Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.188
Filter
Add more filters

Publication year range
1.
Nat Rev Mol Cell Biol ; 14(11): 699-712, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24105322

ABSTRACT

The increased application of transcriptome-wide profiling approaches has led to an explosion in the number of documented long non-coding RNAs (lncRNAs). While these new and enigmatic players in the complex transcriptional milieu are encoded by a significant proportion of the genome, their functions are mostly unknown. Early discoveries support a paradigm in which lncRNAs regulate transcription via chromatin modulation, but new functions are steadily emerging. Given the biochemical versatility of RNA, lncRNAs may be used for various tasks, including post-transcriptional regulation, organization of protein complexes, cell-cell signalling and allosteric regulation of proteins.


Subject(s)
RNA, Long Noncoding/metabolism , Animals , Genetic Variation/genetics , Genetic Variation/physiology , Humans , Models, Biological , RNA, Long Noncoding/genetics
2.
Nat Rev Mol Cell Biol ; 14(8): 475-88, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23800994

ABSTRACT

MicroRNAs (miRNAs) regulate the expression of most genes in animals, but we are only now beginning to understand how they are generated, assembled into functional complexes and destroyed. Various mechanisms have now been identified that regulate miRNA stability and that diversify miRNA sequences to create distinct isoforms. The production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control. Rigorously testing the many discrepant models for how miRNAs function using quantitative biochemical measurements made in vivo and in vitro remains a major challenge for the future.


Subject(s)
Genetic Variation/physiology , MicroRNAs/genetics , MicroRNAs/physiology , Animals , Gene Expression/genetics , Humans , Models, Biological , RNA Processing, Post-Transcriptional/physiology , RNA Stability/genetics , Transcription, Genetic/physiology
3.
PLoS Pathog ; 17(4): e1009552, 2021 04.
Article in English | MEDLINE | ID: mdl-33901257

ABSTRACT

Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiont Regiella insecticola (but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These 'biotypes' have distinct patterns of symbiont infections: for example, aphids from the Trifolium biotype are strongly associated with Regiella. Using RNAseq, we compare patterns of gene expression in response to Regiella in aphid genotypes from multiple biotypes, and we show that Trifolium aphids experience no downregulation of immune gene expression while hosting Regiella and harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system, Regiella symbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence of Regiella have been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system's complex dual role in interacting with both beneficial and harmful microbes.


Subject(s)
Aphids/microbiology , Bacterial Load/genetics , Enterobacteriaceae/immunology , Immunity, Innate/genetics , Symbiosis , Animals , Aphids/classification , Aphids/genetics , Aphids/immunology , Bacterial Load/physiology , Enterobacteriaceae/classification , Enterobacteriaceae/cytology , Enterobacteriaceae/genetics , Gene Expression , Gene Expression Regulation, Bacterial , Genes, Insect/genetics , Genetic Variation/physiology , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Species Specificity , Symbiosis/genetics , Symbiosis/immunology
4.
J Neurosci ; 41(43): 9008-9030, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34462306

ABSTRACT

Recent large genome-wide association studies have identified multiple confident risk loci linked to addiction-associated behavioral traits. Most genetic variants linked to addiction-associated traits lie in noncoding regions of the genome, likely disrupting cis-regulatory element (CRE) function. CREs tend to be highly cell type-specific and may contribute to the functional development of the neural circuits underlying addiction. Yet, a systematic approach for predicting the impact of risk variants on the CREs of specific cell populations is lacking. To dissect the cell types and brain regions underlying addiction-associated traits, we applied stratified linkage disequilibrium score regression to compare genome-wide association studies to genomic regions collected from human and mouse assays for open chromatin, which is associated with CRE activity. We found enrichment of addiction-associated variants in putative CREs marked by open chromatin in neuronal (NeuN+) nuclei collected from multiple prefrontal cortical areas and striatal regions known to play major roles in reward and addiction. To further dissect the cell type-specific basis of addiction-associated traits, we also identified enrichments in human orthologs of open chromatin regions of female and male mouse neuronal subtypes: cortical excitatory, D1, D2, and PV. Last, we developed machine learning models to predict mouse cell type-specific open chromatin, enabling us to further categorize human NeuN+ open chromatin regions into cortical excitatory or striatal D1 and D2 neurons and predict the functional impact of addiction-associated genetic variants. Our results suggest that different neuronal subtypes within the reward system play distinct roles in the variety of traits that contribute to addiction.SIGNIFICANCE STATEMENT We combine statistical genetic and machine learning techniques to find that the predisposition to for nicotine, alcohol, and cannabis use behaviors can be partially explained by genetic variants in conserved regulatory elements within specific brain regions and neuronal subtypes of the reward system. Our computational framework can flexibly integrate open chromatin data across species to screen for putative causal variants in a cell type- and tissue-specific manner for numerous complex traits.


Subject(s)
Behavior, Addictive/genetics , Brain/physiology , Genetic Predisposition to Disease/genetics , Genetic Variation/physiology , Neurons/physiology , Regulatory Elements, Transcriptional/physiology , Animals , Behavior, Addictive/pathology , Brain/pathology , Databases, Genetic , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/pathology , Quantitative Trait Loci/genetics
5.
Hum Mol Genet ; 29(1): 1-19, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31509197

ABSTRACT

Genetic diversity provides a rich repository for understanding the role of proteostasis in the management of the protein fold in human biology. Failure in proteostasis can trigger multiple disease states, affecting both human health and lifespan. Niemann-Pick C1 (NPC1) disease is a rare genetic disorder triggered by mutations in NPC1, a multi-spanning transmembrane protein that is trafficked through the exocytic pathway to late endosomes (LE) and lysosomes (Ly) (LE/Ly) to globally manage cholesterol homeostasis. Defects triggered by >300 NPC1 variants found in the human population inhibit export of NPC1 protein from the endoplasmic reticulum (ER) and/or function in downstream LE/Ly, leading to cholesterol accumulation and onset of neurodegeneration in childhood. We now show that the allosteric inhibitor JG98, that targets the cytosolic Hsp70 chaperone/co-chaperone complex, can significantly improve the trafficking and post-ER protein level of diverse NPC1 variants. Using a new approach to model genetic diversity in human disease, referred to as variation spatial profiling, we show quantitatively how JG98 alters the Hsp70 chaperone/co-chaperone system to adjust the spatial covariance (SCV) tolerance and set-points on an amino acid residue-by-residue basis in NPC1 to differentially regulate variant trafficking, stability, and cholesterol homeostasis, results consistent with the role of BCL2-associated athanogene family co-chaperones in managing the folding status of NPC1 variants. We propose that targeting the cytosolic Hsp70 system by allosteric regulation of its chaperone/co-chaperone based client relationships can be used to adjust the SCV tolerance of proteostasis buffering capacity to provide an approach to mitigate systemic and neurological disease in the NPC1 population.


Subject(s)
Genetic Variation/physiology , HSP70 Heat-Shock Proteins/metabolism , Niemann-Pick C1 Protein/metabolism , Niemann-Pick Disease, Type C/genetics , Allosteric Regulation/genetics , Allosteric Regulation/physiology , Cholesterol/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Genetic Variation/genetics , HSP70 Heat-Shock Proteins/genetics , Humans , Lysosomes/metabolism , Niemann-Pick C1 Protein/genetics
6.
Int J Obes (Lond) ; 46(2): 325-332, 2022 02.
Article in English | MEDLINE | ID: mdl-34716426

ABSTRACT

BACKGROUND/OBJECTIVES: Adiponectin represents an important link between adipose tissue dysfunction and cardiometabolic risk in obesity; however, there is a lack of data on the effects of adiponectin-related genetic variations and gene-diet interactions on metabolic disorders in children. We aimed to investigate possible interactions between adiponectin-related genetic variants and habitual dietary patterns on metabolic health among children with normal weight versus overweight/obesity, and whether these effects in childhood longitudinally contribute to metabolic risk at follow-up. SUBJECTS/METHODS: In total, 3,317 Chinese children aged 6-18 at baseline and 339 participants at 10-year follow-up from the Beijing Child and Adolescent Metabolic Syndrome study cohort were included. Baseline lifestyle factors, plasma adiponectin levels, and six adiponectin-related genetic variants resulting from GWAS in East Asians (loci in/near ADIPOQ, CDH13, WDR11FGF, CMIP, and PEPD) were assessed for their associations with the metabolic disorders. Being metabolically unhealthy was defined by exhibiting any metabolic syndrome component. RESULTS: Among the six loci, ADIPOQ rs6773957 (OR 1.26, 95% CI:1.07-1.47, P = 0.004) and adiponectin receptor CDH13 rs4783244 (0.82, 0.69-0.96, P = 0.017) were correlated with metabolic risks independent of lifestyle factors in normal-weight children, but the associations were less obvious in those with overweight/obesity. A significant interaction between rs6773957 and diet (Pinteraction = 0.004) for metabolic health was observed in normal-weight children. The adiponectin-decreasing allele of rs6773957 was associated with greater metabolic risks in individuals with unfavorable diet patterns (P < 0.001), but not in those with healthy patterns (P > 0.1). A similar interaction effect was observed using longitudinal data (Pinteraction = 0.029). CONCLUSIONS: These findings highlight a novel gene-diet interaction on the susceptibility to cardiometabolic disorders, which has a long-term impact from childhood onward, particularly in those with normal weight. Personalized dietary advice in these individuals may be recommended as an early possible therapeutic measure to improve metabolic health.


Subject(s)
Adiponectin/analysis , Feeding Behavior/physiology , Genetic Variation/physiology , Obesity/physiopathology , Adiponectin/metabolism , Adolescent , Child , China/epidemiology , Cohort Studies , Female , Genetic Variation/genetics , Humans , Male , Obesity/diet therapy , Obesity/metabolism , Prospective Studies
7.
Ann Neurol ; 90(3): 455-463, 2021 09.
Article in English | MEDLINE | ID: mdl-34279044

ABSTRACT

OBJECTIVE: The purpose of this study was to identify disease relevant genes and explore underlying immunological mechanisms that contribute to early and late onset forms of myasthenia gravis. METHODS: We used a novel genomic methodology to integrate genomewide association study (GWAS) findings in myasthenia gravis with cell-type specific information, such as gene expression patterns and promotor-enhancer interactions, in order to identify disease-relevant genes. Subsequently, we conducted additional genomic investigations, including an expression quantitative analysis of 313 healthy people to provide mechanistic insights. RESULTS: We identified several genes that were specifically linked to early onset myasthenia gravis including TNIP1, ORMDL3, GSDMB, and TRAF3. We showed that regulators of toll-like receptor 4 signaling were enriched among these early onset disease genes (fold enrichment = 3.85, p = 6.4 × 10-3 ). In contrast, T-cell regulators CD28 and CTLA4 were exclusively linked to late onset disease. We identified 2 causal genetic variants (rs231770 and rs231735; posterior probability = 0.98 and 0.91) near the CTLA4 gene. Subsequently, we demonstrated that these causal variants result in low expression of CTLA4 (rho = -0.66, p = 1.28 × 10-38 and rho = -0.52, p = 7.01 × 10-22 , for rs231735 and rs231770, respectively). INTERPRETATION: The disease-relevant genes identified in this study are a unique resource for many disciplines, including clinicians, scientists, and the pharmaceutical industry. The distinct immunological pathways linked to early and late onset myasthenia gravis carry important implications for drug repurposing opportunities and for future studies of drug development. ANN NEUROL 2021;90:455-463.


Subject(s)
Genetic Variation/physiology , Genome-Wide Association Study/methods , Immunity, Innate/physiology , Myasthenia Gravis/genetics , Myasthenia Gravis/immunology , Polymorphism, Single Nucleotide/physiology , Adult , Age of Onset , Female , Humans , Male , Middle Aged , Myasthenia Gravis/diagnosis
8.
Circulation ; 142(23): 2262-2275, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33025817

ABSTRACT

BACKGROUND: Pathogenic TNNT2 variants are a cause of hypertrophic and dilated cardiomyopathies, which promote heart failure by incompletely understood mechanisms. The precise functional significance for 87% of TNNT2 variants remains undetermined, in part, because of a lack of functional genomics studies. The knowledge of which and how TNNT2 variants cause hypertrophic and dilated cardiomyopathies could improve heart failure risk determination, treatment efficacy, and therapeutic discovery, and provide new insights into cardiomyopathy pathogenesis, as well. METHODS: We created a toolkit of human induced pluripotent stem cell models and functional assays using CRISPR/Cas9 to study TNNT2 variant pathogenicity and pathophysiology. Using human induced pluripotent stem cell-derived cardiomyocytes in cardiac microtissue and single-cell assays, we functionally interrogated 51 TNNT2 variants, including 30 pathogenic/likely pathogenic variants and 21 variants of uncertain significance. We used RNA sequencing to determine the transcriptomic consequences of pathogenic TNNT2 variants and adapted CRISPR/Cas9 to engineer a transcriptional reporter assay to assist prediction of TNNT2 variant pathogenicity. We also studied variant-specific pathophysiology using a thin filament-directed calcium reporter to monitor changes in myofilament calcium affinity. RESULTS: Hypertrophic cardiomyopathy-associated TNNT2 variants caused increased cardiac microtissue contraction, whereas dilated cardiomyopathy-associated variants decreased contraction. TNNT2 variant-dependent changes in sarcomere contractile function induced graded regulation of 101 gene transcripts, including MAPK (mitogen-activated protein kinase) signaling targets, HOPX, and NPPB. We distinguished pathogenic TNNT2 variants from wildtype controls using a sarcomere functional reporter engineered by inserting tdTomato into the endogenous NPPB locus. On the basis of a combination of NPPB reporter activity and cardiac microtissue contraction, our study provides experimental support for the reclassification of 2 pathogenic/likely pathogenic variants and 2 variants of uncertain significance. CONCLUSIONS: Our study found that hypertrophic cardiomyopathy-associated TNNT2 variants increased cardiac microtissue contraction, whereas dilated cardiomyopathy-associated variants decreased contraction, both of which paralleled changes in myofilament calcium affinity. Transcriptomic changes, including NPPB levels, directly correlated with sarcomere function and can be used to predict TNNT2 variant pathogenicity.


Subject(s)
Genetic Variation/physiology , Genomics/methods , Myocytes, Cardiac/physiology , Sarcomeres/genetics , Troponin T/genetics , Female , Humans , Induced Pluripotent Stem Cells/physiology , Male , Sarcomeres/metabolism , Troponin T/metabolism
9.
Neurobiol Dis ; 155: 105368, 2021 07.
Article in English | MEDLINE | ID: mdl-33892050

ABSTRACT

Parkinson's disease (PD) is the most common form of neurodegenerative movement disorder, associated with profound loss of dopaminergic neurons from the basal ganglia. Though loss of dopaminergic neuron cell bodies from the substantia nigra pars compacta is a well-studied feature, atrophy and loss of their axons within the nigrostriatal tract is also emerging as an early event in disease progression. Genes that drive the Wallerian degeneration, like Sterile alpha and toll/interleukin-1 receptor motif containing (Sarm1), are excellent candidates for driving this axon degeneration, given similarities in the morphology of axon degeneration after axotomy and in PD. In the present study we assessed whether Sarm1 contributes to loss of dopaminergic projections in mouse models of PD. In Sarm1 deficient mice, we observed a significant delay in the degeneration of severed dopaminergic axons distal to a 6-OHDA lesion of the medial forebrain bundle (MFB) in the nigrostriatal tract, and an accompanying rescue of morphological, biochemical and behavioural phenotypes. However, we observed no difference compared to controls when striatal terminals were lesioned with 6-OHDA to induce a dying back form of neurodegeneration. Likewise, when PD phenotypes were induced using AAV-induced alpha-synuclein overexpression, we observed similar modest loss of dopaminergic terminals in Sarm1 knockouts and controls. Our data argues that axon degeneration after MFB lesion is Sarm1-dependent, but that other models for PD do not require Sarm1, or that Sarm1 acts with other redundant genetic pathways. This work adds to a growing body of evidence indicating Sarm1 contributes to some, but not all types of neurodegeneration, and supports the notion that while axon degeneration in many context appears morphologically similar, a diversity of axon degeneration programs exist.


Subject(s)
Armadillo Domain Proteins/genetics , Axons/pathology , Cytoskeletal Proteins/genetics , Genetic Variation/physiology , Parkinsonian Disorders/genetics , Parkinsonian Disorders/pathology , Animals , Armadillo Domain Proteins/deficiency , Axons/metabolism , Cytoskeletal Proteins/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Degeneration/chemically induced , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Oxidopamine/toxicity , Parkinsonian Disorders/chemically induced
10.
Neurobiol Dis ; 149: 105228, 2021 02.
Article in English | MEDLINE | ID: mdl-33359139

ABSTRACT

Disruption in copper homeostasis causes a number of cognitive and motor deficits. Wilson's disease and Menkes disease are neurodevelopmental disorders resulting from mutations in the copper transporters ATP7A and ATP7B, with ATP7A mutations also causing occipital horn syndrome, and distal motor neuropathy. A 65 year old male presenting with brachial amyotrophic diplegia and diagnosed with amyotrophic lateral sclerosis (ALS) was found to harbor a p.Met1311Val (M1311V) substitution variant in ATP7A. ALS is a fatal neurodegenerative disease associated with progressive muscle weakness, synaptic deficits and degeneration of upper and lower motor neurons. To investigate the potential contribution of the ATP7AM1311V variant to neurodegeneration, we obtained and characterized both patient-derived fibroblasts and patient-derived induced pluripotent stem cells differentiated into motor neurons (iPSC-MNs), and compared them to control cell lines. We found reduced localization of ATP7AM1311V to the trans-Golgi network (TGN) at basal copper levels in patient-derived fibroblasts and iPSC-MNs. In addition, redistribution of ATP7AM1311V out of the TGN in response to increased extracellular copper was defective in patient fibroblasts. This manifested in enhanced intracellular copper accumulation and reduced survival of ATP7AM1311V fibroblasts. iPSC-MNs harboring the ATP7AM1311V variant showed decreased dendritic complexity, aberrant spontaneous firing, and decreased survival. Finally, expression of the ATP7AM1311V variant in Drosophila motor neurons resulted in motor deficits. Apilimod, a drug that targets vesicular transport and recently shown to enhance survival of C9orf72-ALS/FTD iPSC-MNs, also increased survival of ATP7AM1311V iPSC-MNs and reduced motor deficits in Drosophila expressing ATP7AM1311V. Taken together, these observations suggest that ATP7AM1311V negatively impacts its role as a copper transporter and impairs several aspects of motor neuron function and morphology.


Subject(s)
Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Copper/metabolism , Genetic Variation/physiology , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Animals , Animals, Genetically Modified , Animals, Newborn , Cells, Cultured , Copper/pharmacology , Copper/therapeutic use , Dose-Response Relationship, Drug , Drosophila , Genetic Variation/drug effects , HeLa Cells , Homeostasis/drug effects , Homeostasis/physiology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mice , Motor Neuron Disease/drug therapy , Protein Transport/drug effects , Protein Transport/physiology
11.
Plant Cell Physiol ; 62(1): 8-27, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33244607

ABSTRACT

Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.


Subject(s)
Disease Resistance/genetics , Flowers/growth & development , Genes, Plant/genetics , Genome, Plant/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Cytogenetics , Asia, Eastern , Flowers/genetics , Fusarium , Genes, Plant/physiology , Genetic Association Studies , Genetic Variation/genetics , Genetic Variation/physiology , Genome, Plant/physiology , Genotype , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Triticum/growth & development , Triticum/immunology , Triticum/physiology
12.
Mol Genet Genomics ; 296(4): 939-952, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33966102

ABSTRACT

Plant major resistance (R) genes are effective in detecting pathogen signal molecules and triggering robust defense responses. Investigating the natural variation in R genes will allow identification of the critical amino acid residues determining recognition specificity in R protein and the discovery of novel R alleles. The rice blast resistance gene Pike, comprising of two adjacent CC-NBS-LRR genes, namely, Pike-1 and Pike-2, confers broad-spectrum resistance to Magnaporthe oryzae. Here, we demonstrated that Pike-1 determined Pike-specific resistance through direct interaction with the pathogen signal molecule AvrPik. Analysis of natural variation in 79 Pike-1 variants in the Asian cultivated rice Oryza sativa and its wild relatives revealed that the CC and NBS regions, particularly the CC region of the Pike-1 protein were the most diversified. We also found that balancing selection had occurred in O. sativa and O. rufipogon to maintain the genetic diversity of the Pike-1 alleles. By analysis of amino acid sequences, we identified 40 Pike-1 variants in these rice germplasms. These variants were divided into three major groups that corresponded to their respective clades. A new Pike allele, designated Pikg, that differed from Pike by a single amino acid substitution (D229E) in the Pike-1 CC region of the Pike protein was identified from wild rice relatives. Pathogen assays of Pikg transgenic plants revealed a unique reaction pattern that was different from that of the previously identified Pike alleles, namely, Pik, Pikh, Pikm, Pikp, Piks and Pi1. These findings suggest that minor amino acid residues in Pike-1/Pikg-1 determine pathogen recognition specificity and plant resistance. As a new blast R gene derived from rice wild relatives, Pikg has potential applications in rice breeding.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance/genetics , Oryza , Plant Proteins/genetics , Alleles , Amino Acid Sequence , DNA Mutational Analysis , Genes, Plant/genetics , Genes, Plant/physiology , Genetic Association Studies , Genetic Variation/physiology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Oryza/genetics , Oryza/microbiology , Plant Breeding , Plant Diseases/genetics , Plant Diseases/immunology , Plants, Genetically Modified
13.
Drug Metab Dispos ; 49(3): 212-220, 2021 03.
Article in English | MEDLINE | ID: mdl-33384383

ABSTRACT

CYP3A4 is among the most abundant liver and intestinal drug-metabolizing cytochrome P450 enzymes, contributing to the metabolism of more than 30% of clinically used drugs. Therefore, interindividual variability in CYP3A4 activity is a frequent cause of reduced drug efficacy and adverse effects. In this study, we characterized wild-type CYP3A4 and 40 CYP3A4 variants, including 11 new variants, detected among 4773 Japanese individuals by assessing CYP3A4 enzymatic activities for two representative substrates (midazolam and testosterone). The reduced carbon monoxide-difference spectra of wild-type CYP3A4 and 31 CYP3A4 variants produced with our established mammalian cell expression system were determined by measuring the increase in maximum absorption at 450 nm after carbon monoxide treatment. The kinetic parameters of midazolam and testosterone hydroxylation by wild-type CYP3A4 and 29 CYP3A4 variants (K m , k cat , and catalytic efficiency) were determined, and the causes of their kinetic differences were evaluated by three-dimensional structural modeling. Our findings offer insight into the mechanism underlying interindividual differences in CYP3A4-dependent drug metabolism. Moreover, our results provide guidance for improving drug administration protocols by considering the information on CYP3A4 genetic polymorphisms. SIGNIFICANCE STATEMENT: CYP3A4 metabolizes more than 30% of clinically used drugs. Interindividual differences in drug efficacy and adverse-effect rates have been linked to ethnicity-specific differences in CYP3A4 gene variants in Asian populations, including Japanese individuals, indicating the presence of CYP3A4 polymorphisms resulting in the increased expression of loss-of-function variants. This study detected alterations in CYP3A4 activity due to amino acid substitutions by assessing the enzymatic activities of coding variants for two representative CYP3A4 substrates.


Subject(s)
Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Genetic Variation/physiology , Midazolam/metabolism , Steroid Hydroxylases/metabolism , Testosterone/metabolism , Cohort Studies , Cytochrome P-450 CYP3A/chemistry , GABA Modulators/metabolism , HEK293 Cells , Humans , Hydroxylation/physiology , Protein Structure, Secondary
14.
Circ Res ; 125(6): 575-589, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31366290

ABSTRACT

RATIONALE: The ventricular conduction system (VCS) rapidly propagates electrical impulses through the working myocardium of the ventricles to coordinate chamber contraction. GWAS (Genome-wide association studies) have associated nucleotide polymorphisms, most are located within regulatory intergenic or intronic sequences, with variation in VCS function. Two highly correlated polymorphisms (r2>0.99) associated with VCS functional variation (rs13165478 and rs13185595) occur 5' to the gene encoding the basic helix-loop-helix transcription factor HAND1 (heart- and neural crest derivatives-expressed protein 1). OBJECTIVE: Here, we test the hypothesis that these polymorphisms influence HAND1 transcription thereby influencing VCS development and function. METHODS AND RESULTS: We employed transgenic mouse models to identify an enhancer that is sufficient for left ventricle (LV) cis-regulatory activity. Two evolutionarily conserved GATA transcription factor cis-binding elements within this enhancer are bound by GATA4 and are necessary for cis-regulatory activity, as shown by in vitro DNA binding assays. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated deletion of this enhancer dramatically reduces Hand1 expression solely within the LV but does not phenocopy previously published mouse models of cardiac Hand1 loss-of-function. Electrophysiological and morphological analyses reveals that mice homozygous for this deleted enhancer display a morphologically abnormal VCS and a conduction system phenotype consistent with right bundle branch block. Using 1000 Genomes Project data, we identify 3 additional single nucleotide polymorphisms (SNPs), located within the Hand1 LV enhancer, that compose a haplotype with rs13165478 and rs13185595. One of these SNPs, rs10054375, overlaps with a critical GATA cis-regulatory element within the Hand1 LV enhancer. This SNP, when tested in electrophoretic mobility shift assays, disrupts GATA4 DNA-binding. Modeling 2 of these SNPs in mice causes diminished Hand1 expression and mice present with abnormal VCS function. CONCLUSIONS: Together, these findings reveal that SNP rs10054375, which is located within a necessary and sufficient LV-specific Hand1 enhancer, exhibits reduces GATA DNA-binding in electrophoretic mobility shift assay, and this enhancer in total, is required for VCS development and function in mice and perhaps humans.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Embryonic Development/physiology , GATA4 Transcription Factor/metabolism , Genetic Variation/physiology , Heart Conduction System/physiology , Ventricular Function/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Female , GATA4 Transcription Factor/genetics , Heart Ventricles/metabolism , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Polymorphism, Single Nucleotide/physiology , Protein Binding/physiology , Random Allocation , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Brain ; 143(10): 2945-2956, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32968778

ABSTRACT

Migraine is the most common neurological disorder worldwide and it has been shown to have complex polygenic origins with a heritability of estimated 40-70%. Both common and rare genetic variants are believed to underlie the pathophysiology of the prevalent types of migraine, migraine with typical aura and migraine without aura. However, only common variants have been identified so far. Here we identify for the first time a gene module with rare mutations through a systems genetics approach integrating RNA sequencing data from brain and vascular tissues likely to be involved in migraine pathology in combination with whole genome sequencing of 117 migraine families. We found a gene module in the visual cortex, based on single nuclei RNA sequencing data, that had increased rare mutations in the migraine families and replicated this in a second independent cohort of 1930 patients. This module was mainly expressed by interneurons, pyramidal CA1, and pyramidal SS cells, and pathway analysis showed association with hormonal signalling (thyrotropin-releasing hormone receptor and oxytocin receptor signalling pathways), Alzheimer's disease pathway, serotonin receptor pathway and general heterotrimeric G-protein signalling pathways. Our results demonstrate that rare functional gene variants are strongly implicated in the pathophysiology of migraine. Furthermore, we anticipate that the results can be used to explain the critical mechanisms behind migraine and potentially improving the treatment regime for migraine patients.


Subject(s)
Databases, Genetic , Family , Gene Regulatory Networks/physiology , Genetic Variation/physiology , Migraine Disorders/genetics , Protein Interaction Maps/physiology , Cohort Studies , Databases, Genetic/trends , Humans , Migraine Disorders/diagnosis , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Trigeminal Ganglion/pathology , Visual Cortex/pathology
16.
Cereb Cortex ; 30(5): 2867-2878, 2020 05 14.
Article in English | MEDLINE | ID: mdl-31813991

ABSTRACT

The natural history of idiopathic Parkinson's disease (PD) varies considerably across patients. While PD is generally sporadic, there are known genetic influences: the two most common, mutations in the LRRK2 or GBA1 gene, are associated with slower and more aggressive progression, respectively. Here, we applied graph theory to metabolic brain imaging to understand the effects of genotype on the organization of previously established PD-specific networks. We found that closely matched PD patient groups with the LRRK2-G2019S mutation (PD-LRRK2) or GBA1 variants (PD-GBA) expressed the same disease networks as sporadic disease (sPD), but PD-LRRK2 and PD-GBA patients exhibited abnormal increases in network connectivity that were not present in sPD. Using a community detection strategy, we found that the location and modular distribution of these connections differed strikingly across genotypes. In PD-LRRK2, connections were gained within the network core, with the formation of distinct functional pathways linking the cerebellum and putamen. In PD-GBA, by contrast, the majority of functional connections were formed outside the core, involving corticocortical pathways at the network periphery. Strategically localized connections within the core in PD-LRRK2 may maintain PD network activity at lower levels than in PD-GBA, resulting in a less aggressive clinical course.


Subject(s)
Genetic Variation/physiology , Glucosylceramidase/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Metabolic Networks and Pathways/physiology , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , Cross-Sectional Studies , Female , Glucosylceramidase/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Middle Aged , Parkinson Disease/genetics , Positron-Emission Tomography/methods
17.
PLoS Genet ; 14(1): e1007199, 2018 01.
Article in English | MEDLINE | ID: mdl-29385126

ABSTRACT

Few experimental studies have examined the role that sexual recombination plays in bacterial evolution, including the effects of horizontal gene transfer on genome structure. To address this limitation, we analyzed genomes from an experiment in which Escherichia coli K-12 Hfr (high frequency recombination) donors were periodically introduced into 12 evolving populations of E. coli B and allowed to conjugate repeatedly over the course of 1000 generations. Previous analyses of the evolved strains from this experiment showed that recombination did not accelerate adaptation, despite increasing genetic variation relative to asexual controls. However, the resolution in that previous work was limited to only a few genetic markers. We sought to clarify and understand these puzzling results by sequencing complete genomes from each population. The effects of recombination were highly variable: one lineage was mostly derived from the donors, while another acquired almost no donor DNA. In most lineages, some regions showed repeated introgression and others almost none. Regions with high introgression tended to be near the donors' origin of transfer sites. To determine whether introgressed alleles imposed a genetic load, we extended the experiment for 200 generations without recombination and sequenced whole-population samples. Beneficial alleles in the recipient populations were occasionally driven extinct by maladaptive donor-derived alleles. On balance, our analyses indicate that the plasmid-mediated recombination was sufficiently frequent to drive donor alleles to fixation without providing much, if any, selective advantage.


Subject(s)
Escherichia coli K12/genetics , Evolution, Molecular , Gene Transfer, Horizontal/physiology , Genome, Bacterial/genetics , Recombination, Genetic/physiology , Selection, Genetic/genetics , Base Sequence , Conjugation, Genetic/physiology , Directed Molecular Evolution/methods , Genetic Variation/physiology , Sequence Analysis, DNA
18.
BMC Biol ; 18(1): 18, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32093691

ABSTRACT

BACKGROUND: Monogenic protein aggregation diseases, in addition to cell selectivity, exhibit clinical variation in the age of onset and progression, driven in part by inter-individual genetic variation. While natural genetic variants may pinpoint plastic networks amenable to intervention, the mechanisms by which they impact individual susceptibility to proteotoxicity are still largely unknown. RESULTS: We have previously shown that natural variation modifies polyglutamine (polyQ) aggregation phenotypes in C. elegans muscle cells. Here, we find that a genomic locus from C. elegans wild isolate DR1350 causes two genetically separable aggregation phenotypes, without changing the basal activity of muscle proteostasis pathways known to affect polyQ aggregation. We find that the increased aggregation phenotype was due to regulatory variants in the gene encoding a conserved autophagy protein ATG-5. The atg-5 gene itself conferred dosage-dependent enhancement of aggregation, with the DR1350-derived allele behaving as hypermorph. Surprisingly, increased aggregation in animals carrying the modifier locus was accompanied by enhanced autophagy activation in response to activating treatment. Because autophagy is expected to clear, not increase, protein aggregates, we activated autophagy in three different polyQ models and found a striking tissue-dependent effect: activation of autophagy decreased polyQ aggregation in neurons and intestine, but increased it in the muscle cells. CONCLUSIONS: Our data show that cryptic natural variants in genes encoding proteostasis components, although not causing detectable phenotypes in wild-type individuals, can have profound effects on aggregation-prone proteins. Clinical applications of autophagy activators for aggregation diseases may need to consider the unexpected divergent effects of autophagy in different cell types.


Subject(s)
Autophagy , Caenorhabditis elegans/physiology , Genetic Variation/physiology , Peptides/metabolism , Animals , Caenorhabditis elegans/genetics , Phenotype
19.
J Neurosci ; 39(47): 9383-9396, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31604835

ABSTRACT

The addition of rewarding feedback to motor learning tasks has been shown to increase the retention of learning, spurring interest in its possible utility for rehabilitation. However, motor tasks using rewarding feedback have repeatedly been shown to lead to great interindividual variability in performance. Understanding the causes of such variability is vital for maximizing the potential benefits of reward-based motor learning. Thus, using a large human cohort of both sexes (n = 241), we examined whether spatial (SWM), verbal, and mental rotation (RWM) working memory capacity and dopamine-related genetic profiles were associated with performance in two reward-based motor tasks. The first task assessed the participant's ability to follow a slowly shifting reward region based on hit/miss (binary) feedback. The second task investigated the participant's capacity to preserve performance with binary feedback after adapting to the rotation with full visual feedback. Our results demonstrate that higher SWM is associated with greater success and an enhanced capacity to reproduce a successful motor action, measured as change in reach angle following reward. In contrast, higher RWM was predictive of an increased propensity to express an explicit strategy when required to make large reach angle adjustments. Therefore, SWM and RWM were reliable, but dissociable, predictors of success during reward-based motor learning. Change in reach direction following failure was also a strong predictor of success rate, although we observed no consistent relationship with working memory. Surprisingly, no dopamine-related genotypes predicted performance. Therefore, working memory capacity plays a pivotal role in determining individual ability in reward-based motor learning.SIGNIFICANCE STATEMENT Reward-based motor learning tasks have repeatedly been shown to lead to idiosyncratic behaviors that cause varying degrees of task success. Yet, the factors determining an individual's capacity to use reward-based feedback are unclear. Here, we assessed a wide range of possible candidate predictors, and demonstrate that domain-specific working memory plays an essential role in determining individual capacity to use reward-based feedback. Surprisingly, genetic variations in dopamine availability were not found to play a role. This is in stark contrast with seminal work in the reinforcement and decision-making literature, which show strong and replicated effects of the same dopaminergic genes in decision-making. Therefore, our results provide novel insights into reward-based motor learning, highlighting a key role for domain-specific working memory capacity.


Subject(s)
Dopamine/metabolism , Genetic Variation/physiology , Learning/physiology , Memory, Short-Term/physiology , Movement/physiology , Reward , Adolescent , Adult , Dopamine/genetics , Female , Humans , Male , Photic Stimulation/methods , Polymorphism, Single Nucleotide/physiology , Psychomotor Performance , Young Adult
20.
J Neurosci ; 39(37): 7408-7427, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31331998

ABSTRACT

In blood, apolipoprotein E (ApoE) is a component of circulating lipoproteins and mediates the clearance of these lipoproteins from blood by binding to ApoE receptors. Humans express three genetic ApoE variants, ApoE2, ApoE3, and ApoE4, which exhibit distinct ApoE receptor-binding properties and differentially affect Alzheimer's disease (AD), such that ApoE2 protects against, and ApoE4 predisposes to AD. In brain, ApoE-containing lipoproteins are secreted by activated astrocytes and microglia, but their functions and role in AD pathogenesis are largely unknown. Ample evidence suggests that ApoE4 induces microglial dysregulation and impedes Aß clearance in AD, but the direct neuronal effects of ApoE variants are poorly studied. Extending previous studies, we here demonstrate that the three ApoE variants differentially activate multiple neuronal signaling pathways and regulate synaptogenesis. Specifically, using human neurons (male embryonic stem cell-derived) cultured in the absence of glia to exclude indirect glial mechanisms, we show that ApoE broadly stimulates signal transduction cascades. Among others, such stimulation enhances APP synthesis and synapse formation with an ApoE4>ApoE3>ApoE2 potency rank order, paralleling the relative risk for AD conferred by these ApoE variants. Unlike the previously described induction of APP transcription, however, ApoE-induced synaptogenesis involves CREB activation rather than cFos activation. We thus propose that in brain, ApoE acts as a glia-secreted signal that activates neuronal signaling pathways. The parallel potency rank order of ApoE4>ApoE3>ApoE2 in AD risk and neuronal signaling suggests that ApoE4 may in an apparent paradox promote AD pathogenesis by causing a chronic increase in signaling, possibly via enhancing APP expression.SIGNIFICANCE STATEMENT Humans express three genetic variants of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), whereas ApoE2 protects against AD. Significant evidence suggests that ApoE4 impairs microglial function and impedes astrocytic Aß clearance in brain, but the direct neuronal effects of ApoE are poorly understood, and the differences between ApoE variants in these effects are unclear. Here, we report that ApoE acts on neurons as a glia-secreted signaling molecule that, among others, enhances synapse formation. In activating neuronal signaling, the three ApoE variants exhibit a differential potency of ApoE4>ApoE3>ApoE2, which mirrors their relative effects on AD risk, suggesting that differential signaling by ApoE variants may contribute to AD pathogenesis.


Subject(s)
Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Embryonic Stem Cells/physiology , Genetic Predisposition to Disease/genetics , Alzheimer Disease/metabolism , Animals , Animals, Newborn , Apolipoprotein E2/biosynthesis , Apolipoprotein E3/biosynthesis , Apolipoprotein E4/biosynthesis , Cells, Cultured , Double-Blind Method , Female , Genetic Variation/physiology , HEK293 Cells , Humans , Male , Mice , Neurons/physiology , Random Allocation , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL