Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.247
Filter
Add more filters

Publication year range
1.
Nano Lett ; 24(26): 8179-8188, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885447

ABSTRACT

The unique "Iron Addiction" feature of cancer stem cells (CSCs) with tumorigenicity and plasticity generally contributes to the tumor recurrence and metastasis after a lumpectomy. Herein, a novel "Ferroptosis Amplification" strategy is developed based on integrating gallic acid-modified FeOOH (GFP) and gallocyanine into Pluronic F-127 (F127) and carboxylated chitosan (CC)-based hydrogel for CSCs eradication. This "Ferroptosis Amplifier" hydrogel is thermally sensitive and achieves rapid gelation at the postsurgical wound in a breast tumor model. Specifically, gallocyanine, as the Dickkopf-1 (DKK1) inhibitor, can decrease the expression of SLC7A11 and GPX4 and synergistically induce ferroptosis of CSCs with GFP. Encouragingly, it is found that this combination suppresses the migratory and invasive capability of cancer cells via the downregulation of matrix metalloproteinase 7 (MMP7). The in vivo results further confirm that this "Ferroptosis Amplification" strategy is efficient in preventing tumor relapse and lung metastasis, manifesting an effective and promising postsurgical treatment for breast cancer.


Subject(s)
Breast Neoplasms , Ferroptosis , Hydrogels , Neoplastic Stem Cells , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Hydrogels/chemistry , Humans , Animals , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Mice , Ferroptosis/drug effects , Cell Line, Tumor , Poloxamer/chemistry , Poloxamer/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Gallic Acid/pharmacology , Gallic Acid/chemistry , Gallic Acid/therapeutic use
2.
Mol Pharm ; 21(5): 2577-2589, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38647021

ABSTRACT

This study aimed to repurpose the antifungal drug flucytosine (FCN) for anticancer activity together with cocrystals of nutraceutical coformers sinapic acid (SNP) and syringic acid (SYA). The cocrystal screening experiments with SNP resulted in three cocrystal hydrate forms in which two are polymorphs, namely, FCN-SNP F-I and FCN-SNP F-II, and the third one with different stoichiometry in the asymmetric unit (1:2:1 ratio of FCN:SNP:H2O, FCN-SNP F-III). Cocrystallization with SYA resulted in two hydrated cocrystal polymorphs, namely, FCN-SYA F-I and FCN-SYA F-II. All the cocrystal polymorphs were obtained concomitantly during the slow evaporation method, and one of the polymorphs of each system was produced in bulk by the slurry method. The interaction energy and lattice energies of all cocrystal polymorphs were established using solid-state DFT calculations, and the outcomes correlated with the experimental results. Further, the in vitro cytotoxic activity of the cocrystals was determined against DU145 prostate cancer and the results showed that the FCN-based cocrystals (FCN-SNP F-III and FCN-SYA F-I) have excellent growth inhibitory activity at lower concentrations compared with parent FCN molecules. The prepared cocrystals induce apoptosis by generating oxidative stress and causing nuclear damage in prostate cancer cells. The Western blot analysis also depicted that the cocrystals downregulate the inflammatory markers such as NLRP3 and caspase-1 and upregulate the intrinsic apoptosis signaling pathway marker proteins, such as Bax, p53, and caspase-3. These findings suggest that the antifungal drug FCN can be repurposed for anticancer activity.


Subject(s)
Antifungal Agents , Antineoplastic Agents , Apoptosis , Drug Repositioning , Flucytosine , Prostatic Neoplasms , Signal Transduction , Apoptosis/drug effects , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Male , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Repositioning/methods , Flucytosine/pharmacology , Flucytosine/chemistry , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Crystallization , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
3.
Biomacromolecules ; 25(9): 6026-6037, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39137337

ABSTRACT

Intracellular pathogens can survive inside the macrophages to protect themselves from eradication by the innate immune system and conventional antibiotics, resulting in severe bacterial infections. In this work, an antibiotic-free nanocomplex (HA/GA-Fe@NO-DON), exhibiting macrophage-targeted synergistic gas therapy (nitric oxide, NO)/chemodynamic therapy/immunotherapy, was reported. HA/GA-Fe nanoparticles were synthesized by the strong coordination interactions among carboxyl groups of hyaluronic acid (HA), polyphenol groups of gallic acid (GA), and Fe(II) ions. The hydrophobic glutathione (GSH)-responsive NO donor (NO-DON) was encapsulated in HA/GA-Fe nanoparticles to form the final nanocomplexes (HA/GA-Fe@NO-DON). HA on the nanocomplexes guides the macrophage-specific uptake and intracellular accumulation. After the uptake, HA/GA-Fe@NO-DON nanocomplexes could not only generate highly toxic hydroxyl radicals (•OH) by the Fenton reaction and GSH depletion but also release NO when stimulated by intracellular GSH. Meanwhile, the nanocomplexes could trigger an efficient proinflammation immune response to reinforce the antibacterial activity. This work presents the development of antibiotic-free macrophage-targeted HA/GA-Fe@NO-DON nanocomplexes as an effective adjuvant nanomedicine with synergistic gas therapy/chemodynamic therapy/immunotherapy for eliminating intracellular bacterial infection.


Subject(s)
Gallic Acid , Glutathione , Macrophages , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Mice , Animals , Glutathione/chemistry , Glutathione/metabolism , RAW 264.7 Cells , Gallic Acid/chemistry , Gallic Acid/pharmacology , Immunotherapy/methods , Nitric Oxide/metabolism , Nitric Oxide/chemistry , Hyaluronic Acid/chemistry , Bacterial Infections/drug therapy , Nanoparticles/chemistry , Iron/chemistry
4.
Biomacromolecules ; 25(7): 4358-4373, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38924782

ABSTRACT

Chitosan (CS)-based photo-cross-linkable hydrogels have gained increasing attention in biomedical applications. In this study, we grafted CS with gallic acid (GA) by carbodiimide chemistry to prepare the GA-CS conjugate, which was subsequently modified with methacrylic anhydride (MA) modification to obtain the methacrylated GA-CS conjugate (GA-CS-MA). Our results demonstrated that the GA-CS-MA hydrogel not only exhibited improved physicochemical properties but also showed antibacterial, antioxidative, and anti-inflammatory capacity. It showed moderate antibacterial activity and especially showed a more powerful inhibitory effect against Gram-positive bacteria. It modulated macrophage polarization, downregulated pro-inflammatory gene expression, upregulated anti-inflammatory gene expression, and significantly reduced reactive oxygen species (ROS) and nitric oxide (NO) production under lipopolysaccharide (LPS) stimulation. Subcutaneously implanted GA-CS-MA hydrogels induced significantly lower inflammatory responses, as evidenced by less inflammatory cell infiltration, thinner fibrous capsule, and predominately promoted M2 polarization. This study provides a feasible strategy to prepare CS-based photo-cross-linkable hydrogels with improved physicochemical properties for biomedical applications.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Chitosan , Gallic Acid , Hydrogels , Methacrylates , Chitosan/chemistry , Gallic Acid/chemistry , Gallic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Mice , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Methacrylates/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , RAW 264.7 Cells , Cross-Linking Reagents/chemistry , Macrophages/drug effects , Macrophages/metabolism , Nitric Oxide/metabolism
5.
Bioorg Chem ; 147: 107381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669781

ABSTRACT

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.


Subject(s)
Dose-Response Relationship, Drug , Enzyme Inhibitors , Hyperuricemia , Organic Anion Transporters , Organic Cation Transport Proteins , Hyperuricemia/drug therapy , Humans , Animals , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Structure-Activity Relationship , Molecular Structure , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Urate Oxidase/chemistry , Drug Discovery , Molecular Docking Simulation , Mice , Male , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Rats, Sprague-Dawley
6.
Biochemistry (Mosc) ; 89(1): 173-183, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38467553

ABSTRACT

Natural polyphenols are promising compounds for the pharmacological control of oxidative stress in various diseases. However, low bioavailability and rapid metabolism of polyphenols in a form of glycosides or aglycones have stimulated the search for the vehicles that would provide their efficient delivery to the systemic circulation. Conjugation of polyphenols with cationic amphiphilic peptides yields compounds with a strong antioxidant activity and ability to pass through biological barriers. Due to a broad range of biological activities characteristic of polyphenols and peptides, their conjugates can be used in the antioxidant therapy, including the treatment of viral, oncological, and neurodegenerative diseases. In this work, we synthesized linear and dendrimeric cationic amphiphilic peptides that were then conjugated with gallic acid (GA). GA is a non-toxic natural phenolic acid and an important functional element of many flavonoids with a high antioxidant activity. The obtained GA-peptide conjugates showed the antioxidant (antiradical) activity that exceeded 2-3 times the antioxidant activity of ascorbic acid. GA attachment had no effect on the toxicity and hemolytic activity of the peptides. GA-modified peptides stimulated the transmembrane transfer of the pGL3 plasmid encoding luciferase reporter gene, although GA attachment at the N-terminus of peptides reduced their transfection activity. Several synthesized conjugates demonstrated the antibacterial activity in the model of Escherichia coli Dh5α growth inhibition.


Subject(s)
Antioxidants , Polyphenols , Antioxidants/pharmacology , Antioxidants/chemistry , Polyphenols/pharmacology , Polyphenols/chemistry , Peptides/pharmacology , Peptides/chemistry , Gallic Acid/pharmacology , Gallic Acid/chemistry , Anti-Bacterial Agents/chemistry
7.
Biofouling ; 40(5-6): 348-365, 2024.
Article in English | MEDLINE | ID: mdl-38836472

ABSTRACT

Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.


Subject(s)
Anacardium , Biofouling , Escherichia coli , Membranes, Artificial , Plant Extracts , Ultrafiltration , Water Purification , Biofouling/prevention & control , Ultrafiltration/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry , Escherichia coli/drug effects , Anacardium/chemistry , Water Purification/methods , Staphylococcus aureus/drug effects , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Gallic Acid/chemistry , Serum Albumin, Bovine/chemistry
8.
Mar Drugs ; 22(9)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39330298

ABSTRACT

The role of oxidative stress in health and homeostasis has generated interest in the scientific community due to its association with cardiovascular and neurodegenerative diseases, cancer, and other diseases. Therefore, extensive research seeks to identify new exogenous antioxidant compounds for supplementation. Polysaccharides are recognized for their antioxidant properties. However, polysaccharide chemical modifications are often necessary to enhance these properties. Therefore, dextran was conjugated with gallic acid (Dex-Gal) and later combined with fucoidan A (FucA) to formulate blends aimed at achieving superior antioxidant activity compared to individual polysaccharides. A factorial design was employed to combine FucA and Dex-Gal in different proportions, resulting in five blends (BLD1, BLD2, BLD3, BLD4, and BLD5). An analysis of surface graphs from in vitro antioxidant tests, including total antioxidant capacity (TAC), reducing power, and hydroxyl radical scavenging, guided the selection of BLD4 as the optimal formulation. Tests on 3T3 fibroblasts under various conditions of oxidative stress induced by hydrogen peroxide revealed that BLD4 provided enhanced protection compared to its isolated components. The BLD4 formulation, resulting from the combination of Dex-Gal and FucA, showed promise as an antioxidant strategy, outperforming its individual components and suggesting its potential as a supplement to mitigate oxidative stress in adverse health conditions.


Subject(s)
Antioxidants , Dextrans , Gallic Acid , Oxidative Stress , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Gallic Acid/pharmacology , Gallic Acid/chemistry , Dextrans/chemistry , Dextrans/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Animals , Mice , Oxidative Stress/drug effects , 3T3 Cells , Hydrogen Peroxide , Fibroblasts/drug effects
9.
Biomed Chromatogr ; 38(7): e5887, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38751131

ABSTRACT

Omics, bioinformatics, molecular docking, and experimental validation were used to elucidate the hepatoprotective effects, mechanisms, and active compounds of Shandougen (SDG) based on the biolabel-led research pattern. Integrated omics were used to explore the biolabels of SDG intervention in liver tissue. Subsequently, bioinformatics and molecular docking were applied to topologically analyze its therapeutic effects, mechanisms, and active compounds based on biolabels. Finally, an animal model was used to verify the biolabel analysis results. Omics, bioinformatics, and molecular docking revealed that SDG may exert therapeutic effects on liver diseases in the multicompound and multitarget synergistic modes, especially liver cirrhosis. In the validation experiment, SDG and its active compounds (betulinic acid and gallic acid) significantly improved the liver histopathological damage in the CCl4-induced liver cirrhosis model. Meanwhile, they also produced significant inhibitory effects on the focal adhesion pathway (integrin alpha-1, myosin regulatory light chain 2, laminin subunit gamma-1, etc.) and alleviated the associated pathological processes: focal adhesion (focal adhesion kinase 1)-extracellular matrix (collagen alpha-1(IV) chain, collagen alpha-1(VI) chain, and collagen alpha-2(VI) chain) dysfunction, carcinogenesis (alpha-fetoprotein, NH3, and acetylcholinesterase), inflammation (tumor necrosis factor alpha, interleukin-1 [IL-1], IL-6, and IL-10), and oxidative stress (reactive oxygen species, malonaldehyde, and superoxide dismutase). This study provides new evidence and insights for the hepatoprotective effects, mechanisms, and active compounds of SDG.


Subject(s)
Computational Biology , Molecular Docking Simulation , Animals , Liver/drug effects , Liver/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry , Male , Rats , Carbon Tetrachloride , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Gallic Acid/chemistry , Gallic Acid/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology , Proteomics/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
10.
J Dairy Sci ; 107(7): 4189-4204, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38369115

ABSTRACT

Noncovalent interactions of 4 selected phenolic acids, including gallic acid (GA), caffeic acid (CA), chlorogenic acid (CGA), and rosmarinic acid (RA) with lactoferrin (LF) were investigated. Compound combined with LF in the binding constant of CA > GA > RA > CGA, driven by van der Waals and hydrogen bonding for GA, and hydrophobic forces for others. Conformation of LF was affected at secondary and ternary structure levels. Molecular docking indicated that GA and CA located in the same site near the iron of the C-lobe, whereas RA and CGA bound to the C2 and N-lobe, respectively. Significantly enhanced antioxidant activity of complexes was found compared with pure LF, as demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(2-ethylbenzothiazoline-6-sulfonate) (ABTS), and ferric reducing antioxidant power (FRAP) models. Caffeic acid, CGA, and RA significantly decreased the emulsifying stability index and improved foam ability of LF, and the effect of CA and RA was the most remarkable, respectively.


Subject(s)
Antioxidants , Hydroxybenzoates , Lactoferrin , Lactoferrin/metabolism , Lactoferrin/chemistry , Animals , Antioxidants/pharmacology , Hydroxybenzoates/chemistry , Cattle , Molecular Docking Simulation , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Cinnamates/chemistry , Cinnamates/pharmacology , Gallic Acid/chemistry , Chlorogenic Acid/chemistry , Depsides/chemistry
11.
Environ Toxicol ; 39(8): 4171-4183, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38666519

ABSTRACT

This study investigated the fabrication of gallic acid-loaded chitosan nanoparticles (Gal-Chi-NPs) that enhanced the DNA damage and apoptotic features by inhibiting FEN-1 expressions in MDA-MB 231 cells. Gal-Chi-NPs were fabricated by the ionic gelation method, and it was characterized by several studies such as dynamic light spectroscopy, Fourier-transforms infrared spectroscopy, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray, atomic force microscopy, and thermogravimetric analysis. We have obtained that Gal-Chi-NPs displayed 182.2 nm with crystal, smooth surface, and heat stability in nature. Gal-Chi-NPs induce significant toxicity in MDA-MB-231 cells that compared with normal NIH-3T3 cells. A significant reactive oxygen species (ROS) overproduction was observed in Gal-Chi-NPs treated MDA-MB-231. Flap endonuclease-1 (FEN-1) is a crucial protein involved in long patch base excision repair that is involved in repairing the chemotherapeutic mediated DNA-damaged base. Therefore, inhibition of FEN-1 protein expression is a crucial target for enhancing chemotherapeutical efficacy. In this study, we have obtained that Gal-Chi-NPs treatment enhanced the DNA damage by observing increased p-H2AX, PARP1; and suppressed the expression of FEN-1 in MDA-MB-231 cells. Moreover, Gal-Chi-NPs inhibited the expression of tumor proliferating markers p-PI3K, AKT, cyclin-D1, PCNA, and BCL-2; induced proapoptotic proteins (Bax and caspase-3) in MDA-MB 231 cells. Thus, Gal-Chi-NPs induce DNA damage and apoptotic features and inhibit tumor proliferation by suppressing FEN-1 expression in triple-negative breast cancer cells.


Subject(s)
Apoptosis , Chitosan , DNA Damage , Flap Endonucleases , Gallic Acid , Nanoparticles , Triple Negative Breast Neoplasms , Gallic Acid/pharmacology , Gallic Acid/chemistry , Chitosan/chemistry , Humans , Flap Endonucleases/metabolism , DNA Damage/drug effects , Apoptosis/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Nanoparticles/chemistry , Nanoparticles/toxicity , Cell Line, Tumor , Mice , Animals , Reactive Oxygen Species/metabolism , Female , NIH 3T3 Cells
12.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893343

ABSTRACT

Polyphenols are plant secondary metabolites that function mostly as a general stress-induced protective mechanism. Polyphenols have also gained interest due to their beneficial properties for human health. Strawberry leaves represent an agro-industrial waste material with relevant bioactive polyphenol content, which could be incorporated into circular economy strategies. However, due to the low quantities of polyphenols in plants, their production needs to be improved for cost-effective applications. The objective of this research was to compare polyphenol production in strawberry (Fragaria × ananassa cv. Festival) leaves in plants grown in greenhouse conditions and plants grown in vitro, using three possible elicitor treatments (UV irradiation, cold exposure, and cysteine). General vegetative effects were morphologically evaluated, and specific polyphenolic compounds were quantified by UHPLC-DAD-MS/MS. Gallic acid was the most abundant polyphenol found in the leaves, both in vivo and in vitro. The results showed higher amounts and faster accumulation of polyphenols in the in vitro regenerated plants, highlighting the relevance of in vitro tissue culture strategies for producing compounds such as polyphenols in this species and cultivar.


Subject(s)
Fragaria , Plant Leaves , Polyphenols , Fragaria/chemistry , Fragaria/metabolism , Polyphenols/chemistry , Plant Leaves/chemistry , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Gallic Acid/chemistry
13.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731487

ABSTRACT

The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.


Subject(s)
Antifungal Agents , Azoles , Fusarium , Gallic Acid , Triticum , Fusarium/drug effects , Fusarium/growth & development , Gallic Acid/chemistry , Gallic Acid/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triticum/microbiology , Azoles/pharmacology , Azoles/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Microbial Sensitivity Tests
14.
Molecules ; 29(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38930827

ABSTRACT

The content of chemical constituents in Eugenia uniflora leaf extracts correlates positively with biological activities. The experimental objective was to carry out the phytochemical screening and purification of the major polyphenols from the leaves of E. uniflora. In addition, the anti-Candida activity of the hydroalcoholic extract, fraction, subfractions and polyphenols purified were evaluated. After partitioning of the extract with ethyl acetate, the fractions were chromatographed on Sephadex® LH-20 gel followed by RP-flash chromatography and monitored by TLC and RP-HPLC. The samples were characterized by mass spectrometry (LC-ESI-QTOF-MS2) and subjected to the microdilution method in 96-well plates against strains of C. albicans, C. auris, and C. glabrata. Myricitrin (93.89%; w/w; m/z 463.0876), gallic acid (99.9%; w/w; m/z 169.0142), and ellagic acid (94.2%; w/w; m/z 300.9988) were recovered. The polyphenolic fraction (62.67% (w/w) myricitrin) and the ellagic fraction (67.86% (w/w) ellagic acid) showed the best antifungal performance (MIC between 62.50 and 500 µg/mL), suggesting an association between the majority constituents and the antifungal response of E. uniflora derivatives. However, there is a clear dependence on the presence of the complex chemical mixture. In conclusion, chromatographic strategies were effectively employed to recover the major polyphenols from the leaves of the species.


Subject(s)
Antifungal Agents , Eugenia , Plant Extracts , Plant Leaves , Polyphenols , Polyphenols/pharmacology , Polyphenols/chemistry , Polyphenols/isolation & purification , Eugenia/chemistry , Plant Leaves/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests , Candida/drug effects , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods , Gallic Acid/pharmacology , Gallic Acid/chemistry
15.
J Sci Food Agric ; 104(4): 1942-1952, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37886811

ABSTRACT

BACKGROUND: Composite nanofiber films loaded with ε-polylysine (PL) and gallic acid (GA) were prepared using a zein/gelatin (ZG) electrospinning method to develop effective active packaging films for tuna preservation. The morphology, structure, thermal stability, hydrophobicity, antibacterial, and antioxidant properties of the films, and their application for tuna during a period of storage of 4 °C were investigated. RESULTS: PL reduced the average diameter of ZG fibers, whereas GA increased it. The PL/GA/ZG film possessed a well distributed fiber morphology with an average diameter of 810 ± 150 nm. Fourier-transform infrared spectroscopy and X-ray diffraction results showed the physical loading of PL and GA in ZG film with the main chemical bonds and crystal structure unchanged. The addition of both PL and GA reduced hydrophobicity of the ZG film while the PL/GA/ZG film was still hydrophobic. GA enhanced its thermal stability and contributed to its antioxidant activity. PL and GA synergetically enhanced the antibacterial activity of ZG film against Shewanella putrefaciens. PL combined with GA is more suitable for modifying ZG film than GA alone. The PL/GA/ZG film effectively inhibited total viable counts, total volatile base nitrogen, fat oxidation, and texture deterioration of tuna fillets at 4 °C storage, and could extend the shelf life by 3 days. CONCLUSIONS: The PL/GA/ZG nanofiber film demonstrated promising potential for application in the preservation of aquatic products as a new antibacterial and antioxidant food packaging. © 2023 Society of Chemical Industry.


Subject(s)
Gallic Acid , Zein , Animals , Gallic Acid/chemistry , Antioxidants/chemistry , Zein/chemistry , Polylysine/pharmacology , Tuna , Gelatin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Packaging/methods
16.
Pak J Pharm Sci ; 37(2): 275-289, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767094

ABSTRACT

The capsule is a major virulence factor for Streptococcus pneumoniae which causes global morbidity and mortality. It is already known that there are few conserved genes in the capsular biosynthesis pathway, which are common among all known serotypes, called CpsA, CpsB, CpsC and CpsD. Inhibiting capsular synthesis can render S. pneumoniae defenseless and vulnerable to phagocytosis. The Inhibitory potential of active Zingiber officinale compounds was investigated against the 3D (3-dimensional) structural products of Cps genes using in silico techniques. A 3D compound repository was created and screened for drug-likeness and the qualified compounds were used for molecular docking and dynamic simulation-based experiments using gallic acid for outcome comparison. Cavity-based docking revealed five different cavities in the CpsA, CpsB and CpsD proteins, with gallic acid and selected compounds of Zingiber in a binding affinity range of -6.8 to -8.8 kcal/mol. Gingerenone A, gingerenone B, isogingerenone B and gingerenone C showed the highest binding affinities for CpsA, CpsB and CpsD, respectively. Through the Molegro Virtual Docker re-docking strategy, the highest binding energies (-126.5 kcal/mol) were computed for CpsB with gingerenone A and CpsD with gingerenone B. These findings suggest that gingerenone A, B and C are potential inhibitors of S. pneumoniae-conserved capsule-synthesizing proteins.


Subject(s)
Bacterial Proteins , Molecular Docking Simulation , Streptococcus pneumoniae , Zingiber officinale , Zingiber officinale/chemistry , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Computer Simulation , Bacterial Capsules/metabolism , Bacterial Capsules/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Dynamics Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Gallic Acid/pharmacology , Gallic Acid/chemistry
17.
Macromol Rapid Commun ; 44(6): e2200845, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36457197

ABSTRACT

Marine-inspired phenolic compounds that exhibit underwater adhesion are used as biomedical adhesives under wet conditions. While these applications mainly use catechol and pyrogallol moieties that contain different numbers of hydroxyl groups on their benzene rings, how this difference affects adhesion and cohesion is not well understood. Herein, the chitosan backbone is functionalized with catechol and pyrogallol at similar modification rates (to give chitosan-catechol (CS-CA) and chitosan-pyrogallol (CS-GA), respectively) and their interaction energies are compared by using a surface forces apparatus (SFA). The phenolic moieties decrease the rigidity of the chitosan chain and increase solubility; consequently, CS-CA and CS-GA are more cohesive and adhesive than chitosan at pH 7.4. Moreover, the additional hydroxyl group of GA provides a further interacting chance; hence, CS-GA is more cohesive and adhesive than CS-CA. This study provides in-depth insight into interactions involving chitosan derivatives bearing introduced phenolic moieties that will help to develop biomedical adhesives.


Subject(s)
Adhesives , Catechols , Chitosan , Pyrogallol , Adhesiveness , Adhesives/chemistry , Catechols/chemistry , Chitosan/chemistry , Gallic Acid/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Pyrogallol/chemistry , Solubility , Static Electricity , Thermodynamics
18.
Molecules ; 28(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770851

ABSTRACT

Nature is a valuable source of anti-oxidants that have a health-promoting effect by inhibiting various undesirable changes leading to cell degradation and, consequently, potential disease ailments. One of them is gallic acid which has been used as a healing agent since ancient times. Currently, due to various beneficial properties, this compound is considered to be one of the main phenolic acids of great importance in numerous industries. It is commonly used as a substance protecting against the harmful effects of UV radiation, an astringent in cosmetic preparations, and a preservative in food products. Therefore, gallic acid is now deemed essential for both human health and industry. Increasingly better methods of its isolation and analysis are being developed, and new solutions are being sought to increase its production. This review, presenting a concise characterization of gallic acid, updates the knowledge about its various biological activities and methods used for its isolation and determination, including chromatographic and non-chromatographic methods.


Subject(s)
Antioxidants , Gallic Acid , Humans , Gallic Acid/pharmacology , Gallic Acid/chemistry , Antioxidants/pharmacology
19.
Molecules ; 28(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110703

ABSTRACT

Vietnam has diverse and long-established tea plantations but scientific data on the characteristics of Vietnamese teas are still limited. Chemical and biological properties including total polyphenol and flavonoid contents (TPCs and TFCs), antioxidant activities (DPPH, ABTS, FRAP, and CUPRAC), as well as the contents of caffeine, gallic acid, and major catechins, were evaluated for 28 Vietnamese teas from North and South Vietnam. Higher values of TPCs and TFCs were found for green (non-oxidised) and raw Pu'erh (low-oxidised) teas from wild/ancient tea trees in North Vietnam and green teas from cultivated trees in South Vietnam, as compared to oolong teas (partly oxidised) from South Vietnam and black teas (fully oxidised) from North Vietnam. The caffeine, gallic acid, and major catechin contents depended on the processing, geographical origin, and the tea variety. Several good Pearson's correlations were found (r2 > 0.9) between TPCs, TFCs, the four antioxidant capacities, and the content of major catechins such as (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate. Results from principal component analysis showed good discriminations with cumulative variances of the first two principal components varying from 85.3% to 93.7% among non-/low-oxidised and partly/fully oxidised teas, and with respect to the tea origin.


Subject(s)
Antioxidants , Catechin , Antioxidants/chemistry , Caffeine/analysis , Flavonoids/chemistry , Polyphenols/analysis , Catechin/chemistry , Gallic Acid/chemistry , Vietnam , Tea/chemistry , Chromatography, High Pressure Liquid/methods
20.
J Comput Chem ; 43(15): 1023-1032, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35460103

ABSTRACT

Thermodynamic and kinetic information on the first two steps of gallic acid pyrolysis, a decarboxylation followed by a dehydrogenation, is obtained based on density functional theory and quantum chemistry. For the kinetics, transition states are identified with the help of the climbing image nudged elastic band method. Both reactions exhibit two transition states. One of them is related to the rotation of OH groups, and the other one is related to the breaking and forming of bonds. The gallic acid pyrolysis as a whole is judged to be endothermal, and it changes from endergonic to exergonic between 500 and 750 K. The second reaction, the dehydrogenation of pyrogallol, is identified as the rate-determining step of gallic acid pyrolysis, with reaction rate constants below 1 s-1 for temperatures below 1250 K.


Subject(s)
Gallic Acid , Pyrolysis , Gallic Acid/chemistry , Kinetics , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL