Chickens , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/prevention & control , Liver/metabolism , Bile Acids and Salts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL