Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.557
Filter
Add more filters

Publication year range
1.
Biochem Biophys Res Commun ; 702: 149567, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38335701

ABSTRACT

Glutaraldehyde (GA) is a protein crosslinker widely used in biochemical and pharmaceutical research because it can rapidly stabilize and immobilize substrates via amine group interactions. However, controlling GA crosslinking is challenging owing to its swift reactivity and the influence of various solution conditions, such as pH and concentrations of the substrate and crosslinker. Although extensive research has focused on GA cross-linking mechanisms, studies on quenching, which is critical for preventing non-specific aggregation during prolonged storage, remain sparse. This study examines the quenching efficiency of a combined amino acid mixture of glycine, histidine, and lysine, which are commonly used as individual quenchers. Our findings, confirmed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis, demonstrate that this amino acid blend offers superior quenching compared to single amino acids, enhancing quenching activity across a wide pH spectrum. These results provide a novel approach for mitigating the high reactivity of GA with implications for improving sample preservation and stabilization in a range of biochemical applications, including microscopy and cell fixation.


Subject(s)
Histidine , Lysine , Glutaral/chemistry , Glutaral/pharmacology , Cross-Linking Reagents/chemistry , Glycine
2.
Chemphyschem ; 25(14): e202400259, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38662530

ABSTRACT

Crosslinking is usually required to improve the mechanical properties and stability of collagen-based scaffolds. Introducing exogenous crosslinks into collagen may however affect the collagen structure. Since the architecture of collagen is tied to its functionality, it is important to study the effect of crosslinking and to select a crosslinking method that preserves both the collagen structure and mechanical properties. The objective of this study is to compare the effect of various crosslinking methods on the structure and mechanical properties of bioartificial tendon-like materials (collagen multifilament bundles) fabricated by contact drawing. We examine both physical (ultraviolet light, UVC) and chemical (genipin, carbodiimide (EDC), and glutaraldehyde) crosslinking methods. The presence of collagen and the formation of well-ordered collagen structures are confirmed by attenuated total reflectance Fourier-transform infrared spectromicroscopy and wide-angle X-ray scattering for all crosslinking methods. The morphology of the collagen multifilament bundles is similar across crosslinking methods. Swelling of the multifilament bundles is dramatically reduced following crosslinking and varies by crosslinking method, with genipin- and carbodiimide-crosslinked specimens swelling the least. Ultimate tensile strength (UTS) and Young's modulus significantly improve for all crosslinked specimens compared to non-crosslinked specimens. Glutaraldehyde crosslinked collagen multifilament bundles display the highest UTS values ranging from 33.82±0.0 MPa to 45.59±0.76 MPa.


Subject(s)
Collagen , Cross-Linking Reagents , Cross-Linking Reagents/chemistry , Collagen/chemistry , Glutaral/chemistry , Ultraviolet Rays , Carbodiimides/chemistry , Iridoids/chemistry , Animals , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
3.
Arch Microbiol ; 206(5): 227, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642141

ABSTRACT

Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) are the most widely used microbial insecticides. Both encounter unfavorable environmental factors and pesticides in the field. Here, the responses of Bt and Ls spores to glutaraldehyde were characterized using Raman spectroscopy and differential interference contrast imaging at the single-cell level. Bt spores were more sensitive to glutaraldehyde than Ls spores under prolonged exposure: <1.0% of Bt spores were viable after 10 min of 0.5% (v/v) glutaraldehyde treatment, compared to ~ 20% of Ls spores. The Raman spectra of glutaraldehyde-treated Bt and Ls spores were almost identical to those of untreated spores; however, the germination process of individual spores was significantly altered. The time to onset of germination, the period of rapid Ca2+-2,6-pyridinedicarboxylic acid (CaDPA) release, and the period of cortex hydrolysis of treated Bt spores were significantly longer than those of untreated spores, with dodecylamine germination being particularly affected. Similarly, the germination of treated Ls spores was significantly prolonged, although the prolongation was less than that of Bt spores. Although the interiors of Bt and Ls spores were undamaged and CaDPA did not leak, proteins and structures involved in spore germination could be severely damaged, resulting in slower and significantly prolonged germination. This study provides insights into the impact of glutaraldehyde on bacterial spores at the single cell level and the variability in spore response to glutaraldehyde across species and populations.


Subject(s)
Bacillaceae , Bacillus thuringiensis , Insecticides , Spores, Bacterial/physiology , Insecticides/metabolism , Glutaral/pharmacology , Glutaral/metabolism , Bacillus subtilis/metabolism
4.
Biomacromolecules ; 25(4): 2645-2655, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38456398

ABSTRACT

Conventional techniques for the closure of wounds, such as sutures and staples, have significant drawbacks that can negatively impact wound healing. Tissue adhesives have emerged as promising alternatives, but poor adhesion, low mechanical properties, and toxicity have hindered their widespread clinical adoption. In this work, a dual modified, aldehyde and methacrylate hyaluronic acid (HA) biopolymer (HA-MA-CHO) has been synthesized through a simplified route for use as a double cross-linked network (DCN) hydrogel (HA-MA-CHO-DCN) adhesive for the effective closure and sealing of wounds. HA-MA-CHO-DCN cross-links in two stages: initial cross-linking of the aldehyde functionality (CHO) of HA-MA-CHO using a disulfide-containing cross-linker, 3,3'-dithiobis (propionic hydrazide) (DTPH), leading to the formation of a self-healing injectable gel, followed by further cross-linking via ultraviolet (UV) initiated polymerization of the methacrylate (MA) functionality. This hydrogel adhesive shows a stable swelling behavior and remarkable versatility as the storage modulus (G') has shown to be highly tunable (103-105 Pa) for application to many different wound environments. The new HA-MA-CHO-DCN hydrogel showed excellent adhesive properties by surpassing the burst pressure and lap-shear strength for the widely used bovine serum albumin-glutaraldehyde (BSAG) glue while maintaining excellent cell viability.


Subject(s)
Hyaluronic Acid , Hydrogels , Hydrogels/chemistry , Hyaluronic Acid/chemistry , Adhesives , Glutaral , Methacrylates
5.
Analyst ; 149(4): 1202-1211, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38214351

ABSTRACT

In this study, the carboxy silane 4-(triethoxysilyl)butanoic acid (TESBA) was used to modify titanium dioxide (TiO2) to create a self-assembled monolayer (SAM) and then directionally immobilize a capture antibody using protein A. We selected the amino silane (3-aminopropyl)triethoxysilane (APTES) to perform a comparative analysis with TESBA, and employed glutaraldehyde (GA) as the control. The modification and detection effects and the limit of detection (LOD) were evaluated by detecting human immunoglobulin G (IgG). The average normalized sensitivity of the dual-grating coupler waveguide biosensor was 49.63 ± 0.27 RIU-1 and the optimum resolution was 1.30 × 10-6 RIU. When the SAM was prepared using TESBA and APTES followed by GA, the LOD was 4.59 × 10-7 g mL-1 and 5.29 × 10-7 g mL-1, respectively. We analyzed the modification and detection effects by the t-test and concluded that the differences in the modification effects using TESBA and APTES followed by GA were significant and the differences in the detection effects using TESBA and APTES followed by GA were insignificant. The use of TESBA as the SAM led to the modification effect being superior to that obtained using APTES followed by GA. The detection effect using TESBA was as outstanding as that using APTES followed by GA. Our findings demonstrate the feasibility and effectiveness of using TESBA as the SAM to carboxylate the surface of TiO2, thereby enabling immobilization of biomolecules for human IgG detection.


Subject(s)
Immunoglobulin G , Titanium , Humans , Butyric Acid , Glutaral
6.
Appl Microbiol Biotechnol ; 108(1): 264, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489042

ABSTRACT

Cyanophycin (CGP) is a polypeptide consisting of amino acids-aspartic acid in the backbone and arginine in the side chain. Owing to its resemblance to cell adhesive motifs in the body, it can be considered suitable for use in biomedical applications as a novel component to facilitate cell attachment and tissue regeneration. Although it has vast potential applications, starting with nutrition, through drug delivery and tissue engineering to the production of value-added chemicals and biomaterials, CGP has not been brought to the industry yet. To develop scaffolds using CGP powder produced by bacteria, its properties (e.g., biocompatibility, morphology, biodegradability, and mechanical strength) should be tailored in terms of the requirements of the targeted tissue. Crosslinking commonly stands for a primary modification method for renovating biomaterial features to these extents. Herein, we aimed to crosslink CGP for the first time and present a comparative study of different methods of CGP crosslinking including chemical, physical, and enzymatic methods by utilizing glutaraldehyde (GTA), UV exposure, genipin, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and monoamine oxidase (MAO). Crosslinking efficacy varied among the samples crosslinked via the different crosslinking methods. All crosslinked CGP were non-cytotoxic to L929 cells, except for the groups with higher GTA concentrations. We conclude that CGP is a promising candidate for scaffolding purposes to be used as part of a composite with other biomaterials to maintain the integrity of scaffolds. The initiative study demonstrated the unknown characteristics of crosslinked CGP, even though its feasibility for biomedical applications should be confirmed by further examinations. KEY POINTS: • Cyanophycin was crosslinked by 5 different methods • Crosslinked cyanophycin is non-cytotoxic to L929 cells • Crosslinked cyanophycin is a promising new material for scaffolding purposes.


Subject(s)
Biocompatible Materials , Tissue Scaffolds , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Bacterial Proteins , Tissue Engineering/methods , Glutaral , Cross-Linking Reagents/chemistry
7.
Eur J Oral Sci ; 132(2): e12970, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38173083

ABSTRACT

This study aimed to evaluate the effect of n-propyl gallate as pre-treatment for resin-dentin bond strength. The dentin pre-treatments evaluated included propyl gallate of concentrations 0.1% (w/v), 1.0% (w/v), and 10.0% (w/v), as well as glutaraldehyde 5.0% (v/v), and distilled water as a control treatment. Dentin specimens were prepared for Fourier Transformed Infrared Spectroscopy (FT-IR) (n = 3/pre-treatment). Pre-treatments were actively applied to dentin blocks before performing the adhesive procedure to composite resin. Microtensile bond strength to dentin (µTBS) (n = 8/pre-treatment) was determined after 24 h and 6 months of storage. Data were submitted to a two-way ANOVA, followed by Tukey's post hoc test. As for FT-IR, propyl gallate 1%-treated specimens presented higher water, carbonate, collagen, and amide absorbance rates compared to other tested groups, while specimens pre-treated with glutaraldehyde and distilled water presented similar absorbance curves. Regarding µTBS, all concentrations of propyl gallate resulted in statistically significant higher bond strength values than distilled water at 24 h. After 6 months of storage, propyl gallate 0.1% was the only group that maintained µTBS over time. Propyl gallate 0.1% might be a suitable dentinal pre-treatment due to being able to present chemical bonds with demineralized dentin and providing resin-dentin bond stability after 6 months of storage.


Subject(s)
Dental Bonding , Propyl Gallate , Propyl Gallate/analysis , Propyl Gallate/pharmacology , Dentin-Bonding Agents/chemistry , Glutaral , Spectroscopy, Fourier Transform Infrared , Resin Cements/chemistry , Dentin , Tensile Strength , Materials Testing , Dental Cements/pharmacology , Composite Resins/chemistry , Water/chemistry
8.
Vet Pathol ; 61(2): 201-206, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37698272

ABSTRACT

The SARS-CoV-2 pandemic required the immediate need to transfer inactivated tissue from biosafety level (BSL)-3 to BSL-1 areas to enable downstream analytical methods. No validated SARS-CoV-2 inactivation protocols were available for either formaldehyde (FA)-fixed or glutaraldehyde (GA)-fixed tissues. Therefore, representative tissue from ferrets and hamsters was spiked with 2.2 × 106 tissue culture infectious dose 50% per ml (TCID50/ml) SARS-CoV-2 or were obtained from mice experimentally infected with SARS-CoV-2. SARS-CoV-2 inactivation was demonstrated with 4% FA or 5% GA at room temperature for 72 hours by a titer reduction of up to 103.8 TCID50/ml in different animal tissues with a maximum protein content of 100 µg/mg and a thickness of up to 10 mm for FA and 8 mm for GA. Our protocols can be easily adapted for validating the inactivation of other pathogens to allow for the transfer of biological samples from BSL-3 areas to BSL-1 laboratories.


Subject(s)
COVID-19 , Animals , Mice , Animals, Laboratory , Containment of Biohazards/veterinary , COVID-19/veterinary , Ferrets , Formaldehyde/pharmacology , Glutaral/pharmacology , Laboratories , SARS-CoV-2 , Virus Inactivation
9.
Biotechnol Lett ; 46(1): 85-95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064041

ABSTRACT

The objective of this study was to obtain sufficient information on the thermal stabilization of a food-grade lipase from Thermomyces lanuginosus (TLL) using the immobilization technique. To do this, a new non-porous support was prepared via the sequential extraction of SiO2 from rice husks, followed by functionalization with (3-aminopropyl) triethoxysilane - 3-APTES (Amino-SiO2), and activation with glutaraldehyde - GA (GA-Amino-SiO2). We evaluated the influence of GA concentration, which varied from 0.25% v v-1 to 4% v v-1, on the immobilization parameters and enzyme thermal stabilization. The thermal inactivation parameters for both biocatalyst forms (soluble or immobilized TLL) were calculated by fitting a non-first-order enzyme inactivation kinetic model to the experimental data. According to the results, TLL was fully immobilized on the external support surface activated with different GA concentrations using an initial protein load of 5 mg g-1. A sharp decrease of hydrolytic activity was observed from 216.6 ± 12.4 U g-1 to 28.6 ± 0.9 U g-1 of after increasing the GA concentration from 0.25% v v-1 to 4.0% v v-1. The support that was prepared using a GA concentration at 0.5% v v-1 provided the highest stabilization of TLL - 31.6-times more stable than its soluble form at 60 °C. The estimations of the thermodynamic parameters, e.g., inactivation energy (Ed), enthalpy (ΔH#), entropy (ΔS#), and the Gibbs energy (ΔG#) values, confirmed the enzyme stabilization on the external support surface at temperatures ranging from 50 to 65 °C. These results show promising applications for this new heterogeneous biocatalyst in industrial processes given the high catalytic activity and thermal stability.


Subject(s)
Lipase , Oryza , Propylamines , Silanes , Lipase/metabolism , Silicon Dioxide , Glutaral , Enzymes, Immobilized/metabolism , Thermodynamics , Enzyme Stability
10.
J Biomech Eng ; 146(7)2024 07 01.
Article in English | MEDLINE | ID: mdl-38323667

ABSTRACT

Healthy articular cartilage is a remarkable bearing material optimized for near-frictionless joint articulation. Because its limited self-repair capacity renders it susceptible to osteoarthritis (OA), approaches to reinforce or rebuild degenerative cartilage are of significant interest. While exogenous collagen crosslinking (CXL) treatments improve cartilage's mechanical properties and increase its resistance to enzymatic degradation, their effects on cartilage lubrication remain less clear. Here, we examined how the collagen crosslinking agents genipin (GP) and glutaraldehyde (GTA) impact cartilage lubrication using the convergent stationary contact area (cSCA) configuration. Unlike classical configurations, the cSCA sustains biofidelic kinetic friction coefficients (µk) via superposition of interstitial and hydrodynamic pressurization (i.e., tribological rehydration). As expected, glutaraldehyde- and genipin-mediated CXL increased cartilage's tensile and compressive moduli. Although net tribological rehydration was retained after CXL, GP or GTA treatment drastically elevated µk. Both healthy and "OA-like" cartilage (generated via enzymatic digestion) sustained remarkably low µk in saline- (≤0.02) and synovial fluid-lubricated contacts (≤0.006). After CXL, µk increased up to 30-fold, reaching values associated with marked chondrocyte death in vitro. These results demonstrate that mechanical properties (i.e., stiffness) are necessary, but not sufficient, metrics of cartilage function. Furthermore, the marked impairment in lubrication suggests that CXL-mediated stiffening is ill-suited to cartilage preservation or joint resurfacing.


Subject(s)
Cartilage, Articular , Iridoids , Osteoarthritis , Humans , Lubrication , Glutaral , Collagen , Osteoarthritis/drug therapy , Friction , Stress, Mechanical
11.
J Fish Dis ; 47(2): e13891, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37990596

ABSTRACT

Micropterus salmoides rhabdovirus (MSRV) is a significant pathogen that causes high morbidity and mortality in largemouth bass, leading to enormous economic losses for largemouth bass aquaculture in China. The aim of this study was to investigate the efficacy of four disinfectants (potassium permanganate, glutaraldehyde, trichloroisocyanuric acid and povidone iodine) on MSRV, to control the infection and transmission of MSRV in largemouth bass aquaculture. The disinfectants were tested at different concentrations (5, 25, 50, 100 and 500 mg/L) prepared with distilled water for 30 min contact time, and the viral nucleic acid was quantified using qPCR and the infectivity was tested by challenge experiment. Potassium permanganate at 5-500 mg/L, glutaraldehyde at 500 mg/L, trichloroisocyanuric acid at 50-500 mg/L and povidone iodine at 500 mg/L concentration could effectively decrease the virus nucleic acid, and the survival rate of largemouth bass juveniles after challenge experiment increased significantly from 3.7% ± 6.41% to 33.33 ± 11.11% - 100%. Moreover, the minimum effective time of 5 mg/L potassium permanganate was further studied at 2, 5, 10 and 20 min contact time. The viral nucleic acid decreased significantly at 5-20 min exposure time, and the survival rate increased significantly from 7.41% ± 6.41% to 77.78 ± 11.11% - 100%. The median lethal concentration (LC50 ) values of potassium permanganate were 10.64, 6.92 and 3.7 mg/L at 24, 48 and 96 h, respectively. Potassium permanganate could be used for the control of MSRV in the cultivation process; the recommended concentration is 5 mg/L and application time should be less than 24 h. The results could be applied to provide a method to control the infection and transmission of MSRV in water, and improve the health status of largemouth bass.


Subject(s)
Bass , Disinfectants , Fish Diseases , Nucleic Acids , Rhabdoviridae , Animals , Disinfectants/pharmacology , Glutaral , Potassium Permanganate , Povidone-Iodine , Fish Diseases/prevention & control , Water
12.
J Mater Sci Mater Med ; 35(1): 26, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683259

ABSTRACT

OBJECTIVE: Aortic valve neocuspidization (AVNeo) using autologous pericardium is a promising technique. Expected advantages are reduced immune response, appropriate biomechanics and lower treatment expenses. Nevertheless, autologous pericardium can be affected by patient's age and comorbidities. Usually, glutaraldehyde (GA) - fixed bovine pericardium is the basic material for aortic valve prostheses, easy available and carefully pre-examined in a standardized fabrication process. Aim of the study is the verification of autologous pericardial tissue homogeneity by analysing tissue thickness, biomechanics and extracellular matrix (ECM) composition. METHODS: Segments of human GA-fixed pericardium selected by the surgeon based on visual criteria for cusp pre-cut and remaining after surgical AV replacement were investigated in comparison to bovine standard tissue treated equivalently. Pericardium sampling was performed at up to three positions of each sutured cusp for histological or biomechanical analysis, according to tissue availability. RESULTS AND CONCLUSIONS: Human pericardia exhibited a higher heterogeneity in collagen content, density of vessel structures and elastic moduli. Thickness, vessel density and collagen and elastin content differed significantly between the species. In contrast, significant interindividual differences were detected in most properties investigated for human pericardial samples but only for tissue thickness in bovine tissues. Higher heterogeneity of human pericardium, differing vessel and collagen content compared to bovine state-of-the-art material might be detrimental for long term AV functionality or deterioration and have to be intensely investigated in patients follow up after autologous cusp replacement.


Subject(s)
Aortic Valve , Bioprosthesis , Heart Valve Prosthesis , Pericardium , Cattle , Humans , Aortic Valve/surgery , Animals , Biomechanical Phenomena , Male , Female , Aged , Extracellular Matrix/chemistry , Middle Aged , Collagen/chemistry , Glutaral/chemistry , Materials Testing , Heart Valve Prosthesis Implantation/methods
13.
Ecotoxicol Environ Saf ; 272: 116078, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38335575

ABSTRACT

Since disinfectants are used all over the world to treat illnesses in people and other animals, they pose a major risk to human health. The comprehensive effects of disinfectant treatments on fish liver, especially the impacts on oxidative stress, toxicological effects, transcriptome profiles, and apoptosis, have not yet been fully analyzed. In the current investigation, healthy grass carp were exposed to 80 µg/L glutaraldehyde or 50 µg/L povidone-iodine for 30 days. First, the findings of enzyme activity tests demonstrated that the administration of glutaraldehyde could considerably increase oxidative stress by lowering T-SOD, CAT, and GPx and raising MDA. Furthermore, KEGG research revealed that exposure to glutaraldehyde and povidone-iodine stimulated the PPAR signal pathway. To further elucidate the transcriptome results, the relative expressions of related DEGs in the PPAR signal pathway were verified. Glutaraldehyde induced apoptosis in liver tissue of grass carp; however, it activated cytotoxicity and apoptosis in grass carp hepatocytes when exposed to glutaraldehyde or povidone-iodine. According to the current study, disinfectants can cause the impairment of the immune system, oxidative stress, and attenuation of the PPAR signal pathway in the liver of grass carp, making them detrimental as dietary supplements for grass carp, particularly in the aquaculture sector.


Subject(s)
Carps , Disinfectants , Animals , Humans , Povidone-Iodine/toxicity , Glutaral/toxicity , Peroxisome Proliferator-Activated Receptors , Liver , Hepatocytes , Disinfectants/toxicity , Apoptosis
14.
Int J Phytoremediation ; 26(1): 11-26, 2024.
Article in English | MEDLINE | ID: mdl-37272624

ABSTRACT

In this study, Cht/PS-CA/HNT biocomposite adsorbent was synthesized using halloysite nanotube as nanomaterial, chitosan which is a biodegradable and biocompatible biopolymer, pistachio shell as biomass source, citric acid as biomass modifier. The removal of methylene blue dyestuff on the synthesized new Cht/PS-CA/HNT from the aqueous medium by adsorption method was investigated. Experimental parameters such as dye concentration, contact time, amount of adsorbent, solution pH and temperature, which affect the adsorption process, were investigated. The adsorption experimental data were analyzed with the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, which are widely used in aqueous solutions, and it was decided that Langmuir is the most suitable isotherm. The maximum adsorption capacity of the monolayer was calculated to be 111.14 mg/g. Optimum contact time and adsorbent dose were determined as 90 min and 1 g/L. Adsorption experimental data were applied for Pseudo-first-order and Pseudo-second-order kinetic models and it was decided that the most suitable kinetic model was pseudo-second-order. Thermodynamic evaluation of adsorption showed that adsorption is endothermic and adsorption is spontaneous.


In the present study, it was determined that chitosan beads prepared using citric acid modified pistachio shells and HNT have strong adsorption properties for dyestuff removal, which is one of the important causes of environmental pollution. The novelty of this work is based on the development of a new composite adsorbent that can be synthesized in a simple and fast method and does not require expensive reagents or complex equipment. Another innovation is that MB dyestuff, which has a highly harmful effect, can be easily removed from polluted water by using simple biowaste-based adsorbents by adopting appropriate procedures.


Subject(s)
Chitosan , Nanotubes , Pistacia , Water Pollutants, Chemical , Methylene Blue , Clay , Glutaral , Hydrogen-Ion Concentration , Biodegradation, Environmental , Thermodynamics , Kinetics , Adsorption
15.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893568

ABSTRACT

We present the synthesis of a cross-linking enzyme aggregate (CLEAS) of a peroxidase from Megathyrsus maximus (Guinea Grass) (GGP). The biocatalyst was produced using 50%v/v ethanol and 0.88%w/v glutaraldehyde for 1 h under stirring. The immobilization yield was 93.74% and the specific activity was 36.75 U mg-1. The biocatalyst surpassed by 61% the free enzyme activity at the optimal pH value (pH 6 for both preparations), becoming this increase in activity almost 10-fold at pH 9. GGP-CLEAS exhibited a higher thermal stability (2-4 folds) and was more stable towards hydrogen peroxide than the free enzyme (2-3 folds). GGP-CLEAS removes over 80% of 0.05 mM indigo carmine at pH 5, in the presence of 0.55 mM H2O2 after 60 min of reaction, a much higher value than when using the free enzyme. The operational stability showed a decrease of enzyme activity (over 60% in 4 cycles), very likely related to suicide inhibition.


Subject(s)
Enzymes, Immobilized , Hydrogen Peroxide , Indigo Carmine , Peroxidase , Indigo Carmine/chemistry , Peroxidase/metabolism , Peroxidase/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Hydrogen Peroxide/chemistry , Enzyme Stability , Cross-Linking Reagents/chemistry , Temperature , Glutaral/chemistry
16.
BMC Oral Health ; 24(1): 458, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622548

ABSTRACT

BACKGROUND: Various methods, chemical and physical, disinfect dental impressions. Common chemicals include 1% Sodium Hypochlorite and 2% glutaraldehyde, while UV radiation is a prevalent physical method. Few studies compare their effects on dimensional stability in polyether impressions. This study aims to assess such stability using different disinfection methods. Therefore, this study was planned to evaluate the dimensional stability of polyether impression material using different disinfection methods. METHODS: This in vitro study compared the effects of chemical disinfectants (1% Sodium Hypochlorite and 2% glutaraldehyde) and UV irradiation on the dimensional stability of polyether impression material. Groups A, B, C, and D, each with ten samples (N = 10), were studied. Group A was untreated (control). Group B was treated with 2% glutaraldehyde for 20 min, Group C with 1% Sodium Hypochlorite for 20 min, and Group D with UV rays for 20 min. A pilot milling machine drill was used to make four parallel holes labeled A, B, C, and D in the anterior and premolar regions from right to left. After sequential drilling, four implant analogs were positioned using a surveyor for accuracy. Ten open-tray polyether impressions were made and treated as described in the groups, followed by pouring the corresponding casts. Distortion values for each disinfection method were measured using a coordinate measuring machine capable of recording on the X- and Y-axes. RESULTS: A comprehensive analysis was conducted using the one-way ANOVA test for distinct groups labeled A, B, C, and D, revealing significant differences in the mean distances for X1, X2, X4, X5, and X6 among the groups, with p-values ranging from 0.001 to 0.000. However, no significant differences were observed in X3. Notably, mean distances for the Y variables exhibited substantial differences among the groups, emphasizing parameter variations, with p-values ranging from 0.000 to 0.033. The results compared the four groups using the one-way ANOVA test, revealing statistically significant distance differences for most X and Y variables, except for X3 and Y4. Similarly, post-hoc Tukey's tests provided specific pairwise comparisons, underlining the distinctions between group C and the others in the mean and deviation distances for various variables on both the X- and Y-axes. CONCLUSIONS: This study found that disinfection with 1% sodium hypochlorite or UV rays for 20 min maintained dimensional stability in polyether impressions.


Subject(s)
Disinfectants , Disinfection , Humans , Disinfection/methods , Glutaral , Sodium Hypochlorite , Dental Impression Materials , Dental Impression Technique
17.
BMC Oral Health ; 24(1): 579, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762747

ABSTRACT

BACKGROUND: Vinyl polyether silicone (VPES) is a novel impression biomaterial made of a combination of vinyl polysiloxane (VPS) and polyether (PE). Thus, it is significant to assess its properties and behaviour under varied disinfectant test conditions. This study aimed to assess the dimensional stability of novel VPES impression material after immersion in standard disinfectants for different time intervals. METHODS: Elastomeric impression material used -medium body regular set (Monophase) [Exa'lence GC America]. A total of 84 Specimens were fabricated using stainless steel die and ring (ADA specification 19). These samples were distributed into a control group (n=12) and a test group (n=72). The test group was divided into 3 groups, based on the type of disinfectant used - Group-A- 2% Glutaraldehyde, Group-B- 0. 5% Sodium hypochlorite and Group-C- 2% Chlorhexidine each test group was further divided into 2 subgroups (n=12/subgroup) based on time intervals for which each sample was immersed in the disinfectants - subgroup-1- 10 mins and Subgroup 2- 30 mins. After the impression material was set, it was removed from the ring and then it was washed in water for 15 seconds. Control group measurements were made immediately on a stereomicroscope and other samples were immersed in the three disinfection solutions for 10 mins and 30 mins to check the dimensional stability by measuring the distance between the lines generated by the stainless steel die on the samples using a stereomicroscope at x40 magnification. RESULTS: The distance measured in the control group was 4397.2078 µm and 4396.1571 µm; for the test group Group-A- 2% Glutaraldehyde was 4396.4075 µm and 4394.5992 µm; Group-B- 0. 5% Sodium hypochlorite was 4394.5453 µm and 4389.4711 µm Group-C- 2% Chlorhexidine was 4395.2953 µm and 4387.1703 µm respectively for 10 mins and 30 mins. Percentage dimensional change was in the range of 0.02 - 0.25 for all the groups for 10 mins and 30 mins. CONCLUSIONS: 2 % Glutaraldehyde is the most suitable disinfectant for VPES elastomeric impression material in terms of dimensional stability and shows minimum dimensional changes as compared to that of 2% Chlorhexidine and 0.5% Sodium hypochlorite.


Subject(s)
Dental Impression Materials , Glutaral , Materials Testing , Polyvinyls , Siloxanes , Dental Impression Materials/chemistry , Polyvinyls/chemistry , Siloxanes/chemistry , Time Factors , Glutaral/chemistry , Dental Disinfectants/chemistry , Sodium Hypochlorite/chemistry , Disinfectants/chemistry , Chlorhexidine/chemistry , Surface Properties , Humans
18.
J Pak Med Assoc ; 74(5): 843-847, 2024 May.
Article in English | MEDLINE | ID: mdl-38783427

ABSTRACT

OBJECTIVE: To compare the effect of propolis and gluma desensitisers on the management of dentin hypersensitivity. METHODS: The single-blind, randomised controlled trial was conducted at the Department of Operative Dentistry, Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, from October 2020 to September 2021, and comprised patients with dentin hypersensitivity who had pain scores of at least 2 on the visual analogue scale. The teeth were randomised into propolis group A and Gluma group B. Baseline pain scores were assessed using visual analogue scale and Schiff's sensitivity scores and compared with scores immediately after the intervention, and then after one week and one month of the intervention. Data was analysed using SPSS 23. RESULTS: Of the 22 patients, 12(54.5%) were females and 10(45.4%) were males. Of the 80 teeth, there were 40(50%) in each of the 2 groups. Significant reduction was observed in dentin hypersensitivity immediately after the application of the desensitising agents (p<0.05). However, after one month, Gluma was more effective than propolis (p<0.05). CONCLUSIONS: Both Gluma and propolis were found to be effective desensitising agents, but the effectiveness of propolis decreased over one month. Clinical Trial Number: Clinical Trials.gov: NCT04819867.


Subject(s)
Dentin Desensitizing Agents , Dentin Sensitivity , Propolis , Humans , Propolis/therapeutic use , Dentin Sensitivity/drug therapy , Female , Male , Adult , Dentin Desensitizing Agents/therapeutic use , Single-Blind Method , Methacrylates/therapeutic use , Pain Measurement , Young Adult , Middle Aged , Glutaral
19.
J Contemp Dent Pract ; 25(1): 52-57, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38514431

ABSTRACT

AIM: The aim of this study was to assess the impact of Nd:YAG laser, glutaraldehyde-based desensitizer (GD), or their combination on occluding dentinal tubules. MATERIALS AND METHODS: Fifty dentin samples were obtained from non-carious human third molars and randomly divided into five groups (n = 10): (1) Control group treated with 37% phosphoric acid, (2) GD group, (3) Nd:YAG laser group (1064 nm, 100 µs, 10 Hz, 300 µm fiber, 1 W power, 100 mJ energy, and 85 J/cm2 energy density), (4) GD followed by Nd:YAG laser group, and (5) Nd:YAG laser followed by GD group. Scanning electron microscopy (SEM) was used to capture five images from each sample for analysis of dentinal tubules using Image J software. SEM/EDX elemental analysis was performed to determine the main mineral contents. Data analyzed using one-way ANOVA and Tukey's post hoc test for statistical comparisons. RESULTS: Laser and combination groups showed a significant decrease in dentinal tubule counts compared with the control and GD groups (p < 0.0001). There were no significant differences in open dentinal tubule counts between the control and GD groups, as well as between the laser and combination groups. However, significant differences were observed in the total area, average size of the tubules, and percentage area between the control group and the treatment groups (GD, laser, GD + laser, laser + GD). No significant difference was found in the Ca/P ratio between the tested groups. CONCLUSION: The use of Nd:YAG laser alone or in combination with GD was more effective in occluding dentinal tubules compared to GD alone. CLINICAL SIGNIFICANCE: This study has shown that Nd:YAG laser alone and in combination with GD has superior dentinal tubule occlusion in vitro. Its clinical use in the treatment of dentinal hypersensitivity may overcome the drawback of conventional treatment approaches for dentin hypersensitivity needing repeated applications to achieve continuous relief from pain since acidic diet and toothbrushing result in the continuing elimination of precipitates and surface coatings. How to cite this article: Alzarooni AH, El-Damanhoury HM, Aravind SS, et al. Combined Effects of Glutaraldehyde-based Desensitizer and Nd: YAG Laser on Dentinal Tubules Occlusion. J Contemp Dent Pract 2024;25(1):52-57.


Subject(s)
Dentin Sensitivity , Lasers, Solid-State , Humans , Lasers, Solid-State/therapeutic use , Dentin , Dentin Sensitivity/drug therapy , Glutaral/pharmacology , Glutaral/therapeutic use , Molar, Third , Microscopy, Electron, Scanning
20.
J Environ Sci (China) ; 142: 115-128, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527878

ABSTRACT

Microscale zero-valent iron (mZVI) has shown great potential for groundwater Cr(VI) remediation. However, low Cr(VI) removal capacity caused by passivation restricted the wide use of mZVI. We prepared mZVI/GCS by encapsulating mZVI in a porous glutaraldehyde-crosslinked chitosan matrix, and the formation of the passivation layer was alleviated by reducing the contact between zero-valent iron particles. The average pore diameter of mZVI/GCS was 8.775 nm, which confirmed the mesoporous characteristic of this material. Results of batch experiments demonstrated that mZVI/GCS exhibited high Cr(VI) removal efficiency in a wide range of pH (2-10) and temperature (5-35°C). Common groundwater coexisting ions slightly affected mZVI/GCS. The material showed great reusability, and the average Cr(VI) removal efficiency was 90.41% during eight cycles. In this study, we also conducted kinetics and isotherms analysis. Pseudo-second-order model was the most matched kinetics model. The Cr(VI) adsorption process was fitted by both Langmuir and Freundlich isotherms models, and the maximum Langmuir adsorption capacity of mZVI/GCS reached 243.63 mg/g, which is higher than the adsorption capacities of materials reported in most of the previous studies. Notably, the column capacity for Cr(VI) removal of a mZVI/GCS-packed column was 6.4 times higher than that of a mZVI-packed column in a 50-day experiment. Therefore, mZVI/GCS with a porous structure effectively relieved passivation problems of mZVI and showed practical application prospects as groundwater Cr(VI) remediation material with practical application prospects.


Subject(s)
Chitosan , Groundwater , Water Pollutants, Chemical , Iron/chemistry , Glutaral , Longevity , Water Pollutants, Chemical/chemistry , Chromium/analysis , Groundwater/chemistry , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL