Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.561
Filter
Add more filters

Publication year range
1.
Immunity ; 46(1): 133-147, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28087239

ABSTRACT

Immuno-surveillance networks operating at barrier sites are tuned by local tissue cues to ensure effective immunity. Site-specific commensal bacteria provide key signals ensuring host defense in the skin and gut. However, how the oral microbiome and tissue-specific signals balance immunity and regulation at the gingiva, a key oral barrier, remains minimally explored. In contrast to the skin and gut, we demonstrate that gingiva-resident T helper 17 (Th17) cells developed via a commensal colonization-independent mechanism. Accumulation of Th17 cells at the gingiva was driven in response to the physiological barrier damage that occurs during mastication. Physiological mechanical damage, via induction of interleukin 6 (IL-6) from epithelial cells, tailored effector T cell function, promoting increases in gingival Th17 cell numbers. These data highlight that diverse tissue-specific mechanisms govern education of Th17 cell responses and demonstrate that mechanical damage helps define the immune tone of this important oral barrier.


Subject(s)
Gingiva/immunology , Immunity, Mucosal/immunology , Immunologic Surveillance/immunology , Mouth Mucosa/immunology , Th17 Cells/immunology , Animals , Flow Cytometry , Gingiva/microbiology , Humans , Mastication , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota , Mouth Mucosa/microbiology , Real-Time Polymerase Chain Reaction
2.
Microb Pathog ; 192: 106701, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754566

ABSTRACT

Plaque-induced gingivitis is an inflammatory response in gingival tissues resulting from bacterial plaque accumulation at the gingival margin. Postbiotics can promote the proliferation of beneficial bacteria and optimise the state of microbiota in the oral cavity. In this study, we investigated the effect of inactivated Lacticaseibacillus paracasei Probio-01 on plaque-induced gingivitis and the dental plaque microbiota. A total of 32 healthy gingival participants (Group N, using blank toothpaste for 3 months) and 60 patients with plaque-induced gingivitis (30 in Group F, using inactivated Probio-01 toothpaste for 3 months, and 30 in Group B, using blank toothpaste for 3 months, respectively) were recruited. Clinical indices, which included bleeding on probing (BOP), gingival index (GI), and plaque index (PI), were used to assess the severity of gingivitis. Furthermore, 16SrDNA amplicon sequencing was used to explore changes in the gingival state and dental plaque microbiota in patients with plaque-induced gingivitis. The results showed that inactivated Probio-01 significantly reduced clinical indices of gingivitis, including BOP, GI, and PI, in participants with plaque-induced gingivitis and effectively relieved gingival inflammation, compared with that observed in the control group (group B). Inactivated Probio-01 did not significantly influence the diversity of dental plaque microbiota, but increased the relative abundance of dental plaque core bacteria, such as Leptotrichia and Fusobacterium (P < 0.05). Strong correlations were observed between the indices and abundance of dental plaque microbiota. Overall, the inactivated Probio-01 significantly reduced the clinical indices of gingivitis and effectively improved gingival inflammation in patients with plaque-induced gingivitis. The activity of inactivated Probio-01 against plaque-induced gingivitis was possibly mediated by its ability to regulate the dental plaque microbiota, as indicated by the close correlation between the plaque microbiota and clinical indices of gingivitis.


Subject(s)
Dental Plaque , Gingivitis , Microbiota , Toothpastes , Humans , Gingivitis/microbiology , Dental Plaque/microbiology , Female , Male , Microbiota/drug effects , Adult , Toothpastes/therapeutic use , Young Adult , Periodontal Index , Probiotics/administration & dosage , Probiotics/therapeutic use , RNA, Ribosomal, 16S/genetics , Dental Plaque Index , Gingiva/microbiology , Gingiva/pathology , Middle Aged
3.
J Clin Periodontol ; 51(8): 1066-1080, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38769711

ABSTRACT

AIM: To examine association between subgingival microbial signatures and levels of cognitive impairment in older adults. MATERIALS AND METHODS: We analysed subgingival plaque samples and 16S ribosomal RNA sequences for microbiota among 165 participants (normal controls [NCs]: 40, subjective cognitive decline [SCD]: 40, mild cognitive impairment [MCI]: 49 and dementia: 36). RESULTS: The bacterial richness was lower among individuals with worse cognitive function, and subgingival microbial communities differed significantly among the four groups. Declining cognitive function was associated with decreasing relative abundance of genera Capnocytophaga, Saccharibacteria_genera_incertae_sedis, Lautropia and Granulicatella, and increasing abundance of genus Porphyromonas. Moreover, there were differentially abundant genera among the groups. Random forest model based on subgingival microbiota could distinguish between cognitive impairment and NC (AUC = 0.933, 95% confidence interval 0.873-0.992). Significant correlations were observed between oral microbiota and sex, Montreal Cognitive Assessment (MoCA) score and Mini-Mental State Examination score. Partial correlation analysis showed that Leptotrichia and Burkholderia were closely negatively associated with the MoCA score after adjusting for multiple covariates. Gene function was not significantly different between SCD and NC groups, whereas three homozygous genes were altered in MCI patients and two in dementia patients. CONCLUSIONS: This is the first study to demonstrate an association between the composition, function and metabolic pathways of subgingival microbiota and different levels of cognitive function among older individuals. Future cohort studies should assess its diagnostic usefulness for cognitive impairment.


Subject(s)
Cognitive Dysfunction , Microbiota , Humans , Aged , Female , Male , Cognitive Dysfunction/microbiology , Dementia/microbiology , Cognition/physiology , RNA, Ribosomal, 16S/analysis , Gingiva/microbiology , Dental Plaque/microbiology , Middle Aged , Aged, 80 and over
4.
BMC Vet Res ; 20(1): 138, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580990

ABSTRACT

BACKGROUND: Periodontitis is the most common oral disease in dogs, and its progression and severity are influenced by risk factors, such as age and body size. Recent studies have assessed the canine oral microbiota in relation to different stages of periodontitis and niches within the oral cavity. However, knowledge of the bacterial composition at different ages and body sizes, especially in puppies, is limited. This study aimed to characterize the oral microbiota in the healthy gingiva of small breed puppies using next-generation sequencing. Additionally, we assessed the impact of dental care practices and the presence of retained deciduous teeth on the oral microbiota. RESULTS: In this study, plaque samples were collected from the gingival margin of 20 small breed puppies (age, 6.9 ± 0.6 months). The plaque samples were subjected to next-generation sequencing targeting the V3-V4 region of the 16 S rRNA. The microbiota of the plaque samples was composed mostly of gram-negative bacteria, primarily Proteobacteria (54.12%), Bacteroidetes (28.79%), and Fusobacteria (5.11%). Moraxella sp. COT-017, Capnocytophaga cynodegmi COT-254, and Bergeyella zoohelcum COT-186 were abundant in the oral cavity of the puppies. In contrast, Neisseria animaloris were not detected. The high abundance of Pasteurellaceae suggests that this genus is characteristic of the oral microbiota in puppies. Dental care practices and the presence of retained deciduous teeth showed no effects on the oral microbiota. CONCLUSIONS: In this study, many bacterial species previously reported to be detected in the normal oral cavity of adult dogs were also detected in 6-8-month-old small breed dogs. On the other hand, some bacterial species were not detected at all, while others were detected in high abundance. These data indicate that the oral microbiota of 6-8-month-old small breed dogs is in the process of maturating in to the adult microbiota and may also have characteristics of the small dog oral microbiota.


Subject(s)
Dog Diseases , Microbiota , Periodontitis , Dogs , Animals , RNA, Ribosomal, 16S/genetics , Gingiva/microbiology , Periodontitis/veterinary , Microbiota/genetics , Bacteria/genetics , Dog Diseases/microbiology
5.
Clin Lab ; 70(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38345967

ABSTRACT

BACKGROUND: Several studies indicated that chronic periodontitis (CP) and its subgingival bacteria correlated with IgA nephropathy (IgAN). Previous research has shown that prevalence of IgAN in chronic periodontitis patients is significantly higher than that in non CP patients in Xinjiang especially in ethnic Uyghur. The aim of this study is to investigate the distribution of plaque bacterial microbes in CP and IgAN patients and to find correlation between CP and IgAN. METHODS: All of the subgingival plaque samples including 7 healthy controls (N group), 8 CP patients, 14 IgAN patients, and 14 CP with IgAN patients were obtained from ethnic Uyghur people. To investigate the distribution of plaque microbe in Uyghur CP and IgAN patients, the 16s rRNA sequencing and comparative analysis of subgingival bacteria were performed. RESULTS: There were no statistically differences in the community richness estimator (Chao) and the diversity estimator (Shannon index) among four groups. The abundance of Burkholderiales (order), Ottowia (genus) in the plaque microbes were significantly higher in CP with IgAN patients than CP patients. The abundance of Eubacterium (genus) was significantly higher in CP with IgAN patients than IgAN patients. The abundance of Veillonella (genus) was significantly higher while Streptococcus (genus), Tannerella (genus) were significantly lower in CP patients than healthy volunteers. CONCLUSIONS: The composition and abundance of subgingival plaque microbes in Uyghur CP and IgAN patients were significantly different at several levels. Which suggested that abundance of subgingival bacteria is correlated to CP and IgAN.


Subject(s)
Central Asian People , Chronic Periodontitis , Gingiva , Glomerulonephritis, IGA , Humans , Bacteria/genetics , Bacteria/isolation & purification , Chronic Periodontitis/complications , Chronic Periodontitis/microbiology , Glomerulonephritis, IGA/complications , RNA, Ribosomal, 16S/genetics , Gingiva/microbiology
6.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34193520

ABSTRACT

Oral commensal bacteria actively participate with gingival tissue to maintain healthy neutrophil surveillance and normal tissue and bone turnover processes. Disruption of this homeostatic host-bacteria relationship occurs during experimental gingivitis studies where it has been clearly established that increases in the bacterial burden increase gingival inflammation. Here, we show that experimental gingivitis resulted in three unique clinical inflammatory phenotypes (high, low, and slow) and reveal that interleukin-1ß, a reported major gingivitis-associated inflammatory mediator, was not associated with clinical gingival inflammation in the slow response group. In addition, significantly higher levels of Streptococcus spp. were also unique to this group. The low clinical response group was characterized by low concentrations of host mediators, despite similar bacterial accumulation and compositional characteristics as the high clinical response group. Neutrophil and bone activation modulators were down-regulated in all response groups, revealing novel tissue and bone protective responses during gingival inflammation. These alterations in chemokine and microbial composition responses during experimental gingivitis reveal a previously uncharacterized variation in the human host response to a disruption in gingival homeostasis. Understanding this human variation in gingival inflammation may facilitate the identification of periodontitis-susceptible individuals. Overall, this study underscores the variability in host responses in the human population arising from variations in host immune profiles (low responders) and microbial community maturation (slow responders) that may impact clinical outcomes in terms of destructive inflammation.


Subject(s)
Gingiva/pathology , Inflammation/pathology , Adolescent , Adult , Bone and Bones/pathology , Chemokines/metabolism , Gingiva/microbiology , Gingivitis/microbiology , Gingivitis/pathology , Homeostasis , Humans , Phylogeny , Time Factors , Young Adult
7.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674094

ABSTRACT

Porphyromonas gingivalis (Pg) and its gingipain proteases contribute to Alzheimer's disease (AD) pathogenesis through yet unclear mechanisms. Cellular secretion of small extracellular vesicles or exosomes (EXO) increases with aging as part of the senescence-associated secretory phenotype (SASP). We have shown that EXO isolated from Pg-infected dendritic cells contain gingipains and other Pg antigens and transmit senescence to bystander gingival cells, inducing alveolar bone loss in mice in vivo. Here, EXO were isolated from the gingiva of mice and humans with/without periodontitis (PD) to determine their ability to penetrate the blood-brain barrier (BBB) in vitro and in vivo. PD was induced by Pg oral gavage for 6 weeks in C57B6 mice. EXO isolated from the gingiva or brain of donor Pg-infected (PD EXO) or control animals (Con EXO) were characterized by NTA, Western blot, and TEM. Gingival PD EXO or Con EXO were labeled and injected into the gingiva of uninfected WT mouse model. EXO biodistribution in brains was tracked by an in vivo imaging system (IVIS) and confocal microscopy. The effect of human PD EXO on BBB integrity and permeability was examined using TEER and FITC dextran assays in a human in vitro 3D model of the BBB. Pg antigens (RGP and Mfa-1) were detected in EXO derived from gingival and brain tissues of donor Pg-infected mice. Orally injected PD EXO from donor mice penetrated the brains of recipient uninfected mice and colocalized with hippocampal microglial cells. IL-1ß and IL-6 were expressed in human PD EXO and not in Con EXO. Human PD EXO promoted BBB permeability and penetrated the BBB in vitro. This is the first demonstration that microbial-induced EXO in the oral cavity can disseminate, cross the BBB, and may contribute to AD pathogenesis.


Subject(s)
Blood-Brain Barrier , Extracellular Vesicles , Gingiva , Periodontitis , Porphyromonas gingivalis , Blood-Brain Barrier/metabolism , Animals , Humans , Mice , Extracellular Vesicles/metabolism , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/pathogenicity , Periodontitis/microbiology , Periodontitis/metabolism , Periodontitis/pathology , Gingiva/metabolism , Gingiva/microbiology , Mice, Inbred C57BL , Male , Exosomes/metabolism , Female , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/metabolism
8.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892405

ABSTRACT

Streptococcus gordonii (S. gordonii, Sg) is one of the early colonizing, supragingival commensal bacterium normally associated with oral health in human dental plaque. MicroRNAs (miRNAs) play an important role in the inflammation-mediated pathways and are involved in periodontal disease (PD) pathogenesis. PD is a polymicrobial dysbiotic immune-inflammatory disease initiated by microbes in the gingival sulcus/pockets. The objective of this study is to determine the global miRNA expression kinetics in S. gordonii DL1-infected C57BL/6J mice. All mice were randomly divided into four groups (n = 10 mice/group; 5 males and 5 females). Bacterial infection was performed in mice at 8 weeks and 16 weeks, mice were euthanized, and tissues harvested for analysis. We analyzed differentially expressed (DE) miRNAs in the mandibles of S. gordonii-infected mice. Gingival colonization/infection by S. gordonii and alveolar bone resorption (ABR) was confirmed. All the S. gordonii-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, and a significant increase in mandible and maxilla ABR (p < 0.0001). miRNA profiling revealed 191 upregulated miRNAs (miR-375, miR-34b-5p) and 22 downregulated miRNAs (miR-133, miR-1224) in the mandibles of S. gordonii-infected mice at the 8-week mark. Conversely, at 16 weeks post-infection, 10 miRNAs (miR-1902, miR-203) were upregulated and 32 miRNAs (miR-1937c, miR-720) were downregulated. Two miRNAs, miR-210 and miR-423-5p, were commonly upregulated, and miR-2135 and miR-145 were commonly downregulated in both 8- and 16-week-infected mice mandibles. Furthermore, we employed five machine learning (ML) algorithms to assess how the number of miRNA copies correlates with S. gordonii infections in mice. In the ML analyses, miR-22 and miR-30c (8-week), miR-720 and miR-339-5p (16-week), and miR-720, miR-22, and miR-339-5p (combined 8- and 16-week) emerged as the most influential miRNAs.


Subject(s)
MicroRNAs , Periodontitis , Streptococcus gordonii , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Streptococcus gordonii/genetics , Periodontitis/microbiology , Periodontitis/genetics , Mice , Male , Female , Mice, Inbred C57BL , Streptococcal Infections/microbiology , Streptococcal Infections/genetics , Gingiva/microbiology , Gingiva/metabolism , Gene Expression Regulation , Alveolar Bone Loss/microbiology , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/etiology , Alveolar Bone Loss/genetics , Gene Expression Profiling , Kinetics
9.
PLoS Pathog ; 17(5): e1009598, 2021 05.
Article in English | MEDLINE | ID: mdl-34015051

ABSTRACT

Tyrosine phosphatases are often weaponized by bacteria colonizing mucosal barriers to manipulate host cell signal transduction pathways. Porphyromonas gingivalis is a periodontal pathogen and emerging oncopathogen which interferes with gingival epithelial cell proliferation and migration, and induces a partial epithelial mesenchymal transition. P. gingivalis produces two tyrosine phosphatases, and we show here that the low molecular weight tyrosine phosphatase, Ltp1, is secreted within gingival epithelial cells and translocates to the nucleus. An ltp1 mutant of P. gingivalis showed a diminished ability to induce epithelial cell migration and proliferation. Ltp1 was also required for the transcriptional upregulation of Regulator of Growth and Cell Cycle (RGCC), one of the most differentially expressed genes in epithelial cells resulting from P. gingivalis infection. A phosphoarray and siRNA showed that P. gingivalis controlled RGCC expression through Akt, which was activated by phosphorylation on S473. Akt activation is opposed by PTEN, and P. gingivalis decreased the amount of PTEN in epithelial cells. Ectopically expressed Ltp1 bound to PTEN, and reduced phosphorylation of PTEN at Y336 which controls proteasomal degradation. Ltp-1 induced loss of PTEN stability was prevented by chemical inhibition of the proteasome. Knockdown of RGCC suppressed upregulation of Zeb2 and mesenchymal markers by P. gingivalis. RGCC inhibition was also accompanied by a reduction in production of the proinflammatory cytokine IL-6 in response to P. gingivalis. Elevated IL-6 levels can contribute to periodontal destruction, and the ltp1 mutant of P. gingivalis incited less bone loss compared to the parental strain in a murine model of periodontal disease. These results show that P. gingivalis can deliver Ltp1 within gingival epithelial cells, and establish PTEN as the target for Ltp1 phosphatase activity. Disruption of the Akt1/RGCC signaling axis by Ltp1 facilitates P. gingivalis-induced increases in epithelial cell migration, proliferation, EMT and inflammatory cytokine production.


Subject(s)
Bacteroidaceae Infections/microbiology , Gingival Diseases/microbiology , Periodontal Diseases/microbiology , Porphyromonas gingivalis/enzymology , Protein Tyrosine Phosphatases/metabolism , Signal Transduction , Animals , Cell Cycle , Cell Movement , Cell Proliferation , Epithelial Cells/microbiology , Epithelial-Mesenchymal Transition , Gingiva/microbiology , Humans , Mice , Mice, Inbred BALB C , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphorylation , Porphyromonas gingivalis/genetics , Protein Tyrosine Phosphatases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation
10.
Crit Rev Microbiol ; 49(6): 726-738, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36260510

ABSTRACT

The microbial aetiology for periodontitis has been widely studied and deciphered for more than a century. The evolving and changing concepts about periodontal microbiology can be attributed to continuously developing laboratory techniques. The current sequencing platforms have not only expanded the catalog of periodontal pathogens but have also facilitated the understanding of functional interactions of the ecological framework. However, the translation of this new knowledge to advance periodontal therapeutics is minimal. We contend that novel clinical interventions directed beyond conventional therapies need to be emphasized. A clear understanding of the structural and functional dynamics of subgingival microbiota is a pre-requisite for developing any microbiome-based interventions for applications in periodontal health care. In this review, we discuss the 16 s-rRNA gene sequencing-based knowledge of the subgingival microbial community structure, its interactions and functions, and our perspective on the potential to engineer it for periodontal therapeutics. Harnessing this next-generation sequencing-based knowledge, microbiome modulation therapies are poised to change microbiome therapeutics' face.


Subject(s)
Microbiota , Periodontitis , Humans , Gingiva/microbiology , RNA, Ribosomal, 16S/genetics , Periodontitis/therapy , Periodontitis/microbiology , High-Throughput Nucleotide Sequencing
11.
Genome Res ; 29(8): 1352-1362, 2019 08.
Article in English | MEDLINE | ID: mdl-31160374

ABSTRACT

Predicting biosynthetic gene clusters (BGCs) is critically important for discovery of antibiotics and other natural products. While BGC prediction from complete genomes is a well-studied problem, predicting BGCs in fragmented genomic assemblies remains challenging. The existing BGC prediction tools often assume that each BGC is encoded within a single contig in the genome assembly, a condition that is violated for most sequenced microbial genomes where BGCs are often scattered through several contigs, making it difficult to reconstruct them. The situation is even more severe in shotgun metagenomics, where the contigs are often short, and the existing tools fail to predict a large fraction of long BGCs. While it is difficult to assemble BGCs in a single contig, the structure of the genome assembly graph often provides clues on how to combine multiple contigs into segments encoding long BGCs. We describe biosyntheticSPAdes, a tool for predicting BGCs in assembly graphs and demonstrate that it greatly improves the reconstruction of BGCs from genomic and metagenomics data sets.


Subject(s)
Genes, Bacterial , Metagenome , Metagenomics/methods , Multigene Family , Software , Contig Mapping , Datasets as Topic , Dental Plaque/microbiology , Gingiva/microbiology , Humans , Internet , Mouth Mucosa/microbiology , Pharynx/microbiology , Protein Biosynthesis , Tongue/microbiology
12.
Microb Pathog ; 171: 105724, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35988883

ABSTRACT

Oral microbes coexist with each other in a symbiotic relationship or as commensals in healthy body. Teeth and oral cavity harbor diverse community of fungi and bacteria. This study focused on bacterial and fungal component of gingiva, where the last occupy little attention. In addition to study the antimicrobial activity of toothpastes, mouth washes and natural oils against microorganisms. Sixty swabs from outer surfaces of gingiva in healthy persons, as well as patients complaining of gingivitis and periodontitis were collected for fungal and bacterial analyses. Sensitivity of the isolated microorganisms to some pharmaceutical preparations and natural oils was also performed. Ten fungal and 9 bacterial species were identified. There is a highly significant variation in the frequency of Klebsiella pneumonia among healthy, gingivitis and periodontitis. Also, Candida tropicalis and cocci bacteria showed significant diversity among the three tested groups. Among pharmaceutical preparations (toothpastes and mouth washes) and natural oils, Paradontax, Hexitol and clove oil showed the best antimicrobial activity against tested fungal and bacterial strains. Although, minimum inhibition concentrations (MICs) of clove oil were high compared to Paradontax and Hexitol, nevertheless, it is highly recommended as both antifungal and antibacterial agent against oral pathogenic microorganisms, because it is a natural compound and nearly devoid of side effects.


Subject(s)
Gingivitis , Microbiota , Periodontitis , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria , Clove Oil/pharmacology , Gingiva/microbiology , Gingivitis/microbiology , Humans , Periodontitis/microbiology , Pharmaceutical Preparations , Plant Oils , Sugar Alcohols , Toothpastes
13.
Med Sci Monit ; 28: e932191, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34983919

ABSTRACT

BACKGROUND This study aimed to compare the effectiveness of subgingival scaling and root planing with the Twinlight laser, Er: YAG laser, and hand instrumentation on the removal of endotoxin and attachment of human gingival fibroblasts (HGFs) to cementum surfaces in vitro. MATERIAL AND METHODS Single-rooted teeth extracted for periodontal disease were collected and divided into 3 groups: group A, root planing with Gracey curet no. 5/6; group B, irradiation with Er: YAG laser; group C, irradiation with Er: YAG laser and Nd: YAG laser. Endotoxins were determined by the limulus amebocyte lysate test. Cell attachment and proliferation of HGFs on root specimens were evaluated by cell counting kit-8 assay. The root surface and cell morphology were observed by scanning electron microscope. RESULTS A flat root surface with scratches was found in group A, Group B had a homogeneous rough morphology without carbonization, and group C had a non-homogeneous rough morphology with ablation. The endotoxin concentration was highest in group A (P<0.05) and lowest in group C (P>0.05). HGFs cultured in group B showed significantly increased adhesion and proliferation compared with groups A and C (P<0.05). HGFs in group B were well attached, covered densely by pseudopodia. HGFs in group A were round with poor extension and short pseudopodia, while the cells in the group C were in narrow, triangular, or polygonal shapes. CONCLUSIONS Twinlight laser-assisted periodontal treatment effectively improved the biocompatibility of root surface and promoted the attachment and proliferation of fibroblasts by removing calculus and reducing the concentration of endotoxins.


Subject(s)
Fibroblasts/physiology , Gingiva , Laser Therapy , Lasers, Solid-State/therapeutic use , Periodontal Diseases , Root Planing/methods , Cell Adhesion , Gingiva/microbiology , Gingiva/pathology , Humans , Laser Therapy/instrumentation , Laser Therapy/methods , Microscopy, Electron, Scanning/methods , Periodontal Diseases/microbiology , Periodontal Diseases/physiopathology , Periodontal Diseases/therapy , Surface Properties
14.
Orthod Craniofac Res ; 25(2): 260-268, 2022 May.
Article in English | MEDLINE | ID: mdl-34538018

ABSTRACT

BACKGROUND: Full-fixed appliance orthodontic treatment (commonly called braces) increases plaque accumulation and the risk of gingivitis and periodontitis. However, little consensus exists on changes to subgingival microbiota and specific periodontopathogens during treatment with braces. Prior studies have been hampered by selection biases due to dependence on culture conditions, candidate-based PCR and shallow sequencing methods. OBJECTIVE: The objective was to provide the first longitudinal, culture-free and deep-sequence profiling of subgingival bacteria in subjects during early stages of full-fixed orthodontic treatment. METHODS: We performed 16S rRNA next-generation sequencing (NGS) on 168 subgingival samples collected at 4 distinct mandibular tooth sites per subject before (0 weeks) and during (6 and 12 weeks) orthodontic intervention in 9 experimental and 5 control subjects not undergoing treatment. RESULTS: Overall, we noted that orthodontic intervention led to increased microbial richness, accompanied by an increased incidence of localized gingivitis/mild periodontitis in subjects requiring orthodontic treatment compared to controls, as well as significant baseline variations in subgingival microbiomes in all subjects. Moreover, we confirmed individual- and site-dependent microbiome variability (in particular, the lingual site harboured higher microbiome diversity than buccal sites) that orthodontic bands may lead to more prolonged shifts in microbial changes compared to brackets, and evidence of adaptive enrichment of consensus bacteria with orthodontic intervention (12 novel, consensus bacterial species were identified). CONCLUSION: Our study, along with evolving global profiling methods and data analyses, builds a strong foundation for further analyses of subgingival microbiomes during full-fixed orthodontic treatment.


Subject(s)
Gingivitis , Microbiota , Periodontitis , Bacteria/genetics , Gingiva/microbiology , Humans , Orthodontic Appliances, Fixed , Prospective Studies , RNA, Ribosomal, 16S/genetics
15.
Proc Natl Acad Sci U S A ; 116(7): 2652-2661, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30692259

ABSTRACT

γδT cells are a major component of epithelial tissues and play a role in tissue homeostasis and host defense. γδT cells also reside in the gingiva, an oral tissue covered with specialized epithelium that continuously monitors the challenging dental biofilm. Whereas most research on intraepithelial γδT cells focuses on the skin and intestine epithelia, our knowledge on these cells in the gingiva is still incomplete. In this study, we demonstrate that even though the gingiva develops after birth, the majority of gingival γδT cells are fetal thymus-derived Vγ6+ cells, and to a lesser extent Vγ1+ and Vγ4+ cells. Furthermore, we show that γδT cells are motile and locate preferentially in the epithelium adjacent to the biofilm. Vγ6+ cells represent the major source of IL-17-producing cells in the gingiva. Chimeric mice and parabiosis experiments indicated that the main fraction of gingival γδT cells is radioresistant and tissue-resident, persisting locally independent of circulating γδT cells. Notably, gingival γδT cell homeostasis is regulated by the microbiota as the ratio of Vγ6+ and Vγ4+ cells was reversed in germ-free mice, and their activation state was decreased. As a consequence, conditional ablation of γδT cells results in elevated gingival inflammation and subsequent alterations of oral microbial diversity. Taken together, these findings suggest that oral mucosal homeostasis is shaped by reciprocal interplays between γδT cells and local microbiota.


Subject(s)
Homeostasis , Interleukin-17/biosynthesis , Microbiota , Mouth Mucosa/microbiology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/metabolism , Animals , Biofilms , Gingiva/immunology , Gingiva/microbiology , Inflammation/immunology , Mice
16.
Clin Oral Investig ; 26(3): 2209-2221, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35122548

ABSTRACT

OBJECTIVE: The aim of this study was to systematically update the evidence for associations between host genetic variants and subgingival microbial detection and counts. MATERIALS AND METHODS: Following a previous systematic review (Nibali et al. J Clin Periodontol 43(11): 889-900, 15), an update of a systematic search of the literature was conducted in Ovid Medline, Embase, LILACS, and Cochrane Library for studies reporting data on host genetic variants and detection of microbes subgingivally published in the last 6 years. RESULTS: A total of 19 studies were included in the review, from an initial search of 2797 titles. Studies consisted mainly of candidate gene studies and of one genome-wide analysis. A total of 62 studies were considered for summary findings, including 43 identified in the previous systematic review of studies published up to 2015. Meta-analyses were done when appropriate including both papers in the original review and in the update. Meta-analyses revealed lack of associations between IL1 composite genotype and subgingival detection of Aggregatibacter acinomycetemcomitans, Poprhyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Prevotella intermedia. Promising evidence is emerging from other genetic variants and from sub-analyses of data from genome-association studies. Among other studies with candidate-gene, target SNPs were mainly within the IL10, IL6, IL4, IL8, IL17A, and VDR gene. CONCLUSIONS: IL1 composite genotype does not seem to be associated with subgingival microbial detection. Promising associations should be pursued by future studies, including studies employing -OMICS technologies. CLINICAL RELEVANCE: A better knowledge of which host genetic variant predispose to subgingival microbial colonization and to the development of progression of periodontal disease could potentially help to better understand periodontal disease pathogenesis and help with its management.


Subject(s)
Gingiva , Gram-Negative Bacteria , Genotype , Gingiva/microbiology , Gram-Negative Bacteria/physiology , Host Microbial Interactions , Humans , Interleukin-1/genetics
17.
J Cell Sci ; 133(5)2019 12 05.
Article in English | MEDLINE | ID: mdl-31722981

ABSTRACT

In periodontal disease (PD), bacterial biofilms cause gingival inflammation, leading to bone loss. In healthy individuals, αvß6 integrin in junctional epithelium maintains anti-inflammatory transforming growth factor-ß1 (TGF-ß1) signaling, whereas its expression is lost in individuals with PD. Bacterial biofilms suppress ß6 integrin expression in cultured gingival epithelial cells (GECs) by attenuating TGF-ß1 signaling, leading to an enhanced pro-inflammatory response. In the present study, we show that GEC exposure to biofilms induced activation of mitogen-activated protein kinases and epidermal growth factor receptor (EGFR). Inhibition of EGFR and ERK stunted both the biofilm-induced ITGB6 suppression and IL1B stimulation. Furthermore, biofilm induced the expression of endogenous EGFR ligands that suppressed ITGB6 and stimulated IL1B expression, indicating that the effects of the biofilm were mediated by autocrine EGFR signaling. Biofilm and EGFR ligands induced inhibitory phosphorylation of the TGF-ß1 signaling mediator Smad3 at S208. Overexpression of a phosphorylation-defective mutant of Smad3 (S208A) reduced the ß6 integrin suppression. Furthermore, inhibition of EGFR signaling significantly reduced bone loss and inflammation in an experimental PD model. Thus, EGFR inhibition may provide a target for clinical therapies to prevent inflammation and bone loss in PD.


Subject(s)
Alveolar Bone Loss/pathology , Antigens, Neoplasm/genetics , Biofilms , Epithelial Cells/metabolism , ErbB Receptors/metabolism , Gingiva/cytology , Integrins/genetics , Animals , Cells, Cultured , Epithelial Cells/microbiology , Gingiva/microbiology , Humans , Inflammation Mediators/metabolism , Mice , Periodontal Diseases/genetics , Periodontal Diseases/metabolism , Phosphorylation , Signal Transduction , Transforming Growth Factor beta1/metabolism
18.
Clin Exp Immunol ; 204(3): 373-395, 2021 06.
Article in English | MEDLINE | ID: mdl-33565609

ABSTRACT

Follicular helper T cells (Tfh) cells have been identified in the circulation and in tertiary lymphoid structures in chronic inflammation. Gingival tissues with periodontitis reflect chronic inflammation, so genomic footprints of Tfh cells should occur in these tissues and may differ related to aging effects. Macaca mulatta were used in a ligature-induced periodontitis model [adult group (aged 12-23 years); young group (aged 3-7 years)]. Gingival tissue and subgingival microbiome samples were obtained at matched healthy ligature-induced disease and clinical resolution sites. Microarray analysis examined Tfh genes (n = 54) related to microbiome characteristics documented using 16S MiSeq. An increase in the major transcription factor of Tfh cells, BCL6, was found with disease in both adult and young animals, while master transcription markers of other T cell subsets were either decreased or showed minimal change. Multiple Tfh-related genes, including surface receptors and transcription factors, were also significantly increased during disease. Specific microbiome patterns were significantly associated with profiles indicative of an increased presence/function of Tfh cells. Importantly, unique microbial complexes showed distinctive patterns of interaction with Tfh genes differing in health and disease and with the age of the animals. An increase in Tfh cell responsiveness occurred in the progression of periodontitis, affected by age and related to specific microbial complexes in the oral microbiome. The capacity of gingival Tfh cells to contribute to localized B cell activation and active antibody responses, including affinity maturation, may be critical for controlling periodontal lesions and contributing to limiting and/or resolving the lesions.


Subject(s)
Gingiva/immunology , Periodontitis/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcriptome/immunology , Aging/immunology , Animals , Antibody Formation/immunology , Female , Gene Expression Regulation/immunology , Gingiva/microbiology , Inflammation/immunology , Inflammation/microbiology , Lymphocyte Activation/immunology , Macaca mulatta , Male , Microbiota/immunology , Periodontitis/microbiology
19.
Ann Rheum Dis ; 80(2): 162-168, 2021 02.
Article in English | MEDLINE | ID: mdl-33004333

ABSTRACT

OBJECTIVES: An increased prevalence of periodontitis and perturbation of the oral microbiome has been identified in patients with rheumatoid arthritis (RA). The periodontal pathogen Porphyromonas gingivalis may cause local citrullination of proteins, potentially triggering anti-citrullinated protein antibody production. However, it is not known if oral dysbiosis precedes the onset of clinical arthritis. This study comprehensively characterised the oral microbiome in anti-cyclic citrullinated peptide (anti-CCP) positive at-risk individuals without clinical synovitis (CCP+at risk). METHODS: Subgingival plaque was collected from periodontally healthy and diseased sites in 48 CCP+at risk, 26 early RA and 32 asymptomatic healthy control (HC) individuals. DNA libraries were sequenced on the Illumina HiSeq 3000 platform. Taxonomic profile and functional capability of the subgingival microbiome were compared between groups. RESULTS: At periodontally healthy sites, CCP+at risk individuals had significantly lower microbial richness compared with HC and early RA groups (p=0.004 and 0.021). Microbial community alterations were found at phylum, genus and species levels. A large proportion of the community differed significantly in membership (523 species; 35.6%) and structure (575 species; 39.1%) comparing CCP+at risk and HC groups. Certain core species, including P. gingivalis, had higher relative abundance in the CCP+at risk group. Seventeen clusters of orthologous gene functional units were significantly over-represented in the CCP+at risk group compared with HC (adjusted p value <0.05). CONCLUSION: Anti-CCP positive at-risk individuals have dysbiotic subgingival microbiomes and increased abundance of P. gingivalis compared with controls. This supports the hypothesis that the oral microbiome and specifically P. gingivalis are important in RA initiation.


Subject(s)
Arthritis, Rheumatoid/microbiology , Dysbiosis/immunology , Microbiota/immunology , Periodontitis/microbiology , Porphyromonas gingivalis/immunology , Adult , Anti-Citrullinated Protein Antibodies/blood , Anti-Citrullinated Protein Antibodies/immunology , Arthritis, Rheumatoid/immunology , Autoantibodies/blood , Autoantibodies/immunology , Dysbiosis/microbiology , Female , Gingiva/immunology , Gingiva/microbiology , Humans , Male , Middle Aged , Periodontitis/immunology , Risk Factors
20.
Appl Environ Microbiol ; 87(3)2021 01 15.
Article in English | MEDLINE | ID: mdl-33158898

ABSTRACT

Periodontitis is a highly prevalent oral inflammatory disease triggered by dysbiotic subgingival microbiota. For the development of microbiome modulators that can reverse the dysbiotic state and reestablish a health-associated microbiota, a high-throughput in vitro multispecies biofilm model is needed. Our aim is to establish a model that resembles a dysbiotic subgingival microbial biofilm by incorporating the major periodontal pathogen Porphyromonas gingivalis into microcosm biofilms cultured from pooled saliva of healthy volunteers. The biofilms were grown for 3, 7, and 10 days and analyzed for their microbial composition by 16S rRNA gene amplicon sequencing as well as measurement of dipeptidyl peptidase IV (DPP4) activity and butyric acid production. The addition of P. gingivalis increased its abundance in saliva-derived microcosm biofilms from 2.7% on day 3 to >50% on day 10, which significantly reduced the Shannon diversity but did not affect the total number of operational taxonomic units (OTUs). The P. gingivalis-enriched biofilms displayed altered microbial composition as revealed by principal-component analysis and reduced interactions among microbial species. Moreover, these biofilms exhibited enhanced DPP4 activity and butyric acid production. In conclusion, by adding P. gingivalis to saliva-derived microcosm biofilms, we established an in vitro pathogen-enriched dysbiotic microbiota which resembles periodontitis-associated subgingival microbiota in terms of increased P. gingivalis abundance and higher DPP4 activity and butyric acid production. This model may allow for investigating factors that accelerate or hinder a microbial shift from symbiosis to dysbiosis and for developing microbiome modulation strategies.IMPORTANCE In line with the new paradigm of the etiology of periodontitis, an inflammatory disorder initiated by dysbiotic subgingival microbiota, novel therapeutic strategies have been proposed targeting reversing dysbiosis and restoring host-compatible microbiota rather than eliminating the biofilms unselectively. Thus, appropriate laboratory models are required to evaluate the efficacy of potential microbiome modulators. In the present study, we used the easily obtainable saliva as an inoculum, spiked the microcosm biofilms with the periodontal pathogen Porphyromonas gingivalis, and obtained a P. gingivalis-enriched microbiota, which resembles the in vivo pathogen-enriched subgingival microbiota in severe periodontitis. This biofilm model circumvents the difficulties encountered when using subgingival plaque as the inoculum and achieves microbiota in a dysbiotic state in a controlled and reproducible manner, which is required for high-throughput and large-scale evaluation of strategies that can potentially modulate microbial ecology.


Subject(s)
Dysbiosis/microbiology , Gingiva/microbiology , Porphyromonas gingivalis/physiology , Saliva/microbiology , Biofilms , Butyric Acid/metabolism , Dipeptidyl Peptidase 4/metabolism , Humans , Microbiota/genetics , Microbiota/physiology , Porphyromonas gingivalis/enzymology , Porphyromonas gingivalis/genetics , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL