Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 373
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Cell Mol Med ; 28(10): e18385, 2024 May.
Article in English | MEDLINE | ID: mdl-38801405

ABSTRACT

Autophagy may play an important role in the occurrence and development of glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH). Lithium is a classical autophagy regulator, and lithium can also activate osteogenic pathways, making it a highly promising therapeutic agent for GC-ONFH. We aimed to evaluate the potential therapeutic effect of lithium on GC-ONFH. For in vitro experiments, primary osteoblasts of rats were used for investigating the underlying mechanism of lithium's protective effect on GC-induced autophagy levels and osteogenic activity dysfunction. For in vivo experiments, a rat model of GC-ONFH was used for evaluating the therapeutic effect of oral lithium on GC-ONFH and underlying mechanism. Findings demonstrated that GC over-activated the autophagy of osteoblasts and reduced their osteogenic activity. Lithium reduced the over-activated autophagy of GC-treated osteoblasts through PI3K/AKT/mTOR signalling pathway and increased their osteogenic activity. Oral lithium reduced the osteonecrosis rates in a rat model of GC-ONFH, and restrained the increased expression of autophagy related proteins in bone tissues through PI3K/AKT/mTOR signalling pathway. In conclusion, lithium can restrain over-activated autophagy by activating PI3K/AKT/mTOR signalling pathway and up-regulate the expression of genes for bone formation both in GC induced osteoblasts and in a rat model of GC-ONFH. Lithium may be a promising therapeutic agent for GC-ONFH. However, the role of autophagy in the pathogenesis of GC-ONFH remains controversial. Studies are still needed to further explore the role of autophagy in the pathogenesis of GC-ONFH, and the efficacy of lithium in the treatment of GC-ONFH and its underlying mechanisms.


Subject(s)
Autophagy , Femur Head Necrosis , Glucocorticoids , Lithium , Osteoblasts , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Autophagy/drug effects , Glucocorticoids/pharmacology , Glucocorticoids/adverse effects , Rats , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/drug therapy , Femur Head Necrosis/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Lithium/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Male , Osteogenesis/drug effects , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-akt/metabolism , Disease Models, Animal , Phosphatidylinositol 3-Kinases/metabolism , Femur Head/pathology , Femur Head/drug effects , Femur Head/metabolism , Osteonecrosis/chemically induced , Osteonecrosis/pathology , Osteonecrosis/drug therapy , Osteonecrosis/metabolism , Osteonecrosis/prevention & control
2.
Dev Biol ; 496: 73-86, 2023 04.
Article in English | MEDLINE | ID: mdl-36805498

ABSTRACT

Glucocorticoids induced osteonecrosis of the femoral head (GIONFH) is a devastating orthopedic disease. Previous studies suggested that connexin43 is involved in the process of osteogenesis and angiogenesis. However, the role of Cx43 potentiates in the osteogenesis and angiogenesis of bone marrow-derived stromal stem cells (BMSCs) in GIONFH is still not investigated. In this study, BMSCs were isolated and transfected with green fluorescent protein or the fusion gene encoding GFP and Cx43. The osteogenic differentiation of BMSCs were detected after transfected with Cx43. In addition, the migration abilities and angiogenesis of human umbilical vein endothelial cells (HUVECs) were been detected after induced by transfected BMSCs supernatants in vitro. Finally, we established GC-ONFH rat model, then, a certain amount of transfected or controlled BMSCs were injected into the tibia of the rats. Immunohistological staining and micro-CT scanning results showed that the transplanted experiment group had significantly promoted more bone regeneration and vessel volume when compared with the effects of the negative or control groups. This study demonstrated for the first time that the Cx43 overexpression in BMSCs could promote bone regeneration as seen in the osteogenesis and angiogenesis process, suggesting that Cx43 may serve as a therapeutic gene target for GIONFH treatment.


Subject(s)
Femur Head Necrosis , Glucocorticoids , Rats , Humans , Animals , Glucocorticoids/adverse effects , Glucocorticoids/metabolism , Osteogenesis , Connexin 43/metabolism , Femur Head/metabolism , Femur Head/pathology , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/therapy , Rats, Sprague-Dawley , Bone Regeneration , Cell Differentiation , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology
3.
J Cell Physiol ; 239(5): e31224, 2024 May.
Article in English | MEDLINE | ID: mdl-38481029

ABSTRACT

With the prevalence of coronavirus disease 2019, the administration of glucocorticoids (GCs) has become more widespread. Treatment with high-dose GCs leads to a variety of problems, of which steroid-induced osteonecrosis of the femoral head (SONFH) is the most concerning. Since hypoxia-inducible factor 1α (HIF-1α) is a key factor in cartilage development and homeostasis, it may play an important role in the development of SONFH. In this study, SONFH models were established using methylprednisolone (MPS) in mouse and its proliferating chondrocytes to investigate the role of HIF-1α in cartilage differentiation, extracellular matrix (ECM) homeostasis, apoptosis and glycolysis in SONFH mice. The results showed that MPS successfully induced SONFH in vivo and vitro, and MPS-treated cartilage and chondrocytes demonstrated disturbed ECM homeostasis, significantly increased chondrocyte apoptosis rate and glycolysis level. However, compared with normal mice, not only the expression of genes related to collagens and glycolysis, but also chondrocyte apoptosis did not demonstrate significant differences in mice co-treated with MPS and HIF-1α inhibitor. And the effects observed in HIF-1α activator-treated chondrocytes were similar to those induced by MPS. And HIF-1α degraded collagens in cartilage by upregulating its downstream target genes matrix metalloproteinases. The results of activator/inhibitor of endoplasmic reticulum stress (ERS) pathway revealed that the high apoptosis rate induced by MPS was related to the ERS pathway, which was also affected by HIF-1α. Furthermore, HIF-1α affected glucose metabolism in cartilage by increasing the expression of glycolysis-related genes. In conclusion, HIF-1α plays a vital role in the pathogenesis of SONFH by regulating ECM homeostasis, chondrocyte apoptosis, and glycolysis.


Subject(s)
Apoptosis , Cartilage , Chondrocytes , Glucocorticoids , Glycolysis , Homeostasis , Hypoxia-Inducible Factor 1, alpha Subunit , Methylprednisolone , Animals , Male , Mice , Apoptosis/drug effects , Cartilage/metabolism , Cartilage/pathology , Cartilage/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Femur Head/pathology , Femur Head/metabolism , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/metabolism , Femur Head Necrosis/genetics , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Glycolysis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Methylprednisolone/adverse effects , Methylprednisolone/pharmacology , Mice, Inbred C57BL
4.
Biochem Biophys Res Commun ; 703: 149683, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38373382

ABSTRACT

Osteoarthritis is the most common chronic joint disease, characterized by the abnormal remodeling of joint tissues including articular cartilage and subchondral bone. However, there are currently no therapeutic drug targets to slow the progression of disease because disease pathogenesis is largely unknown. Thus, the goals of this study were to identify metabolic differences between articular cartilage and subchondral bone, compare the metabolic shifts in osteoarthritic grade III and IV tissues, and spatially map metabolic shifts across regions of osteoarthritic hip joints. Articular cartilage and subchondral bone from 9 human femoral heads were obtained after total joint arthroplasty, homogenized and metabolites were extracted for liquid chromatography-mass spectrometry analysis. Metabolomic profiling revealed that distinct metabolic endotypes exist between osteoarthritic tissues, late-stage grades, and regions of the diseased joint. The pathways that contributed the most to these differences between tissues were associated with lipid and amino acid metabolism. Differences between grades were associated with nucleotide, lipid, and sugar metabolism. Specific metabolic pathways such as glycosaminoglycan degradation and amino acid metabolism, were spatially constrained to more superior regions of the femoral head. These results suggest that radiography-confirmed grades III and IV osteoarthritis are associated with distinct global metabolic and that metabolic shifts are not uniform across the joint. The results of this study enhance our understanding of osteoarthritis pathogenesis and may lead to potential drug targets to slow, halt, or reverse tissue damage in late stages of osteoarthritis.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Osteoarthritis/pathology , Cartilage, Articular/metabolism , Femur Head/diagnostic imaging , Femur Head/metabolism , Radiography , Amino Acids/metabolism , Lipids
5.
Biochem Biophys Res Commun ; 725: 150265, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38901225

ABSTRACT

With the substantial increase in the overuse of glucocorticoids (GCs) in clinical medicine, the prevalence of glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH) continues to rise in recent years. However, the optimal treatment for GC-ONFH remains elusive. Rotating magnetic field (RMF), considered as a non-invasive, safe and effective approach, has been proved to have multiple beneficial biological effects including improving bone diseases. To verify the effects of RMF on GC-ONFH, a lipopolysaccharide (LPS) and methylprednisolone (MPS)-induced invivo rat model, and an MPS-induced invitro cell model have been employed. The results demonstrate that RMF alleviated bone mineral loss and femoral head collapse in GC-ONFH rats. Meanwhile, RMF reduced serum lipid levels, attenuated cystic lesions, raised the expression of anti-apoptotic proteins and osteoprotegerin (OPG), while suppressed the expression of pro-apoptotic proteins and nuclear factor receptor activator-κB (RANK) in GC-ONFH rats. Besides, RMF also facilitated the generation of ALP, attenuated apoptosis and inhibits the expression of pro-apoptotic proteins, facilitated the expression of OPG, and inhibited the expression of RANK in MPS-stimulated MC3T3-E1 cells. Thus, this study indicates that RMF can improve GC-ONFH in rat and cell models, suggesting that RMF have the potential in the treatment of clinical GC-ONFH.


Subject(s)
Cell Differentiation , Femur Head Necrosis , Glucocorticoids , Osteoblasts , Rats, Sprague-Dawley , Animals , Osteoblasts/metabolism , Osteoblasts/drug effects , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/metabolism , Femur Head Necrosis/therapy , Rats , Cell Differentiation/drug effects , Male , Magnetic Fields , Magnetic Field Therapy/methods , Femur Head/pathology , Femur Head/metabolism , Disease Models, Animal , Rotation , Mice
6.
Biochem Biophys Res Commun ; 723: 150188, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38824808

ABSTRACT

Steroid (glucocorticoid)-induced necrosis of the femoral head (SONFH) represents a prevalent, progressive, and challenging bone and joint disease characterized by diminished osteogenesis and angiogenesis. Omaveloxolone (OMA), a semi-synthetic oleanocarpane triterpenoid with antioxidant, anti-inflammatory, and osteogenic properties, emerges as a potential therapeutic agent for SONFH. This study investigates the therapeutic impact of OMA on SONFH and elucidates its underlying mechanism. The in vitro environment of SONFH cells was simulated by inducing human bone marrow mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) using dexamethasone (DEX).Various assays, including CCK-8, alizarin red staining, Western blot, qPCR, immunofluorescence, flow cytometry, and TUNNEL, were employed to assess cell viability, STING/NF-κB signaling pathway-related proteins, hBMSCs osteogenesis, HUVECs migration, angiogenesis, and apoptosis. The results demonstrate that OMA promotes DEX-induced osteogenesis, HUVECs migration, angiogenesis, and anti-apoptosis in hBMSCs by inhibiting the STING/NF-κB signaling pathway. This experimental evidence underscores the potential of OMA in regulating DEX-induced osteogenesis, HUVECs migration, angiogenesis, and anti-apoptosis in hBMSCs through the STING/NF-κB pathway, thereby offering a promising avenue for improving the progression of SONFH.


Subject(s)
Femur Head Necrosis , Glucocorticoids , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Osteogenesis , Humans , Osteogenesis/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/drug therapy , Femur Head Necrosis/metabolism , Neovascularization, Physiologic/drug effects , Glucocorticoids/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cells, Cultured , Apoptosis/drug effects , Dexamethasone/pharmacology , NF-kappa B/metabolism , Signal Transduction/drug effects , Femur Head/pathology , Femur Head/drug effects , Femur Head/blood supply , Femur Head/metabolism , Cell Movement/drug effects , Triterpenes/pharmacology , Cell Survival/drug effects , Angiogenesis
7.
Stem Cells ; 41(7): 711-723, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37210668

ABSTRACT

Enhanced adipogenic differentiation of mesenchymal stem cells (MSCs) is considered as a major risk factor for steroid-induced osteonecrosis of the femoral head (SOFNH). The role of microRNAs during this process has sparked interest. miR-486-5p expression was down-regulated significantly in femoral head bone tissues of both SONFH patients and rat models. The purpose of this study was to reveal the role of miR-486-5p on MSCs adipogenesis and SONFH progression. The present study showed that miR-486-5p could significantly inhibit adipogenesis of 3T3-L1 cells by suppressing mitotic clonal expansion (MCE). And upregulated expression of P21, which was caused by miR-486-5p mediated TBX2 decrease, was responsible for inhibited MCE. Further, miR-486-5p was demonstrated to effectively inhibit steroid-induced fat formation in the femoral head and prevented SONFH progression in a rat model. Considering the potent effects of miR-486-5p on attenuating adipogenesis, it seems to be a promising target for the treatment of SONFH.


Subject(s)
MicroRNAs , Osteonecrosis , Animals , Rats , Adipogenesis/genetics , Cell Differentiation/genetics , Femur Head/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteonecrosis/chemically induced , Osteonecrosis/metabolism , Steroids/adverse effects
8.
Phytother Res ; 38(1): 156-173, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37846877

ABSTRACT

Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is the main complication secondary to long-term or excessive use of glucocorticoids (GCs). Taxifolin (TAX) is a natural antioxidant with various pharmacological effects, such as antioxidative stress and antiapoptotic properties. The purpose of this study was to explore whether TAX could regulate oxidative stress and apoptosis in GIONFH by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. We conducted qRT-PCR, Western blotting, TUNEL assays, flow cytometry, and other experiments in vitro. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were performed to determine the therapeutic effect of TAX in vivo. TAX mitigated the overexpression of ROS and NOX gene expression induced by DEX, effectively reducing oxidative stress. Additionally, TAX could alleviate DEX-induced osteoblast apoptosis, as evidenced by qRT-PCR, Western blotting, and other experimental techniques. Our in vivo studies further demonstrated that TAX mitigates the progression of GIONFH in rats by combating oxidative stress and apoptosis. Mechanistic exploration revealed that TAX thwarts the progression of GIONFH through the activation of the Nrf2 pathway. Overall, our research herein reports that TAX-mediated Nrf2 activation ameliorates oxidative stress and apoptosis for the treatment of GIONFH.


Subject(s)
Glucocorticoids , Osteonecrosis , Quercetin/analogs & derivatives , Rats , Animals , Glucocorticoids/adverse effects , NF-E2-Related Factor 2/metabolism , Signal Transduction , Femur Head/metabolism , X-Ray Microtomography , Oxidative Stress , Osteonecrosis/chemically induced , Osteonecrosis/drug therapy , Osteonecrosis/metabolism , Apoptosis
9.
Biochem Biophys Res Commun ; 661: 108-118, 2023 06 18.
Article in English | MEDLINE | ID: mdl-37099894

ABSTRACT

Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is deeply relevant to damage and dysfunction of bone microvascular endothelial cells (BMECs). Recently, necroptosis, a newly programmed cell death with necrotic appearance, has garnered increasing attention. Luteolin, a flavonoid compound derived from Rhizoma Drynariae, has numerous pharmacological properties. However, the effect of Luteolin on BMECs in GIONFH through the necroptosis pathway has not been extensively investigated. Based on network pharmacology analysis, 23 genes were identified as potential targets for the therapeutic effect of Luteolin in GIONFH via the necroptosis pathway, with RIPK1, RIPK3, and MLKL being the hub genes. Immunofluorescence staining results revealed high expression of vWF and CD31 in BMECs. In vitro experiments showed that incubation with dexamethasone led to reduced proliferation, migration, angiogenesis ability, and increased necroptosis of BMECs. However, pretreatment with Luteolin attenuated this effect. Based on molecular docking analysis, Luteolin exhibited strong binding affinity with MLKL, RIPK1, and RIPK3. Western blotting was utilized to detect the expression of p-MLKL, MLKL, p-RIPK3, RIPK3, p-RIPK1, and RIPK1. Intervention with dexamethasone resulted in a significant increase in the p-RIPK1/RIPK1 ratio, but the effects of dexamethasone were effectively counteracted by Luteolin. Similar findings were observed for the p-RIPK3/RIPK3 ratio and the p-MLKL/MLKL ratio, as anticipated. Therefore, this study demonstrates that Luteolin can reduce dexamethasone-induced necroptosis in BMECs via the RIPK1/RIPK3/MLKL pathway. These findings provide new insights into the mechanisms underlying the therapeutic effects of Luteolin in GIONFH treatment. Additionally, inhibiting necroptosis could be a promising novel approach for GIONFH therapy.


Subject(s)
Osteonecrosis , Protein Kinases , Humans , Protein Kinases/metabolism , Luteolin/pharmacology , Glucocorticoids/pharmacology , Necroptosis , Endothelial Cells/metabolism , Femur Head/metabolism , Molecular Docking Simulation , Network Pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Dexamethasone/pharmacology
10.
Metabolomics ; 19(4): 34, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37002424

ABSTRACT

INTRODUCTION: Osteonecrosis of the femoral head (ONFH) is a disorder that causes a collapse of the femoral head, requiring subsequent total hip replacement. However, the pathogenesis of ONFH remains largely unclear. Herein, exosome metabolomics analyses were conducted to explore the pathophysiology of ONFH. OBJECTIVES: This study aimed to conduct metabolic profiling of bone-derived exosomes of ONFH. METHODS: 30 ONFH patients and 30 femoral neck fracture (FNF) patients were included in this study. Exosomes were harvested from the femoral head by using ultracentrifugation. Ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was performed in combination with multivariate statistical analysis to reveal and provided new insight into identify the global metabolic profile of ONFH. RESULTS: The results of transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and Western blots indicated that the microvesicles isolated from the femoral head were exosomes. Several compounds were identified, including lipids and lipid-like molecules, amino acids, peptides, organooxygen compounds. 44 differential metabolites were screened between ONFH and FNF patients. The up-and down-regulation of Riboflavin metabolism, Pantothenate and CoA biosynthesis, Glycerophospholipid metabolism, and Sphingolipid metabolism were associated with ONFH pathophysiology. CONCLUSION: Our results suggest that metabolomics has huge prospects for elucidating pathophysiology of ONFH.


Subject(s)
Exosomes , Femur Head Necrosis , Humans , Chromatography, Liquid , Femur Head Necrosis/metabolism , Exosomes/metabolism , Femur Head/metabolism , Tandem Mass Spectrometry , Metabolomics
11.
Environ Res ; 238(Pt 1): 117116, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37709244

ABSTRACT

BACKGROUND: Steroid-induced Avascular Necrosis of the Femoral Head (SANFH) is a condition characterized by the necrosis of the femoral head caused by long-term or high-dose hormone usage. Studies have shown that the PI3K/AKT pathway plays a crucial regulatory role in the development of SANFH. The aim of this study is to determine how external environmental factors induce changes in endogenous hormone levels, how these changes lead to steroid-induced femoral head necrosis, and the interrelationship between the changes in PIK3R5 promoter methylation levels and the regulation of the associated signaling pathways. METHODS: Femoral head samples underwent molecular sequencing analysis. Candidate genes were screened by differential gene analysis and functional enrichment analysis.Methylation level of candidate gene PIK3R5 was verified by methylation-specific PCR(MS-PCR). SANFH model was constructed in New Zealand white rabbits, and the model results were verified by magnetic resonance imaging (MRI) and haematoxylin-eosin (HE) staining.The expression of PIK3R5, PI3K and AKT in rabbit models and human specimens was verified by real-time fluorescence quantitative PCR(RT-qPCR) and Western Blot(WB), respectively. RESULTS: Human femoral head sequencing results indicate distinct differences in the methylation level and mRNA expression of PIK3R5 in SANFH. MS-PCR results showed the methylation level of SANFH patients was significantly higher than that of the control group (P < 0.01). The RT-qPCR results showed that PIK3R5 and PI3K expression levels in the SANFH group were lower than those in the control group (P < 0.05), and the WB experiment results were consistent with the RT-qPCR results. The MRI and HE staining results showed that the rabbit model of SANFH was successfully constructed, and the results of RT-qPCR and WB were consistent with the results of human tissues. CONCLUSION: During the occurrence and development of SANFH, PIK3R5 gene regulates the PI3K/AKT pathway through methylation modification, promotes the oxidative stress response of cells, and accelerates the disease process.


Subject(s)
Femur Head Necrosis , Humans , Animals , Rabbits , Femur Head Necrosis/chemically induced , Femur Head Necrosis/genetics , Femur Head Necrosis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Methylation , Femur Head/metabolism , Femur Head/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Steroids/toxicity , Steroids/metabolism , Hormones/metabolism
12.
BMC Musculoskelet Disord ; 24(1): 609, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491198

ABSTRACT

PURPOSE: Steroid-induced necrosis of the femoral head (SONFH) is a refractory orthopedic hip disease occurring in young and middle-aged people, with glucocorticoids being the most common cause. Previous experimental studies have shown that cell pyroptosis may be involved in the pathological process of SONFH, but its pathogenesis in SONFH is still unclear. This study aims to screen and validate potential pyroptosis-related genes in SONFH diagnosis by bioinformatics analysis to further elucidate the mechanism of pyroptosis in SONFH. METHODS: There were 33 pyroptosis-related genes obtained from the prior reviews. The mRNA expression was downloaded from GSE123568 dataset in the Gene Expression Omnibus (GEO) database, including 10 non-SONFH (following steroid administration) samples and 30 SONFH samples. The pyroptosis-related differentially expressed genes involved in SONFH were identified with "affy" and "limma" R package by intersecting the GSE123568 dataset with pyroptosis genes. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the pyroptosis-related differentially expressed genes involved in SONFH were conducted by "clusterProfiler" R package and visualized by "GOplot" R package. Then, the correlations between the expression levels of the pyroptosis-related differentially expressed genes involved in SONFH were confirmed with "corrplot" R package. Moreover, the protein-protein interaction (PPI) network was analysed by using GeneMANIA database. Next, The ROC curve of pyroptosis-related differentially expressed genes were analyzed by "pROC" R package. RESULTS: A total of 10 pyroptosis-related differentially expressed genes were identified between the peripheral blood samples of SONFH patients and non-SONFH patients based on the defined criteria, including 20 upregulated genes and 10 downregulated genes. The GO and KEGG pathway enrichment analyses revealed that these 10 pyroptosis-related differentially expressed genes involved in SONFH were particularly enriched in cysteine-type endopeptidase activity involved in apoptotic process, positive regulation of interleukin-1 beta secretion and NOD-like receptor signaling pathway. Correlation analysis revealed significant correlations among the 10 differentially expressed pyroptosis-related genes involved in SONFH. The PPI results demonstrated that the 10 pyroptosis-related differentially expressed genes interacted with each other. Compared to non-SONFH samples, these pyroptosis-related differentially expressed genes had good predictive diagnostic efficacy (AUC = 1.000, CI = 1.000-1.000) in the SONFH samples, and NLRP1 had the highest diagnostic value (AUC: 0.953) in the SONFH samples. CONCLUSIONS: There were 10 potential pyroptosis-related differentially expressed genes involved in SONFH were identified via bioinformatics analysis, which might serve as potential diagnostic biomarkers because they regulated pyroptosis. These results expand the understanding of SONFH associated with pyroptosis and provide new insights to further explore the mechanism of action and diagnosis of pyroptosis associated in SONFH.


Subject(s)
Femur Head , Osteonecrosis , Middle Aged , Humans , Femur Head/metabolism , Pyroptosis , Osteonecrosis/chemically induced , Osteonecrosis/genetics , Steroids/adverse effects , Necrosis , Computational Biology/methods , Biomarkers/metabolism
13.
BMC Musculoskelet Disord ; 24(1): 369, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165386

ABSTRACT

BACKGROUND: Steroid-induced osteonecrosis of the femoral head (SONFH) is the necrosis of the femur bone caused by prolonged and massive use of corticosteroids. The present study probed into the significance of Astragalus polysaccharide (APS) in SONFH progression. METHODS: SONFH cell model was constructed using murine long bone osteocyte Y4 (MLO-Y4) cells and then treated with APS. mRNA microarray analysis selected differentially expressed genes between control group and SONFH group. RT-qPCR determined SP1 and miR-200b-3p expression. Levels of SP1, ß-catenin, autophagy-related proteins (LC3II/LC3I, Beclin1, p62) and apoptosis-related proteins (Bax, C-caspase3, C-caspase9, Bcl-2) were tested by Western blot. ChIP and luciferase reporter assays confirmed relationship between SP1 and miR-200b-3p. Fluorescence intensity of LC3 in cells was detected by immunofluorescence. Flow cytometry assessed cell apoptosis. Osteonecrosis tissues from SONFH mice were examined by HE and TRAP staining. RESULTS: APS induced autophagy and suppressed apoptosis in SONFH cell model. APS inhibited SP1 expression and SP1 overexpression reversed effects of APS on SONFH cell model. Mechanistically, SP1 targeted miR-200b-3p to inhibit Wnt/ß-catenin pathway. MiR-200b-3p depletion rescued the promoting effect of SP1 on SONFH cell model by activating Wnt/ß-catenin pathway. HE staining showed that APS treatment reduced the empty lacunae and alleviated inflammation in trabecular bone of SONFH mice. TRAP staining revealed decreased osteoclasts number in SONFH mice after APS treatment. CONCLUSION: APS regulated osteocyte autophagy and apoptosis via SP1/miR-200b-3p axis and activated Wnt/ß-catenin signaling, thereby alleviating SONFH, shedding new insights for therapy of SONFH.


Subject(s)
MicroRNAs , Osteonecrosis , Animals , Mice , beta Catenin/metabolism , Cell Proliferation , Femur Head/metabolism , MicroRNAs/metabolism , Osteonecrosis/chemically induced , Polysaccharides/adverse effects , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Steroids/adverse effects , Wnt Signaling Pathway
14.
BMC Musculoskelet Disord ; 24(1): 808, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828532

ABSTRACT

BACKGROUND: Oxidative stress was closely related to the occurrence and development of Steroid-induced osteonecrosis of the femoral head (SIONFH). 8-hydroxy-2'-deoxyguanosine (8-OHdG) is a important index of oxidative stress. The aim of this study is to investigate the role of 8-OHdG in the development of SIONFH. METHODS: From May 2021 and November 2021, 33 patients diagnosed with SIONFH and 26 healthy controls were recruited in this study. Assessment included the radiography and pathology evaluation of clinical bone tissue, expression position and level of 8-OHdG, level of plasma 8-OHdG, as well as the receiver operating characteristic (ROC) curve. RESULTS: We observed that expression levels of 8-OHdG in bone samples decreased with Association Research Circulation Osseous (ARCO) stages. Plasma 8-OHdG levels were significantly increased in the SIONFH group compared to the healthy control group. Plasma 8-OHdG level of pre-collapse patients was higher than that of post-collapse patients, the decreased plasma 8-OHdG level was related to higher ARCO stages. CONCLUSION: Plasma 8-OHdG may represent potential biomarkers during SIONFH at different stages. Higher plasma 8-OHdG levels indicated early stage of SIONFH. The current study provided new clues for early diagnosis and treatment for SIONFH.


Subject(s)
Femur Head Necrosis , Femur Head , Humans , 8-Hydroxy-2'-Deoxyguanosine , Femur Head/metabolism , Biomarkers , Femur Head Necrosis/diagnosis , Femur Head Necrosis/diagnostic imaging , Steroids
15.
Biochem Biophys Res Commun ; 602: 149-155, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35276555

ABSTRACT

Recently, ferroptosis as new regulatory necrosis has attracted the scientific community. However, the study focused on the effect of ferroptosis on osteocytes in steroid (glucocorticoid)-induced osteonecrosis of the femoral head (SONFH) is still scarce. In this study, we use bioinformatic analysis to screen out differentially expressed genes (DEGs) in osteoblasts that treated by dexamethasone (Dex) in GSE10311 and found these DEGs are enriched in the ferroptosis signaling pathway. The results in vitro experiments show that Dex can induce MC3T3-E1 cells ferroptosis by down-regulating SLC7A11. Specifically, Dex inhibits the expression of SLC7A11/GPX4, decreases the activity of the intracellular antioxidant system such as intracellular glutathione (GSH), while increasing Malondialdehyde (MDA), reactive oxygen species (ROS), and lipid ROS, and reduces the volume of mitochondria, the mitochondrial ridges and a series of obvious ferroptosis features. The overexpression of SLC7A11 and the use of ferroptosis inhibitor (Fer-1) can reverse the Dex-induced MC3T3 ferroptosis. Dex can induce an increase in the expression of p53 and knocking down the expression of p53 by small interfering ribonucleic acid (siRNA) can reverse the suppression of SLC7A11 and GPX4 expression in MC3T3-E1 and MOLY4 cells, thereby reducing the production of ferroptosis. Thus, this study demonstrated that Dex induces MC3T3-E1cells ferroptosis via p53/SLC7A11/GPX4 pathway. The present finding offers novel insight to understand the underlying molecular mechanisms for glucocorticoid-induced osteonecrosis. Moreover, the suppression of ferroptosis may be a novel and promising treatment option for SONFH.


Subject(s)
Ferroptosis , Osteonecrosis , Amino Acid Transport System y+/genetics , Dexamethasone/adverse effects , Femur Head/metabolism , Glucocorticoids/adverse effects , Glutathione/metabolism , Humans , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53
16.
Cell Biol Int ; 46(12): 2185-2197, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36116109

ABSTRACT

Exosomes (Exo) originated from bone marrow mesenchymal stem cells (BMSCs) have therapeutic impacts on osteonecrosis of the femoral head (ONFH), and microRNA (miR)-532-5p has been confirmed to participate in ONFH progression. In the research, it was figured out whether BMSCs-Exo could relieve ONFH by delivering miR-532-5p. MG-63 cells were treated with DEX to construct an ONFH cell model in vitro. The effects of Exo and miR-532-5p on the cell viability, lactate dehydrogenase (LDH) content, and apoptosis of BMSCs were detected. The ONFH rat model was established, and the effect of BMSCs-Exo delivering miR-532-5p on the pathological damage of ONFH rats was evaluated. Changes in nuclear receptor coactivator-3 (NCOA3) and apoptotic proteins were assessed by western blot. The relationship between miR-532-5p and NCOA3 was verified by dual luciferase reporter experiments. miR-532-5p was elevated in vivo and in vitro ONFH-models, while NCOA3 expression was reduced. Overexpression of miR-532-5p aggravated DEX toxicity in osteoblasts, decreased cell viability, and promoted apoptosis. Knockdown of miR-532-5p made Exo further attenuate the toxic effect of DEX on osteoblasts and inhibited apoptosis. The protective effect of miR-532-5p-delivering Exo on osteoblasts was reversed by NCOA3 silencing. In addition, in vivo experiments also confirmed that knockdown of miR-532-5p enhanced the therapeutic effect of Exo on ONFH rats. This study demonstrates that miR-532-5p-delivering BMSCs-Exo inhibits osteoblast viability and promote apoptosis by targeting NCOA3, thereby aggravating ONFH development.


Subject(s)
Exosomes , Femur Head Necrosis , Mesenchymal Stem Cells , MicroRNAs , Rats , Animals , Exosomes/metabolism , Nuclear Receptor Coactivator 3/metabolism , Femur Head/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Femur Head Necrosis/chemically induced , Femur Head Necrosis/therapy , Femur Head Necrosis/metabolism
17.
J Clin Lab Anal ; 36(4): e24134, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35274778

ABSTRACT

BACKGROUND: Steroid-induced osteonecrosis of femoral head (SONFH) is a serious complication of glucocorticoid overused. Recent evidence has demonstrated that circRNAs exert key pathophysiological roles in a variety of disease processes. However, the role of circRNA in SONFH remains largely unknown. The current study sought to evaluate how hsa_circ_0058122 affects SONFH in dexamethasone (DEX) treated human umbilical vein endothelial cells (HUVECs) model. METHODS: RT-PCR was used to demonstrate the hsa_circ_0058122 expression level in Dex-treated HUVECs cells. The effects of hsa_circ_0058122 on HUVECs apoptosis were evaluated via overexpression plasmid and siRNA. Using dual-luciferase and fluorescence in situ hybridization assays, we demonstrated that hsa_circ_0058122 binds to miR-7974 thereby facilitating HUVECs apoptosis. Bioinformatics analysis and western blot were performed to confirm target genes of hsa-miR-7974. RESULTS: In our previous work, we revealed the top 20 elevated circRNAs in SONFH patients were hsa_circ_0010027, hsa_circ_0058115, hsa_circ_0010026, hsa_circ_0058839, hsa_circ_0056886, hsa_circ_0056885, hsa_circ_0058146, hsa_circ_0058105, hsa_circ_0058112, hsa_circ_0058143, hsa_circ_0058102, hsa_circ_0058090, hsa_circ_0075353, hsa_circ_0058126, hsa_circ_0058130, hsa_circ_0058140, hsa_circ_0058122, hsa_circ_0058123, hsa_circ_0058103, and hsa_circ_0058121. Among these, hsa_circ_0058122 was finally selected for further investigation. We found hsa_circ_0058122 expression was markedly elevated in Dex-treated HUVECs cells, and the Dex-mediated HUVEC apoptosis was impaired in hsa_circ_0058122-silenced cells and increased in hsa_circ_0058122-overexpressing cells. hsa_circ_0058122 competitively binds to hsa-miR-7974, which in turn interacts with insulin-like growth factor binding protein 5 (IGFBP5). CONCLUSIONS: hsa_circ_0058122/miR-7974/IGFBP5 was proposed to be a key regulatory pathway for SONFH. DEX treatment upregulated hsa_circ_0058122 expression in HUVECs, which sponged miR-7974, thereby increasing IGFBP5 expression, the hsa_circ_0058122/miR-7974/IGFBP5 axis contributed to the Dex-mediated apoptosis. These findings may identify novel targets for SONFH molecular therapy.


Subject(s)
MicroRNAs , Osteonecrosis , Apoptosis/genetics , Cell Proliferation , Cells, Cultured , Femur Head/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , In Situ Hybridization, Fluorescence , Insulin-Like Growth Factor Binding Protein 5/genetics , Insulin-Like Growth Factor Binding Protein 5/metabolism , Insulin-Like Growth Factor Binding Protein 5/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Osteonecrosis/metabolism , RNA, Circular/genetics , Steroids/metabolism , Steroids/pharmacology
18.
BMC Musculoskelet Disord ; 23(1): 1020, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36435763

ABSTRACT

Steroid-induced osteonecrosis of femoral head (SANFH) involves impaired differentiation of bone marrow mesenchymal stem cells (BMSC), the mechanism of which is regulated by multiple microRNAs. Studies have shown that miR-145 is a key regulatory molecule of BMSC cells, but its mechanism in steroid-induced femur head necrosis remains unclear. The present study mainly explored the specific mechanism of miR-145 involved in SANFH. In this study dexamethasone, a typical glucocorticoid, was used to induce osteogenic differentiation of BMSC cells. Western blot, qPCR, CCK8 and flow cytometry were used to investigate the effects of miR-145 on the proliferation and differentiation of BMSC. The relationship between miR-145 and GABA Type A Receptor Associated Protein Like 1(GABARAPL1) was identified using dual luciferase reports and the effects of the two molecules on BMSC were investigated in vitro. The results showed that miR-145 was up-regulated in SANFH patients, while GABARAPL1 was down-regulated. Inhibition of miR-145 can improve apoptosis and promote proliferation and activation of BMSC. GABARAPL1 is a downstream target gene of miR-145 and is negatively regulated by miR-145. In conclusion, miR-145 regulates the proliferation and differentiation of glucocorticoid-induced BMSC cells through GABARAPL1 and pharmacologically inhibit targeting miR-145 may provide new aspect for the treatment of SANFH.


Subject(s)
Femur Head Necrosis , Mesenchymal Stem Cells , MicroRNAs , Humans , Osteogenesis , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Femur Head/metabolism , Glucocorticoids/adverse effects , Bone Marrow , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Steroids , Cell Proliferation , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/pharmacology , Adaptor Proteins, Signal Transducing/genetics
19.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36232582

ABSTRACT

As a widely used steroid hormone medicine, glucocorticoids have the potential to cause steroid-induced osteonecrosis of the femoral head (SONFH) due to mass or long-term use. The non-coding RNA hypothesis posits that they may contribute to the destruction and dysfunction of cartilages as a possible etiology of SONFH. MiR-30b-5p was identified as a regulatory factor in cartilage degeneration caused by methylprednisolone (MPS) exposure in our study through cell transfection. The luciferase reporter assay confirmed that miR-30b-5p was downregulated and runt-related transcription factor 2 (Runx2) was mediated by miR-30b-5p. The nobly increased expression of matrix metallopeptidase 13 (MMP13) and type X collagen (Col10a1) as Runx2 downstream genes contributed to the hypertrophic differentiation of chondrocytes, and the efficiently upregulated level of matrix metallopeptidase 9 (MMP9) may trigger chondrocyte apoptosis with MPS treatments. The cell transfection experiment revealed that miR-30b-5p inhibited chondrocyte hypertrophy and suppressed MPS-induced apoptosis. As a result, our findings showed that miR-30b-5p modulated Runx2, MMP9, MMP13, and Col10a1 expression, thereby mediating chondrocyte hypertrophic differentiation and apoptosis during the SONFH process. These findings revealed the mechanistic relationship between non-coding RNA and SONFH, providing a comprehensive understanding of SONFH and other bone diseases.


Subject(s)
MicroRNAs , Osteonecrosis , Apoptosis/genetics , Chondrocytes/metabolism , Collagen Type X/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Down-Regulation , Femur Head/metabolism , Glucocorticoids/metabolism , Humans , Hypertrophy/metabolism , Luciferases/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/metabolism , Methylprednisolone/adverse effects , MicroRNAs/genetics , MicroRNAs/metabolism , Osteonecrosis/chemically induced , Osteonecrosis/genetics , Osteonecrosis/metabolism , Steroids/metabolism
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(7): 872-880, 2022 Jul 28.
Article in English, Zh | MEDLINE | ID: mdl-36039583

ABSTRACT

OBJECTIVES: Osteonecrosis of the femoral head (ONFH), also known as vascular necrosis of the femoral head, is combined with lipid metabolism disorders in most patients. This study aims to explore the lipid metabolism profiles in different subtypes of ONFH. METHODS: The subjects were divided into an alcohol-induced osteonecrosis of the femoral head (AONFH) group, a steroid-induced osteonecrosis of the femoral head (SONFH) group, and a normal control (NC) group (n=16, 29, and 32, respectively). Ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS) was used to detect the lipidomics analysis in the peripheral blood samples of subjects and identify the underlying biomarkers. The samples were preprocessed, the partial least squares discriminant analysis (PLS-DA) was adopted, and the variable importance for the projection (VIP) values were calculated to measure the expression pattern of each lipid metabolite and observe the influence and explanatory power of the expression pattern of each lipid metabolite on the classification and discrimination between the different groups. The lipid metabolites with fold change (FC)>2, P<0.05 and VIP>1 in the different groups were screened as differential lipids. Among them, the differential lipids co-existing in the AONFH group and the SONFH group were regarded as common differential lipids for ONFH, and the differential lipids that exist separately were regarded as specific differential lipids in the AONFH group or the SONFH group. Binary logistic regression was used to evaluate the diagnostic value of differential lipid metabolites on the basis of the receiver operator characteristic (ROC) curve analysis. Based on the disease stage information, the correlation between the differential lipids and the disease stage was analyzed in the AONFH group and the SONFH group. RESULTS: In this study, 1 358 lipid metabolites were detected in each plasma sample. Compared with the NC group, there were significant difference in the expression patterns of lipid metabolism profiles in the AONFH group and the SONFH group. A total of 62 and 64 differential lipid metabolites were screened in the AONFH and SONFH patients (FC>2, P<0.05, VIP>1) respectively, and these differential lipids were mainly up-regulated in the disease samples. Nine differential lipid metabolites were further identified, which were shared by the AONFH group and the SONFH group; the area under the curve (AUC) in 6 kinds of lipid components was greater than 0.7, including 1-myristoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, hypoxanthin, serotonin, PE (19:0/22:5), PE (19:0/22:5), and cholest-5-en-3-yl beta-D-glucopyranosiduronic acid. Fifty-three specific differential lipid metabolites were identified in the AONFH group, and 55 specific differential lipid metabolites were identified in the SONFH group. The AUC in 6 kinds of lipid components was greater than 0.9, including 1D-myo-Inositol 1,2-cyclic phosphate, L-pyroglutamic acid, DL-carnitine, 8-amino-7-oxononanoic acid, Clobetasol, and presqualene diphosphate. In the AONFH group, there were 9 differential lipid metabolites related to the disease stages, including LPG 18:1, serotonin, PC (22:4e/23:0), PC (19:2/18:5), hypoxanthin, PE (18:1/20:3), LPE 18:1, 1-stearoyl-2-arachidonoyl-sn-glycerol, and PE (16:0/18:1); with AONFH disease progresses from I/II stages to III/IV stages, the relative content of these 9 differential lipid metabolites was increased. In the SONFH group, 8 differential lipid metabolites were found to be related to the stage of the disease, including TM6076000, 4-(1,1-dimethylpropyl)phenol, D-617, asarone, phenylac-gln-OH, creatine, leu-pro, and 8-amino-7-oxononanoic acid; and with the SONFH progressed from stage I/II to stage III/IV, the content of these 8 differential lipid metabolites were gradually increased. CONCLUSIONS: This study analyzes the characteristics of the plasma lipid metabolism profile in the AONFH and SONFH patients, and which identifies the differential lipid metabolites related to disease diagnosis and evaluation. These results provide evidence for exploring lipid metabolism alterations and the mining of novel lipid biomarkers for the ONFH.


Subject(s)
Femur Head Necrosis , Femur Head , Biomarkers , Chromatography, Liquid , Ethanol/adverse effects , Ethanol/metabolism , Femur Head/metabolism , Femur Head Necrosis/chemically induced , Humans , Lipid Metabolism , Lipids/adverse effects , Serotonin , Steroids/adverse effects , Steroids/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL