Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 442
Filter
Add more filters

Publication year range
1.
Cell ; 171(2): 358-371.e9, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985563

ABSTRACT

Cancer cells consume glucose and secrete lactate in culture. It is unknown whether lactate contributes to energy metabolism in living tumors. We previously reported that human non-small-cell lung cancers (NSCLCs) oxidize glucose in the tricarboxylic acid (TCA) cycle. Here, we show that lactate is also a TCA cycle carbon source for NSCLC. In human NSCLC, evidence of lactate utilization was most apparent in tumors with high 18fluorodeoxyglucose uptake and aggressive oncological behavior. Infusing human NSCLC patients with 13C-lactate revealed extensive labeling of TCA cycle metabolites. In mice, deleting monocarboxylate transporter-1 (MCT1) from tumor cells eliminated lactate-dependent metabolite labeling, confirming tumor-cell-autonomous lactate uptake. Strikingly, directly comparing lactate and glucose metabolism in vivo indicated that lactate's contribution to the TCA cycle predominates. The data indicate that tumors, including bona fide human NSCLC, can use lactate as a fuel in vivo.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lactic Acid/metabolism , Lung Neoplasms/metabolism , Animals , Blood Chemical Analysis , Cell Line, Tumor , Citric Acid Cycle , Disease Models, Animal , Female , Glyceric Acids/metabolism , Heterografts , Humans , Male , Mice , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neoplasm Transplantation , Symporters/genetics , Symporters/metabolism
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046029

ABSTRACT

Cells are continuously exposed to potentially dangerous compounds. Progressive accumulation of damage is suspected to contribute to neurodegenerative diseases and aging, but the molecular identity of the damage remains largely unknown. Here we report that PARK7, an enzyme mutated in hereditary Parkinson's disease, prevents damage of proteins and metabolites caused by a metabolite of glycolysis. We found that the glycolytic metabolite 1,3-bisphosphoglycerate (1,3-BPG) spontaneously forms a novel reactive intermediate that avidly reacts with amino groups. PARK7 acts by destroying this intermediate, thereby preventing the formation of proteins and metabolites with glycerate and phosphoglycerate modifications on amino groups. As a consequence, inactivation of PARK7 (or its orthologs) in human cell lines, mouse brain, and Drosophila melanogaster leads to the accumulation of these damaged compounds, most of which have not been described before. Our work demonstrates that PARK7 function represents a highly conserved strategy to prevent damage in cells that metabolize carbohydrates. This represents a fundamental link between metabolism and a type of cellular damage that might contribute to the development of Parkinson's disease.


Subject(s)
Glucose/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Animals , Biomarkers , Carbohydrate Metabolism , Chromatography, Liquid , Drosophila melanogaster , Gene Knockdown Techniques , Glyceric Acids/metabolism , Glycolysis , Humans , Mass Spectrometry , Metabolic Networks and Pathways , Metabolome , Metabolomics/methods , Mice , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Deglycase DJ-1/chemistry
3.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34893542

ABSTRACT

Glycolysis plays a fundamental role in energy production and metabolic homeostasis. The intracellular [adenosine triphosphate]/[adenosine diphosphate] ([ATP]/[ADP]) ratio controls glycolytic flux; however, the regulatory mechanism underlying reactions catalyzed by individual glycolytic enzymes enabling flux adaptation remains incompletely understood. Phosphoglycerate kinase (PGK) catalyzes the reversible phosphotransfer reaction, which directly produces ATP in a near-equilibrium step of glycolysis. Despite extensive studies on the transcriptional regulation of PGK expression, the mechanism in response to changes in the [ATP]/[ADP] ratio remains obscure. Here, we report a protein-level regulation of human PGK (hPGK) by utilizing the switching ligand-binding cooperativities between adenine nucleotides and 3-phosphoglycerate (3PG). This was revealed by nuclear magnetic resonance (NMR) spectroscopy at physiological salt concentrations. MgADP and 3PG bind to hPGK with negative cooperativity, whereas MgAMPPNP (a nonhydrolyzable ATP analog) and 3PG bind to hPGK with positive cooperativity. These opposite cooperativities enable a shift between different ligand-bound states depending on the intracellular [ATP]/[ADP] ratio. Based on these findings, we present an atomic-scale description of the reaction scheme for hPGK under physiological conditions. Our results indicate that hPGK intrinsically modulates its function via ligand-binding cooperativities that are finely tuned to respond to changes in the [ATP]/[ADP] ratio. The alteration of ligand-binding cooperativities could be one of the self-regulatory mechanisms for enzymes in bidirectional pathways, which enables rapid adaptation to changes in the intracellular environment.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Glyceric Acids/metabolism , Glycolysis/physiology , Phosphoglycerate Kinase/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Catalysis , Catalytic Domain , Escherichia coli , Humans , Models, Molecular , Phosphoglycerate Kinase/genetics , Protein Binding , Protein Conformation
4.
Plant J ; 107(5): 1478-1489, 2021 09.
Article in English | MEDLINE | ID: mdl-34174129

ABSTRACT

Phosphoglycerate mutases (PGAMs) catalyse the reversible isomerisation of 3-phosphoglycerate and 2-phosphoglycerate, a step of glycolysis. PGAMs can be sub-divided into 2,3-bisphosphoglycerate-dependent (dPGAM) and -independent (iPGAM) enzymes. In plants, phosphoglycerate isomerisation is carried out by cytosolic iPGAM. Despite its crucial role in catabolism, little is known about post-translational modifications of plant iPGAM. In Arabidopsis thaliana, phosphoproteomics analyses have previously identified an iPGAM phosphopeptide where serine 82 is phosphorylated. Here, we show that this phosphopeptide is less abundant in dark-adapted compared to illuminated Arabidopsis leaves. In silico comparison of iPGAM protein sequences and 3D structural modelling of AtiPGAM2 based on non-plant iPGAM enzymes suggest a role for phosphorylated serine in the catalytic reaction mechanism. This is confirmed by the activity (or the lack thereof) of mutated recombinant Arabidopsis iPGAM2 forms, affected in different steps of the reaction mechanism. We thus propose that the occurrence of the S82-phosphopeptide reflects iPGAM2 steady-state catalysis. Based on this assumption, the metabolic consequences of a higher iPGAM activity in illuminated versus darkened leaves are discussed.


Subject(s)
Arabidopsis/enzymology , Phosphoglycerate Mutase/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Glyceric Acids/metabolism , Glycolysis , Models, Structural , Phosphoglycerate Mutase/genetics , Phosphorylation , Plant Leaves/enzymology , Plant Leaves/genetics , Recombinant Proteins , Serine/metabolism
5.
Cell Mol Life Sci ; 79(1): 27, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34971423

ABSTRACT

The rate-limiting serine biogenesis enzyme PHGDH is overexpressed in cancers. Both serine withdrawal and genetic/pharmacological inhibition of PHGDH have demonstrated promising tumor-suppressing activities. However, the enzyme properties of PHGDH are not well understood and the discovery of PHGDH inhibitors is still in its infancy. Here, oridonin was identified from a natural product library as a new PHGDH inhibitor. The crystal structure of PHGDH in complex with oridonin revealed a new allosteric site. The binding of oridonin to this site reduced the activity of the enzyme by relocating R54, a residue involved in substrate binding. Mutagenesis studies showed that PHGDH activity was very sensitive to cysteine mutations, especially those in the substrate binding domain. Conjugation of oridonin and other reported covalent PHGDH inhibitors to these sites will therefore inhibit PHGDH. In addition to being inhibited enzymatically, PHGDH can also be inhibited by protein aggregation and proteasome-mediated degradation. Several tested PHGDH cancer mutants showed altered enzymatic activity, which can be explained by protein structure and stability. Overall, the above studies present new biophysical and biochemical insights into PHGDH and may facilitate the future design of PHGDH inhibitors.


Subject(s)
Biophysical Phenomena , Enzyme Inhibitors/pharmacology , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Biological Products/chemistry , Biological Products/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Cysteine/genetics , Cysteine/metabolism , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/pharmacology , Enzyme Inhibitors/chemistry , Glyceric Acids/metabolism , Humans , Mutation/genetics , NAD/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Aggregates , Proteolysis/drug effects , Substrate Specificity/drug effects
6.
J Biol Chem ; 295(19): 6425-6446, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32217690

ABSTRACT

Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 µm (yeast PGK1) and 6.86 µm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 µm (yeast PGK1) and 186 µm (human PGK1). The Vmax of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 µm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis.


Subject(s)
Glycolysis , Neoplasm Proteins , Neoplasms , Phosphoglycerate Kinase , A549 Cells , Diphosphoglyceric Acids/chemistry , Diphosphoglyceric Acids/metabolism , Glucose/chemistry , Glucose/metabolism , Glyceric Acids/chemistry , Glyceric Acids/metabolism , HeLa Cells , Humans , Kinetics , Lactic Acid/chemistry , Lactic Acid/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Neoplasms/chemistry , Neoplasms/metabolism , Phosphoglycerate Kinase/chemistry , Phosphoglycerate Kinase/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
7.
J Exp Bot ; 72(7): 2584-2599, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33483723

ABSTRACT

The photorespiratory pathway is highly compartmentalized. As such, metabolite shuttles between organelles are critical to ensure efficient photorespiratory carbon flux. Arabidopsis plastidic glycolate/glycerate translocator 1 (PLGG1) has been reported as a key chloroplastic glycolate/glycerate transporter. Two homologous genes, OsPLGG1a and OsPLGG1b, have been identified in the rice genome, although their distinct functions and relationships remain unknown. Herein, our analysis of exogenous expression in oocytes and yeast shows that both OsPLGG1a and OsPLGG1b have the ability to transport glycolate and glycerate. Furthermore, we demonstrate in planta that the perturbation of OsPLGG1a or OsPLGG1b expression leads to extensive accumulation of photorespiratory metabolites, especially glycolate and glycerate. Under ambient CO2 conditions, loss-of-function osplgg1a or osplgg1b mutant plants exhibited significant decreases in photosynthesis efficiency, starch accumulation, plant height, and crop productivity. These morphological defects were almost entirely recovered when the mutant plants were grown under elevated CO2 conditions. In contrast to osplgg1a, osplgg1b mutant alleles produced a mild photorespiratory phenotype and had reduced accumulation of photorespiratory metabolites. Subcellular localization analysis showed that OsPLGG1a and OsPLGG1b are located in the inner and outer membranes of the chloroplast envelope, respectively. In vitro and in vivo experiments revealed that OsPLGG1a and OsPLGG1b have a direct interaction. Our results indicate that both OsPLGG1a and OsPLGG1b are chloroplastic glycolate/glycerate transporters required for photorespiratory metabolism and plant growth, and that they may function as a singular complex.


Subject(s)
Chloroplasts/metabolism , Glyceric Acids/metabolism , Glycolates/metabolism , Oryza , Plant Proteins/metabolism , Carbon Dioxide/metabolism , Oryza/genetics , Photosynthesis , Plastids/metabolism , Protein Isoforms/metabolism
8.
Microb Cell Fact ; 20(1): 22, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33482812

ABSTRACT

BACKGROUND: A considerable challenge in the development of bioprocesses for producing chemicals and fuels has been the high cost of feedstocks relative to oil prices, making it difficult for these processes to compete with their conventional petrochemical counterparts. Hence, in the absence of high oil prices in the near future, there has been a shift in the industry to produce higher value compounds such as fragrances for cosmetics. Yet, there is still a need to address climate change and develop biotechnological approaches for producing large market, lower value chemicals and fuels. RESULTS: In this work, we study ethylene glycol (EG), a novel feedstock that we believe has promise to address this challenge. We engineer Escherichia coli (E. coli) to consume EG and examine glycolate production as a case study for chemical production. Using a combination of modeling and experimental studies, we identify oxygen concentration as an important metabolic valve in the assimilation and use of EG as a substrate. Two oxygen-based strategies are thus developed and tested in fed-batch bioreactors. Ultimately, the best glycolate production strategy employed a target respiratory quotient leading to the highest observed fermentation performance. With this strategy, a glycolate titer of 10.4 g/L was reached after 112 h of production time in a fed-batch bioreactor. Correspondingly, a yield of 0.8 g/g from EG and productivity of 0.1 g/L h were measured during the production stage. Our modeling and experimental results clearly suggest that oxygen concentration is an important factor in the assimilation and use of EG as a substrate. Finally, our use of metabolic modeling also sheds light on the intracellular distribution through central metabolism, implicating flux to 2-phosphoglycerate as the primary route for EG assimilation. CONCLUSION: Overall, our work suggests that EG could provide a renewable starting material for commercial biosynthesis of fuels and chemicals that may achieve economic parity with petrochemical feedstocks while sequestering carbon dioxide.


Subject(s)
Bioreactors/microbiology , Escherichia coli/metabolism , Ethylene Glycol/metabolism , Fermentation , Glycolates/metabolism , Metabolic Engineering/methods , Escherichia coli/genetics , Formates/metabolism , Glucose/metabolism , Glyceric Acids/metabolism , Metabolic Networks and Pathways/genetics , Oxygen/metabolism , Xylose/metabolism
9.
Metab Eng ; 57: 96-109, 2020 01.
Article in English | MEDLINE | ID: mdl-31491545

ABSTRACT

Microbial biosensors are used to detect the presence of compounds provided externally or produced internally. The latter case is commonly constrained by the need to screen a large library of enzyme or pathway variants to identify those that can efficiently generate the desired compound. To address this limitation, we suggest the use of metabolic sensor strains which can grow only if the relevant compound is present and thus replace screening with direct selection. We used a computational platform to design metabolic sensor strains with varying dependencies on a specific compound. Our method systematically explores combinations of gene deletions and identifies how the growth requirement for a compound changes with the media composition. We demonstrate this approach by constructing a set of E. coli glycerate sensor strains. In each of these strains a different set of enzymes is disrupted such that central metabolism is effectively dissected into multiple segments, each requiring a dedicated carbon source. We find an almost perfect match between the predicted and experimental dependence on glycerate and show that the strains can be used to accurately detect glycerate concentrations across two orders of magnitude. Apart from demonstrating the potential application of metabolic sensor strains, our work reveals key phenomena in central metabolism, including spontaneous degradation of central metabolites and the importance of metabolic sinks for balancing small metabolic networks.


Subject(s)
Biosensing Techniques , Escherichia coli , Glyceric Acids , Metabolic Engineering , Metabolic Networks and Pathways , Escherichia coli/genetics , Escherichia coli/metabolism , Glyceric Acids/analysis , Glyceric Acids/metabolism
10.
Int J Mol Sci ; 21(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947885

ABSTRACT

Successful directed evolution examples span a broad range of improved enzyme properties. Nevertheless, the most challenging step for each single directed evolution approach is an efficient identification of improved variants from a large genetic library. Thus, the development and choice of a proper high-throughput screening is a central key for the optimization of enzymes. The detection of low enzymatic activities is especially complicated when they lead to products that are present in the metabolism of the utilized genetic host. Coupled enzymatic assays based on colorimetric products have enabled the optimization of many of such enzymes, but are susceptible to problems when applied on cell extract samples. The purpose of this study was the development of a high-throughput screening for D-glycerate dehydratase activity in cell lysates. With the aid of an automated liquid handling system, we developed a high-throughput assay that relied on a pre-treatment step of cell extract prior to performing the enzymatic and assay reactions. We could successfully apply our method, which should also be transferable to other cell extract-based peroxidase assays, to identify an improved enzyme for the dehydration of D-glycerate.


Subject(s)
Bacterial Proteins/metabolism , Enzyme Assays , Glyceric Acids/metabolism , Hydro-Lyases/metabolism , Protein Engineering , Sulfolobus solfataricus/metabolism , Bacterial Proteins/genetics , Cloning, Molecular , Directed Molecular Evolution/methods , Enzyme Assays/methods , Escherichia coli/genetics , High-Throughput Screening Assays/methods , Horseradish Peroxidase/metabolism , Hydro-Lyases/genetics , Protein Engineering/methods , Sulfolobus solfataricus/genetics
11.
Biochemistry ; 58(4): 259-275, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30668112

ABSTRACT

The enzymatic mechanism of 3-phosphoglycerate to 3-phosphohydroxypyruvate oxidation, which forms the first step of the main conserved de novo serine synthesis pathway, has been revisited recently in certain microorganisms. While this step is classically considered to be catalyzed by an NAD-dependent dehydrogenase (e.g., PHGDH in mammals), evidence has shown that in Pseudomonas, Escherichia coli, and Saccharomyces cerevisiae, the PHGDH homologues act as transhydrogenases. As such, they use α-ketoglutarate, rather than NAD+, as the final electron acceptor, thereby producing D-2-hydroxyglutarate in addition to 3-phosphohydroxypyruvate during 3-phosphoglycerate oxidation. Here, we provide a detailed biochemical and sequence-structure relationship characterization of the yeast PHGDH homologues, encoded by the paralogous SER3 and SER33 genes, in comparison to the human and other PHGDH enzymes. Using in vitro assays with purified recombinant enzymes as well as in vivo growth phenotyping and metabolome analyses of yeast strains engineered to depend on either Ser3, Ser33, or human PHGDH for serine synthesis, we confirmed that both yeast enzymes act as transhydrogenases, while the human enzyme is a dehydrogenase. In addition, we show that the yeast paralogs differ from the human enzyme in their sensitivity to inhibition by serine as well as hydrated NADH derivatives. Importantly, our in vivo data support the idea that a 3PGA transhydrogenase instead of dehydrogenase activity confers a growth advantage under conditions where the NAD+:NADH ratio is low. The results will help to elucidate why different species evolved different reaction mechanisms to carry out a widely conserved metabolic step in central carbon metabolism.


Subject(s)
Glyceric Acids/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Saccharomyces cerevisiae/metabolism , Serine/biosynthesis , Feedback, Physiological , Humans , Hydrogenation , NAD/analogs & derivatives , NAD/metabolism , Oxidation-Reduction , Phosphoglycerate Dehydrogenase/chemistry , Phosphoglycerate Dehydrogenase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Serine/metabolism
12.
J Biol Chem ; 293(40): 15513-15523, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30131334

ABSTRACT

Pseudomonas is a very large bacterial genus in which several species can use d-malate for growth. However, the enzymes that can metabolize d-malate, such as d-malate dehydrogenase, appear to be absent in most Pseudomonas species. d-3-Phosphoglycerate dehydrogenase (SerA) can catalyze the production of d-2-hydroxyglutarate (d-2-HG) from 2-ketoglutarate to support d-3-phosphoglycerate dehydrogenation, which is the initial reaction in bacterial l-serine biosynthesis. In this study, we show that SerA of the Pseudomonas stutzeri strain A1501 reduces oxaloacetate to d-malate and that d-2-HG dehydrogenase (D2HGDH) from P. stutzeri displays d-malate-oxidizing activity. Of note, D2HGDH participates in converting a trace amount of d-malate to oxaloacetate during bacterial l-serine biosynthesis. Moreover, D2HGDH is crucial for the utilization of d-malate as the sole carbon source for growth of P. stutzeri A1501. We also found that the D2HGDH expression is induced by the exogenously added d-2-HG or d-malate and that a flavoprotein functions as a soluble electron carrier between D2HGDH and electron transport chains to support d-malate utilization by P. stutzeri These results support the idea that D2HGDH evolves as an enzyme for both d-malate and d-2-HG dehydrogenation in P. stutzeri In summary, D2HGDH from P. stutzeri A1501 participates in both a core metabolic pathway for l-serine biosynthesis and utilization of extracellular d-malate.


Subject(s)
Alcohol Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Malates/metabolism , Pseudomonas stutzeri/enzymology , Serine/metabolism , Alcohol Oxidoreductases/genetics , Bacterial Proteins/genetics , Electron Transport , Enzyme Assays , Gene Expression , Glutarates/metabolism , Glyceric Acids/metabolism , Ketoglutaric Acids/metabolism , Kinetics , Oxaloacetic Acid/metabolism , Oxidation-Reduction , Pseudomonas stutzeri/genetics , Stereoisomerism , Substrate Specificity
13.
IUBMB Life ; 71(10): 1418-1427, 2019 10.
Article in English | MEDLINE | ID: mdl-31169978

ABSTRACT

Altered enzymatic machineries are a substantial biochemical characteristic of tumor cell metabolism that switch metabolic profile from oxidative phosphorylation to amplified glycolysis as well as increased lactate production under hypoxia conditions. Reprogrammed metabolic profile is an emerging hallmark of cancer. Overexpression of several glycolytic enzymes and glucose transporters has been reported in 24 different types of cancers that represent approximately 70% of all the cancer cases around the globe. Thus, targeting glycolytic enzymes could serve as tempting avenue for drug design against cancer. Phosphoglycerate mutase 1 (PGAM1) is an important glycolytic enzyme that catalyzes the conversion of 3-phosphoglycerate to 2-phosphoglycerate. Recent investigations have revealed the overexpression of PGAM1 in several human cancers that is linked with tumor growth, survival, and invasion. The aim of this review is to update scientific research network with cancer-specific role of PGAM1 to elucidate its capability as bonafide therapeutic target for cancer therapy. Moreover, we have also summarized the reported genetic and pharmacological inhibitors of PGAM1. This study suggests that further investigations on PGAM1 should focus on the exploration of molecular mechanisms of PGAM1 overexpression in development of cancer, assessment of biosafety profiles of known inhibitors of PGAM1, and utilization of PGAM1 inhibitors in combinatorial therapies. These future studies will surely support the unbiased strategies for the development of novel PGAM1 inhibitors for cancer therapies.


Subject(s)
Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/therapy , Phosphoglycerate Mutase/genetics , Cell Proliferation/genetics , Glyceric Acids/metabolism , Glycolysis/genetics , Humans , Neoplasms/diagnosis
14.
Plant Physiol ; 176(2): 1182-1198, 2018 02.
Article in English | MEDLINE | ID: mdl-28951489

ABSTRACT

In plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-phosphoglycerate in glycolysis but also participates in the reverse reaction in gluconeogenesis and the Calvin-Benson cycle. In the databases, we found three genes that encode putative PGKs. Arabidopsis (Arabidopsis thaliana) PGK1 was localized exclusively in the chloroplasts of photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of photosynthetic and nonphotosynthetic cells. PGK3 was expressed ubiquitously in the cytosol of all studied cell types. Measurements of carbohydrate content and photosynthetic activities in PGK mutants and silenced lines corroborated that PGK1 was the photosynthetic isoform, while PGK2 and PGK3 were the plastidial and cytosolic glycolytic isoforms, respectively. The pgk1.1 knockdown mutant displayed reduced growth, lower photosynthetic capacity, and starch content. The pgk3.2 knockout mutant was characterized by reduced growth but higher starch levels than the wild type. The pgk1.1 pgk3.2 double mutant was bigger than pgk3.2 and displayed an intermediate phenotype between the two single mutants in all measured biochemical and physiological parameters. Expression studies in PGK mutants showed that PGK1 and PGK3 were down-regulated in pgk3.2 and pgk1.1, respectively. These results indicate that the down-regulation of photosynthetic activity could be a plant strategy when glycolysis is impaired to achieve metabolic adjustment and optimize growth. The double mutants of PGK3 and the triose-phosphate transporter (pgk3.2 tpt3) displayed a drastic growth phenotype, but they were viable. This implies that other enzymes or nonspecific chloroplast transporters could provide 3-phosphoglycerate to the cytosol. Our results highlight both the complexity and the plasticity of the plant primary metabolic network.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Phosphoglycerate Kinase/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cytosol/metabolism , Gene Expression Regulation, Plant , Glyceric Acids/metabolism , Metabolomics/methods , Multigene Family , Mutation , Phosphoglycerate Kinase/genetics , Plant Components, Aerial/genetics , Plant Components, Aerial/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Plastics/metabolism
15.
Nat Chem Biol ; 13(10): 1081-1087, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28805803

ABSTRACT

Lower glycolysis involves a series of reversible reactions, which interconvert intermediates that also feed anabolic pathways. 3-phosphoglycerate (3-PG) is an abundant lower glycolytic intermediate that feeds serine biosynthesis via the enzyme phosphoglycerate dehydrogenase, which is genomically amplified in several cancers. Phosphoglycerate mutase 1 (PGAM1) catalyzes the isomerization of 3-PG into the downstream glycolytic intermediate 2-phosphoglycerate (2-PG). PGAM1 needs to be histidine phosphorylated to become catalytically active. We show that the primary PGAM1 histidine phosphate donor is 2,3-bisphosphoglycerate (2,3-BPG), which is made from the glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) by bisphosphoglycerate mutase (BPGM). When BPGM is knocked out, 1,3-BPG can directly phosphorylate PGAM1. In this case, PGAM1 phosphorylation and activity are decreased, but nevertheless sufficient to maintain normal glycolytic flux and cellular growth rate. 3-PG, however, accumulates, leading to increased serine synthesis. Thus, one biological function of BPGM is controlling glycolytic intermediate levels and thereby serine biosynthetic flux.


Subject(s)
Glyceric Acids/metabolism , Phosphoglycerate Mutase/metabolism , Serine/metabolism , Humans , Phosphoglycerate Mutase/deficiency , Tumor Cells, Cultured
16.
Soft Matter ; 15(41): 8381-8391, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31613294

ABSTRACT

The hyperthermophilic piezophile, Thermococcus barophilus displays a strong stress response characterized by the accumulation of the organic osmolyte, mannosylglycerate during growth under sub-optimal pressure conditions (0.1 MPa). Taking advantage of this known effect, the impact of osmolytes in piezophiles in an otherwise identical cellular context was investigated, by comparing T. barophilus cells grown under low or optimal pressures (40 MPa). Using neutron scattering techniques, we studied the molecular dynamics of live cells of T. barophilus at different pressures and temperatures. We show that in the presence of osmolytes, cells present a higher diffusion coefficient of hydration water and an increase of bulk water motions at a high temperature. In the absence of osmolytes, the T. barophilus cellular dynamics is more responsive to high temperature and high hydrostatic pressure. These results therefore give clear evidence for a protecting effect of osmolytes on proteins.


Subject(s)
Cell Enlargement/drug effects , Glyceric Acids/metabolism , Mannose/analogs & derivatives , Osmotic Pressure , Thermococcus/metabolism , Bacterial Proteins/metabolism , Heating , Hot Temperature , Mannose/metabolism , Water
17.
Metab Brain Dis ; 34(2): 557-563, 2019 04.
Article in English | MEDLINE | ID: mdl-30637540

ABSTRACT

D-glycerate 2 kinase (DGK) is an enzyme that mediates the conversion of D-glycerate, an intermediate metabolite of serine and fructose metabolism, to 2-phosphoglycerate. Deficiency of DGK leads to accumulation of D-glycerate in various tissues and its massive excretion in urine. D-glyceric aciduria (DGA) is an autosomal recessive metabolic disorder caused by mutations in the GLYCTK gene. The clinical spectrum of DGA is highly variable, ranging from severe progressive infantile encephalopathy to a practically asymptomatic condition. We describe a male patient from a consanguineous Arab family with infantile onset of DGA, characterized by profound psychomotor retardation, progressive microcephaly, intractable seizures, cortical blindness and deafness. Consecutive brain MR imaging showed an evolving brain atrophy, thinning of the corpus callosum and diffuse abnormal white matter signals. Whole exome sequencing identified the homozygous missense variant in the GLYCTK gene [c.455 T > C, NM_145262.3], which affected a highly conserved leucine residue located at a domain of yet unknown function of the enzyme [p.Leu152Pro, NP_660305]. In silico analysis of the variant supported its pathogenicity. A review of the 15 previously reported patients, together with the current one, confirms a clear association between DGA and severe neurological impairment. Yet, future studies of additional patients with DGA are required to better understand the clinical phenotype and pathogenesis.


Subject(s)
Brain Diseases/metabolism , Epilepsy/metabolism , Hyperoxaluria, Primary/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Brain Diseases/genetics , Child , Epilepsy/diagnosis , Epilepsy/genetics , Glyceric Acids/metabolism , Humans , Hyperoxaluria, Primary/genetics , Infant , Male , Mutation/genetics , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/genetics , Spasms, Infantile/genetics , Spasms, Infantile/metabolism
18.
Plant J ; 89(6): 1146-1158, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27984670

ABSTRACT

The presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3-phosphoglycerate (3-PGA) can equilibrate in non-photosynthetic tissues. To resolve this question, we employed Arabidopsis mutants of the plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) that express the triose phosphate translocator (TPT) under the control of the 35S (35S:TPT) or the native GAPCp1 (GAPCp1:TPT) promoters. TPT expression under the control of both promoters complemented the vegetative developmental defects and metabolic disorders of the GAPCp double mutants (gapcp1gapcp2). However, as the 35S is poorly expressed in the tapetum, full vegetative and reproductive complementation of gapcp1gapcp2 was achieved only by transforming this mutant with the GAPCp1:TPT construct. Our results indicate that the main function of GAPCp is to supply 3-PGA for anabolic pathways in plastids of heterotrophic cells and suggest that the plastidial glycolysis may contribute to fatty acid biosynthesis in seeds. They also suggest a 3-PGA deficiency in the plastids of gapcp1gapcp2, and that 3-PGA pools between cytosol and plastid do not equilibrate in heterotrophic cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Plastids/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceric Acids/metabolism , Glycolysis/genetics , Glycolysis/physiology , Plastids/genetics
19.
Molecules ; 23(2)2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29425148

ABSTRACT

Although artificial sweeteners are widely used in food industry, their effects on human health remain a controversy. It is known that the gut microbiota plays a key role in human metabolism and recent studies indicated that some artificial sweeteners such as saccharin could perturb gut microbiome and further affect host health, such as inducing glucose intolerance. Neotame is a relatively new low-caloric and high-intensity artificial sweetener, approved by FDA in 2002. However, the specific effects of neotame on gut bacteria are still unknown. In this study, we combined high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics to investigate the effects of neotame on the gut microbiome and fecal metabolite profiles of CD-1 mice. We found that a four-week neotame consumption reduced the alpha-diversity and altered the beta-diversity of the gut microbiome. Firmicutes was largely decreased while Bacteroidetes was significantly increased. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis also indicated that the control mice and neotame-treated mice have different metabolic patterns and some key genes such as butyrate synthetic genes were decreased. Moreover, neotame consumption also changed the fecal metabolite profiles. Dramatically, the concentrations of multiple fatty acids, lipids as well as cholesterol in the feces of neotame-treated mice were consistently higher than controls. Other metabolites, such as malic acid and glyceric acid, however, were largely decreased. In conclusion, our study first explored the specific effects of neotame on mouse gut microbiota and the results may improve our understanding of the interaction between gut microbiome and neotame and how this interaction could influence the normal metabolism of host bodies.


Subject(s)
Dipeptides/pharmacology , Feces/chemistry , Food Additives/pharmacology , Gastrointestinal Microbiome/drug effects , Metabolome/physiology , Sweetening Agents/pharmacology , Animals , Butyrates/metabolism , Cholesterol/metabolism , Fatty Acids/metabolism , Glyceric Acids/metabolism , Lipid Metabolism , Malates/metabolism , Male , Mice
20.
J Am Chem Soc ; 139(19): 6629-6634, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28467066

ABSTRACT

Hyperpolarized 13C magnetic resonance spectroscopy (MRS) provides unprecedented opportunities to obtain clinical diagnostic information through in vivo monitoring of metabolic pathways. The continuing advancement of this field relies on the identification of molecular probes that can effectively interrogate pathways critical to disease. In this report, we describe the synthesis, development, and in vivo application of sodium [1-13C]-glycerate ([13C]-Glyc) as a novel probe for evaluating glycolysis using hyperpolarized 13C MRS. This agent was prepared by a concise synthetic route and formulated for dynamic nuclear polarization. [13C]-Glyc displayed a high level of polarization and long spin-lattice relaxation time-both of which are necessary for future clinical investigations. In vivo spectroscopic studies with hyperpolarized [13C]-Glyc in rat liver furnished metabolic products, [13C]-labeled pyruvate and lactate, originating from glycolysis. The levels of production and relative intensities of these metabolites were directly correlated with the induced glycolytic state (fasted versus fed groups). This work establishes hyperpolarized [13C]-Glyc as a novel agent for clinically relevant 13C MRS studies of energy metabolism and further provides opportunities for evaluating intracellular redox states in biochemical investigations.


Subject(s)
Glyceric Acids/metabolism , Glycolysis , Molecular Probes/metabolism , Sodium/metabolism , Animals , Carbon Isotopes , Glyceric Acids/chemistry , Male , Molecular Probes/chemistry , Molecular Structure , Rats , Rats, Wistar , Sodium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL