Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Publication year range
1.
J Dairy Sci ; 106(10): 6731-6740, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37210347

ABSTRACT

Brown fermented milk (BFM) is favored by consumers in the dairy market for its unique burnt flavor and brown color. However, Maillard reaction products (MRP) from high-temperature baking are also noteworthy. In this study, tea polyphenols (TP) were initially developed as potential inhibitors of MRP formation in BFM. The results showed that the flavor profile of BFM did not change after adding 0.08% (wt/wt) of TP, and its inhibition rates on 5-hydroxymethyl-2-furaldehyde (5-HMF), glyoxal (GO), methylglyoxal (MGO), Nε-carboxymethyl lysine (CML), and Nε-carboxyethyl lysine (CEL) were 60.8%, 27.12%, 23.44%, 57.7%, and 31.28%, respectively. After 21 d of storage, the levels of 5-HMF, GO, MGO, CML, and CEL in BFM with TP were 46.3%, 9.7%, 20.6%, 5.2%, and 24.7% lower than the control group, respectively. Moreover, a smaller change occurred in their color and the browning index was lower than that of the control group. The significance of this study was to develop TP as additives to inhibit the production of MRP in brown fermented yogurt without changing color and flavors, thereby making dairy products safer for consumers.


Subject(s)
Maillard Reaction , Milk , Animals , Milk/chemistry , Lysine/analysis , Polyphenols/analysis , Magnesium Oxide , Pyruvaldehyde/analysis , Glyoxal/analysis , Glycation End Products, Advanced/analysis , Tea
2.
J Environ Sci (China) ; 122: 92-104, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35717094

ABSTRACT

Formaldehyde (HCHO) and glyoxal (CHOCHO) are important oxidization intermediates of most volatile organic compounds (VOCs), but their vertical evolution in urban areas is not well understood. Vertical profiles of HCHO, CHOCHO, and nitrogen dioxide (NO2) were retrieved from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations in Hefei, China. HCHO and CHOCHO vertical profiles prefer to occur at higher altitudes compared to NO2, which might be caused by the photochemistry-oxidation of longer-lived VOCs at higher altitudes. Monthly means of HCHO concentrations were higher in summer, while enhanced amounts of NO2 were mainly observed in winter. CHOCHO exhibited a hump-like seasonal variation, with higher monthly-averaged values not only occurred in warm months (July-August) but also in cold months (November-December). Peak values mainly occurred during noon for HCHO but emerged in the morning for CHOCHO and NO2, suggesting that HCHO is stronger link to photochemistry than CHOCHO. We further use the glyoxal to formaldehyde ratio (GFR) to investigate the VOC sources at different altitudes. The lowest GFR value is almost found in the altitude from 0.2 to 0.4 km, and then rises rapidly as the altitude increases. The GFR results indicate that the largest contributor of the precursor VOC is biogenic VOCs at lower altitudes, while at higher altitudes is anthropogenic VOCs. Our findings provide a lot more insight into VOC sources at vertical direction, but more verification is recommended to be done in the future.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Environmental Monitoring/methods , Formaldehyde/analysis , Glyoxal/analysis , Nitrogen Dioxide/analysis , Spectrum Analysis , Volatile Organic Compounds/analysis
3.
Anal Chem ; 92(20): 13829-13838, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32959643

ABSTRACT

The lack of effective chemical tools capable of dynamic tracking of labile glyoxal species (GOS) [e.g., methylglyoxal (MGO) and glyoxal (GO)] levels with high selectivity over other relevant electrophilic species, particularly, formaldehyde (FA) and nitric oxide (NO), has significantly hampered the understanding of their roles in a complex metabolic network and disease progressions. Herein, we report the rational design of the bioinspired 4-(2-guanidino)-1,8-naphthalimide fluorescent probes NAP-DCP-1 and NAP-DCP-3 from arginine-specific protein modifications. These probes undergo facile reversible fluorophore-promoted deprotonation-cyclization of a guanidium ion with labile GOS to form exocyclic five-membered dihydroxyimidazolidines. The probe NAP-DCP-1 can differentiate GOS levels in the serum of diabetic mice and patients from nondiabetic ones, which correlate very well with glucose levels, providing the GOS level as a potential new biomarker for diabetes diagnosis. Notably, the endoplasmic reticulum (ER)-targeting probe NAP-DCP-3 enabled the study of GOS perturbation in ER under various stress conditions and led to the discovery that formaldehyde (FA), either exogenously added or endogenously generated, could induce GOS level increases in ER. This finding reveals the previous unknown connection of FA with upregulated GOS levels and suggests that GOS is a key metabolite in bridging one-carbon metabolism with glycolysis and the downstream cell redox status. Moreover, the probes also showed potentials in separate quantification of MGO and GO via ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and unexpected selectivity modulation for GO over MGO via two-photon excitation. It is expected that probes reported herein provide powerful tools to study GOS level modulations in complex biological networks and would facilitate GOS-associated basic research and discovery.


Subject(s)
Fluorescent Dyes/chemistry , Glyoxal/chemistry , Mass Spectrometry/methods , Animals , Arginine/chemistry , Chromatography, High Pressure Liquid , Cyclization , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/diagnosis , Endoplasmic Reticulum/chemistry , Fluorescent Dyes/chemical synthesis , Formaldehyde/chemistry , Glyoxal/analysis , Glyoxal/blood , Glyoxal/metabolism , HeLa Cells , Humans , Mice , Microscopy, Fluorescence
4.
Int J Food Sci Nutr ; 71(6): 706-714, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31918589

ABSTRACT

This study investigated the role of non-nutritive sweeteners in the formation of advanced glycation end-products (AGEs) and their reactive intermediates using endogenous and exogenous models. In the endogenous model, xylitol and sorbitol formed similar levels of reactive intermediates compared to sucralose. Protein-bound fluorescent AGEs, Nε-carboxymethyllysine (CML), and Nε-carboxyethyllysine (CEL) levels in the xylitol and sorbitol treatment were significantly higher compared to the sucralose treatment. In the exogenous model, sucralose treatment showed significantly higher glyoxal and fructosamine levels compared to xylitol and sorbitol, respectively. However, protein-bound fluorescent AGEs, CML, and CEL were lower in the sucralose treatment compared to other sugar treatments. The data suggest that the structure of sugar alcohols which are similar to reducing sugars may contribute to the formation of AGEs and their reactive intermediates in the endogenous model. The long-term effects of non-nutritive sweeteners consumption on AGEs formation and health implications should be verified with population studies.


Subject(s)
Fructosamine/analysis , Glyoxal/analysis , Lysine/analogs & derivatives , Sorbitol/chemistry , Sucrose/analogs & derivatives , Xylitol/chemistry , Cooking , Electrophoresis, Polyacrylamide Gel , Glycation End Products, Advanced , Hot Temperature , Lysine/analysis , Non-Nutritive Sweeteners/chemistry , Proof of Concept Study , Sucrose/chemistry
5.
J Sci Food Agric ; 100(5): 2296-2304, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31953836

ABSTRACT

BACKGROUND: The thermal processing of food results in the formation of α-dicarbonyl compounds (α-DCs) such as glyoxal (GO), methylglyoxal (MGO), 2,3-butanedione (2,3-BD), and 3-deoxyglucosone (3-DG), which are precursors of potentially harmful advanced glycation end products. Some of the α-DCs found in food products might result from chemical deterioration reactions during storage and reheating. A range of sugary food simulation systems were stored at three different temperatures (4, 25, and 37 °C) and reheated using three different processing methods to investigate the formation and migration of α-DCs. RESULTS: During 20 days of storage, the concentration of α-DCs declined, following which the concentration remained approximately constant. Methylglyoxal was the major α-DC affected during storage, its relative content decreasing from 233.71 to 44.12 µg mL-1 in the glucose-lysine system. The concentration of α-DCs decreased with increasing temperature. Microwave reheating increased the formation of α-DC compounds. The largest increases in 3-DG concentrations were observed in the maltose-lysine systems (24.94 to 35.74 µg mL-1 ). The concentration of α-DCs only changed a little in response to reheating at 100 °C, but declined when reheated at 150 °C. CONCLUSION: The concentration of α-DCs following storage and reheating depends on the type of sugar, lysine content, temperature, and method of reheating. © 2020 Society of Chemical Industry.


Subject(s)
Deoxyglucose/analysis , Diacetyl/analysis , Glycation End Products, Advanced/analysis , Glyoxal/analysis , Hot Temperature , Pyruvaldehyde/analysis , Carbohydrates , Deoxyglucose/analogs & derivatives , Food , Food Analysis , Food Storage , Glucose , Lysine , Temperature
6.
Clin Chem Lab Med ; 57(12): 1915-1922, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31377732

ABSTRACT

Background α-Dicarbonyl compounds (α-DCs) have been detected in body fluids including plasma and urine and elevation of this sort of compounds in vivo has been associated with the development of many kinds of chronic diseases. However whether α-DCs are present in human saliva, and if their presence/absence can be related with various chronic diseases is yet to be determined. Methods In this study, a pre-column derivatization HPLC-UV method was developed to measure 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), diacetyl (DA), and pentane-2,3-dione (PD) in human saliva employing 4-(2,3-dimethyl-6-quinoxalinyl)-1,2-benzenediamine (DQB) as a derivatizing reagent. The derivatization of the α-DCs is fast and the conditions are facile. The method was evaluated and the results show that it is suitable for the quantification of α-DCs in human saliva. Results In the measurements of these α-DCs in the saliva of 15 healthy subjects and 23 type 2 diabetes mellitus (T2DM) patients, we found that the concentrations of GO and MGO in the saliva of the diabetic patients were significantly higher than those in healthy subjects. As far as we know, this is the first time that salivary α-DC concentrations have been determined and associated with T2DM. Conclusions The developed method would be useful for the measurement of the salivary α-DC levels and the data acquired could be informative in the early screening for diabetes.


Subject(s)
Deoxyglucose/analogs & derivatives , Glyoxal/analysis , Pyruvaldehyde/analysis , Adult , Chromatography, High Pressure Liquid/methods , Deoxyglucose/analysis , Diabetes Mellitus, Type 2/blood , Female , Humans , Male , Middle Aged , Saliva/chemistry
7.
J Sep Sci ; 42(6): 1230-1239, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30624019

ABSTRACT

A simple and rapid dispersive liquid-liquid microextraction method coupled with gas chromatography and mass spectrometry was applied for the determination of glyoxal as quinoxaline, methylglyoxal as 2-methylquinoxaline, and diacetyl as 2,3-dimethylquinoxaline in red ginseng products. The performance of the proposed method was evaluated under optimum extraction conditions (extraction solvent: chloroform 100 µL, disperser solvent: methanol 200 µL, derivatizing agent concentration: 5 g/L, reaction time: 1 h, and no addition of salt). The limit of detection and limit of quantitation were 1.30 and 4.33 µg/L for glyoxal, 1.86 and 6.20 µg/L for methylglyoxal, and 1.45 and 4.82 µg/L for diacetyl. The intra- and interday relative standard deviations were <4.95 and 5.80%, respectively. The relative recoveries were 92.4-103.9% in red ginseng concentrate and 99.4-110.7% in juice samples. Red ginseng concentrates were found to contain 191-4274 µg/kg of glyoxal, 1336-4798 µg/kg of methylglyoxal, and 0-830 µg/kg of diacetyl, whereas for red ginseng juices, the respective concentrations were 72-865, 69-3613, and 6-344 µg/L.


Subject(s)
Diacetyl/analysis , Glyoxal/analysis , Liquid Phase Microextraction , Pyruvaldehyde/analysis , Gas Chromatography-Mass Spectrometry , Panax/chemistry
8.
J Sci Food Agric ; 99(11): 5000-5007, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-30977140

ABSTRACT

BACKGROUND: The Maillard reaction products (MRPs) formed after roasting of oil-tea camellia seeds (camellia seeds) were investigated. Camellia seeds are inevitably heated during processing, but the effect of heating or roasting on the physicochemical properties of camellia seed or oil-tea camellia seed oil (camellia oil) has been seldom studied, especially with respect to the Maillard reaction. RESULTS: Changes in reducing sugars, free amino acids, pH, color, browning intensity and MRP (furosine, glyoxal, methylglyoxal, 5-hydroxymethylfurfural and furural) concentrations were examined in camellia seeds during roasting at 120-160 °C for 20-120 min. Results showed that roasting leads first to a decrease and then to a considerable increase in free amino groups and, at the same time, to a reduction in moisture content and decrease in pH. The sucrose content of the seeds decreased, while that of glucose and fructose increased reciprocally during roasting. On the other hand, the observed changes concerning glyoxal were negligible. Furthermore, 5-hydroxymethylfurfural and furfural have been found at the end of the roasting process, with maximum values of 572.26 ± 1.91 mg kg-1 dry wt and 0.46 ± 0.003 mg kg-1 dry wt, at 160 °C for 120 min, respectively. CONCLUSION: This investigation provides the initial groundwork necessary for the development and implementation of green and efficient technology that could be applied to obtain high-quality camellia oil. Future research is necessary to assess antioxidant capacity, quality and safety of oil after thermal processing of camellia seeds. © 2019 Society of Chemical Industry.


Subject(s)
Camellia/chemistry , Maillard Reaction , Plant Oils/chemistry , Seeds/chemistry , Amino Acids/analysis , Chemical Phenomena , Food Handling/methods , Furaldehyde/analogs & derivatives , Furaldehyde/analysis , Glycation End Products, Advanced/analysis , Glyoxal/analysis , Hot Temperature , Hydrogen-Ion Concentration , Lysine/analogs & derivatives , Lysine/analysis , Sugars/analysis , Water/analysis
9.
J Environ Sci (China) ; 80: 296-305, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30952347

ABSTRACT

This study presents the Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements for Glyoxal (CHOCHO) in Beijing, China (39.95°N, 116.32°E). CHOCHO is the smallest compound of di-carbonyl group. As a primary sink of CHOCHO, its photolysis with NOx (oxides of nitrogen) results in the production of tropospheric ozone. Therefore, the focus of CHOCHO DOAS measurements is increasing in trend. We did the measurements from 09 May 2017 to 09 September 2017. The study was conducted to compare different retrieval settings in order to reveal best DOAS fit settings for CHOCHO; furthermore, effect of haze and non-haze days on CHOCHO concentration was examined. The root mean square of residual and Differential Slant Column density (dSCD) error was reduced when measurements were done with lower wavelength limit around 432-438 nm and upper intervals around 455-460 nm. Thus, lower wavelength intervals around 432-438 nm and upper intervals around 457-460 nm were best for the retrieval of dSCDs for CHOCHO. Meteorological conditions like haze or non-haze days did not have significant effect on DOAS fit parameters. The CHOCHO vertical column densities range from 1.33E+14 to 9.77E+14 molecules/cm2 during the study period with average of 6.16E+14 molecules/cm2. The results indicated that during haze days CHOCHO concentration was higher because of lower rate of photolysis and atmospheric oxidation potential. Our results did not show any significant weekend effect on CHOCHO atmospheric concentration.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Glyoxal/analysis , Beijing , China , Spectrum Analysis
10.
J Dairy Sci ; 101(2): 968-978, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29274980

ABSTRACT

Endogenous production of α-dicarbonyls by lactic acid bacteria can influence the quality and consistency of fermented foods and beverages. Methylglyoxal (MG) in Parmesan cheese can contribute toward undesired browning during low temperature ripening and storage conditions, leading to the economic depreciation of affected cheeses. We demonstrate the effects of exogenously added MG on browning and volatile formation using a Parmesan cheese extract (PCE). To determine the influence of Lactobacillus on α-dicarbonyls, strains were screened for their ability to modulate concentrations of MG, glyoxal, and diacetyl in PCE. It was found that a major metabolic pathway of MG in Lactobacillus is a thiol-independent reduction, whereby MG is partially or fully reduced to acetol and 1,2-propanediol, respectively. The majority of lactobacilli grown in PCE accumulated the intermediate acetol, whereas Lactobacillus brevis 367 formed exclusively 1,2-propanediol and Lactobacillus fermentum 14931 formed both metabolites. In addition, we determined the inherent tolerance to bacteriostatic concentrations of MG among lactobacilli grown in rich media. It was found that L. brevis 367 reduces MG exclusively to 1,2-propanediol, which correlates to both its ability to significantly decrease MG concentrations in PCE, as well as its significantly higher tolerance to MG, in comparison to other lactobacilli screened. These findings have broader implications toward lactobacilli as a viable solution for reducing MG-mediated browning of Parmesan cheese.


Subject(s)
Cheese/analysis , Lactobacillus/metabolism , Pyruvaldehyde/metabolism , Volatile Organic Compounds/analysis , Color , Diacetyl/analysis , Fermentation , Glyoxal/analysis , Lactobacillus/genetics , Pyruvaldehyde/administration & dosage , Pyruvaldehyde/analysis , Sulfhydryl Compounds/metabolism
11.
J Environ Sci (China) ; 71: 108-118, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30195669

ABSTRACT

Currently, modeling studies tend to significantly underestimate observed space-based glyoxal (CHOCHO) vertical column densities (VCDs), implying the existence of missing sources of glyoxal. Several recent studies suggest that the emissions of aromatic compounds and molar yields of glyoxal in the chemical mechanisms may both be underestimated, which can affect the simulated glyoxal concentrations. In this study, the influences of these two factors on glyoxal amounts over China were investigated using the RAMS-CMAQ modeling system for January and July 2014. Four sensitivity simulations were performed, and the results were compared to satellite observations. These results demonstrated significant impacts on glyoxal concentrations from these two factors. In case 1, where the emissions of aromatic compounds were increased three-fold, improvements to glyoxal VCDs were seen in high anthropogenic emissions regions. In case 2, where molar yields of glyoxal from isoprene were increased five-fold, the resulted concentrations in July were 3-5-fold higher, achieving closer agreement between the modeled and measured glyoxal VCDs. The combined changes from both cases 1 and 2 were applied in case 3, and the model succeeded in further reducing the underestimations of glyoxal VCDs. However, the results over most of the regions with pronounced anthropogenic emissions were still underestimated. So the molar yields of glyoxal from anthropogenic precursors were considered in case 4. With these additional mole yield changes (a two-fold increase), the improved concentrations agreed better with the measurements in regions of the lower reaches of the Yangtze River and Yellow River in January but not in July.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Glyoxal/analysis , Models, Chemical
12.
Anal Bioanal Chem ; 406(11): 2525-32, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24510214

ABSTRACT

In this study, the development of a new sensitive method for the analysis of alpha-dicarbonyls glyoxal (G) and methylglyoxal (MG) in environmental ice and snow is presented. Stir bar sorptive extraction with in situ derivatization and liquid desorption (SBSE-LD) was used for sample extraction, enrichment, and derivatization. Measurements were carried out using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As part of the method development, SBSE-LD parameters such as extraction time, derivatization reagent, desorption time and solvent, and the effect of NaCl addition on the SBSE efficiency as well as measurement parameters of HPLC-ESI-MS/MS were evaluated. Calibration was performed in the range of 1-60 ng/mL using spiked ultrapure water samples, thus incorporating the complete SBSE and derivatization process. 4-Fluorobenzaldehyde was applied as internal standard. Inter-batch precision was <12 % RSD. Recoveries were determined by means of spiked snow samples and were 78.9 ± 5.6 % for G and 82.7 ± 7.5 % for MG, respectively. Instrumental detection limits of 0.242 and 0.213 ng/mL for G and MG were achieved using the multiple reaction monitoring mode. Relative detection limits referred to a sample volume of 15 mL were 0.016 ng/mL for G and 0.014 ng/mL for MG. The optimized method was applied for the analysis of snow samples from Mount Hohenpeissenberg (close to the Meteorological Observatory Hohenpeissenberg, Germany) and samples from an ice core from Upper Grenzgletscher (Monte Rosa massif, Switzerland). Resulting concentrations were 0.085-16.3 ng/mL for G and 0.126-3.6 ng/mL for MG. Concentrations of G and MG in snow were 1-2 orders of magnitude higher than in ice core samples. The described method represents a simple, green, and sensitive analytical approach to measure G and MG in aqueous environmental samples.


Subject(s)
Chromatography, High Pressure Liquid/methods , Glyoxal/analysis , Glyoxal/isolation & purification , Ice/analysis , Pyruvaldehyde/analysis , Snow/chemistry , Solid Phase Extraction/methods , Spectrometry, Mass, Electrospray Ionization/methods , Environmental Monitoring , Pyruvaldehyde/isolation & purification , Sensitivity and Specificity , Solid Phase Extraction/instrumentation
13.
Food Res Int ; 178: 113876, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309897

ABSTRACT

The species and contents of ɑ-dicarbonyls in commercial black tea were examined, along with the effects of the manufacturing process and drying temperature on the formation of ɑ-dicarbonyls. Ten ɑ-dicarbonyls were quantified in commercial and in-process black tea samples by using UPLC-MS/MS and their derived quinoxalines. The ɑ-dicarbonyls content in commercial black tea decreased significantly (p < 0.05) in the following order: 3-deoxyglucosone > glucosone > 3-deoxypentosone = threosone > galactosone ≥ methylglyoxal = glyoxal ≥ 3-deoxygalactosone = 3-deoxythreosone = diacetyl. Except for 3-deoxyglucosone and 3-deoxygalactosone, a further eight ɑ-dicarbonyls were identified in all manufacturing steps of black tea. Except for the drying step, the rolling and fermenting played important roles in the formation of ɑ-dicarbonyls. The total contents of ɑ-dicarbonyls in black tea infusion ranged from 16.48 to 75.32 µg/g based on our detected ten ɑ-dicarbonyls.


Subject(s)
Camellia sinensis , Tea , Maillard Reaction , Chromatography, Liquid , Tandem Mass Spectrometry , Glyoxal/analysis
14.
Bioresour Technol ; 399: 130645, 2024 May.
Article in English | MEDLINE | ID: mdl-38554759

ABSTRACT

Hardwood kraft lignin from the pulping industry is burned or discarded. Its valorization was conducted by subjecting fractionation, amination with ethylenediamine, diethylenetriamine, and monoethanolamine, and crosslinking with formaldehyde or glyoxal to obtain bio-based wood adhesives. Acetone-soluble and insoluble hardwood kraft lignin were prepared and subjected to amination and then crosslinking. Fourier transform infrared, 13C NMR, 15N NMR, and X-ray photoelectron spectroscopy results revealed successful amination with amide, imine, and ether bonds and crosslinking of all samples. Hardwood kraft lignin aminated with diethylenetriamine/ethylenediamine and crosslinked using glyoxal exhibited excellent results in comparison with samples crosslinked using formaldehyde. Acetone-insoluble hardwood kraft lignin aminated and crosslinked using diethylenetriamine and formaldehyde, respectively, exhibited excellent adhesion strength with plywood, satisfying the requirements of the Korean standards. The amination and crosslinking of industrial waste hardwood kraft lignin constitute a beneficial valorization method.


Subject(s)
Acetone , Aldehydes , Amination , Wood/chemistry , Adhesives/analysis , Adhesives/chemistry , Polyamines/analysis , Glyoxal/analysis , Glyoxal/chemistry , Lignin/chemistry , Formaldehyde/analysis , Ethylenediamines
15.
Food Res Int ; 189: 114552, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876591

ABSTRACT

The objective of this study was to assess the effects of simulated digestion on the formation of α-dicarbonyl compounds (α-DCs) in chocolates. For that purpose, the concentrations of glyoxal and methylglyoxal in chocolates were determined through High-Performance Liquid Chromatography (HPLC) analysis before and after in vitro digestion. The initial concentrations ranged from 0.0 and 228.2 µg/100 g, and 0.0 and 555.1 for glyoxal and methylglyoxal, respectively. Following digestion, there was a significant increase in both glyoxal and methylglyoxal levels, reaching up to 1804 % and 859 %, respectively. The findings indicate that digestive system conditions facilitate the formation of advanced glycation end product (AGE) precursors. Also, glyoxal and methylglyoxal levels were found to be low in chocolate samples containing dark chocolate. In contrast, they were found to be high in samples containing hazelnuts, almonds, pistache, and milk. Further studies should focus on α-DCs formation under digestive system conditions, including the colon, to determine the effects of gut microbiota.


Subject(s)
Chocolate , Digestion , Glyoxal , Pyruvaldehyde , Glyoxal/analysis , Pyruvaldehyde/metabolism , Pyruvaldehyde/analysis , Chocolate/analysis , Chromatography, High Pressure Liquid , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/analysis , Biological Availability , Humans
16.
Anal Chim Acta ; 1288: 342164, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220296

ABSTRACT

Infant formulae are the only possible alternative to breastfeeding during the first year of life, so it is crucial to assure their innocuousness. Infant formula undergoes heat treatments to ensure safety and shelf life. However, such processes impact health as they lead to the formation of malondialdehyde, acrolein, and α-dicarbonyl compounds, related to Maillard reaction. Thus, there is a need for improved analytical methods to ensure the safety, quality, and nutritional value of infant formulae, and also exploring the potential of specific compounds as indicators for quality control and monitoring purposes. We developed and validated a novel, efficient, and cost-effective method using gas-diffusion microextraction for the simultaneous quantification of carbonyl compounds in infant formula. Malondialdehyde, acrolein, glyoxal, methylglyoxal, and diacetyl were detected as o-phenylenediamine derivatives using HPLC with UV detection. Parameters influencing extraction efficiency were studied using an asymmetric screening design. The validated method has shown excellent linearity, sensitivity, accuracy, and precision. It was applied to analyze 26 infant formula samples, including starter, follow-up, and special formulated powdered infant formula. Methylglyoxal was found in all samples (0.201-3.153 µg mL-1), while malondialdehyde was present only in certain starter formulas (1.033-1.802 µg mL-1). Acrolein (0.510-3.246 µg mL-1), glyoxal (0.109-1.253 µg mL-1), and diacetyl (0.119-2.001 µg mL-1) were detected in various sample types. Principal components and hierarchical cluster analyses have showcased distinct sample clustering based on analyte contents. This study presents a novel methodology for the analysis of markers of thermal treatment and oxidative stability in infant formula. It contributes to the characterization of the products' composition and quality control of infant formulae, thereby enhancing their safety and nutritional adequacy. This study also presents the first reported quantification of acrolein in infant formula and introduces the application of the acrolein-o-phenylenediamine derivative for food analysis.


Subject(s)
Infant Formula , Phenylenediamines , Pyruvaldehyde , Infant , Humans , Pyruvaldehyde/analysis , Infant Formula/chemistry , Chromatography, High Pressure Liquid/methods , Acrolein/analysis , Diacetyl , Glyoxal/analysis , Malondialdehyde , Oxidative Stress
17.
Food Chem ; 456: 139965, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38852460

ABSTRACT

Pasteurisation and spray drying are critical steps to ensure the safety and shelf-life of formulae, but these treatments also induce formation of some potentially harmful Maillard reaction products. In this study, the occurrence of potentially harmful Maillard reaction products and proximate compositions in different commercial formulae were analysed. Our results showed that infant formulae had significantly higher concentrations of furosine, Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) than follow-on/toddler formula. Specialty formulae had higher concentrations of glyoxal and CML than other types of formulae. Correlation analysis indicated that concentrations of 5-hydroxymethylfurfural, 3-deoxyglucosone, CML and CEL were closely related to fat contents. These results provided insight into concentrations of potentially harmful Maillard reaction products in different types of formulae and provide a theoretical basis for further optimisation of processing.


Subject(s)
Infant Formula , Lysine , Maillard Reaction , Infant Formula/chemistry , Infant Formula/analysis , Lysine/chemistry , Lysine/analogs & derivatives , Lysine/analysis , Humans , Furaldehyde/analogs & derivatives , Furaldehyde/analysis , Furaldehyde/chemistry , Glyoxal/chemistry , Glyoxal/analysis , Infant , Deoxyglucose/analogs & derivatives , Deoxyglucose/chemistry , Deoxyglucose/analysis
18.
Fitoterapia ; 175: 105928, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548027

ABSTRACT

α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine. The results uncover that 3-DG is the major component among the α-DCs, being detectable in all the selected herbs in concentrations ranging from 22.80 µg/g in the seeds of Alpinia katsumadai to 7032.75 µg/g in the fruit of Siraitia grosuenorii. The contents of the other three compounds are much lower than those of 3-DG, with GO being up to 22.65 µg/g, MGO being up to 55.50 µg/g, and DA to 18.75 µg/g, respectively. The data show as well the contents of the total four α-DCs in the herbs are generally in a comparable level to those in various foods, implying that herb medicines may have potential risks on human heath in view of the α-DCs.


Subject(s)
Deoxyglucose , Drugs, Chinese Herbal , Glyoxal , Pyruvaldehyde , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Pyruvaldehyde/analysis , Chromatography, High Pressure Liquid , Deoxyglucose/analogs & derivatives , Deoxyglucose/analysis , Glyoxal/analysis , Diacetyl/analysis , Molecular Structure , Fruit/chemistry , Plants, Medicinal/chemistry , Seeds/chemistry
19.
Bioorg Chem ; 46: 1-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23247254

ABSTRACT

Melamine (1,3,5-triazine-2,4,6-triamine) is employed in the manufacture of plastics, laminates and glues, yet, it has been found sometimes added illegally to dairy products to artificially inflate foods' protein content. In 2008, dairy products adulterated with melamine were blamed for the death of several infants in China, a situation that forced Beijing to introduce stricter food safety measures. The objectives of this study were threefold: (1) to investigate the susceptibility of the amine groups of melamine to glycation with D-galactose, D-glucose and lactose, sugars commonly found in milk, (2) to study the rate and extent of melamine's glycation with methylglyoxal, glyoxal and DL-glyceraldehyde, three highly reactive metabolites of D-galactose, D-glucose and lactose, and (3) to characterize, using mass spectrometry, the Advanced Glycation Endproducts (AGEs) of melamine with sugars found commonly in milk and their metabolites. Incubation of D-galactose, D-glucose and lactose with melamine revealed that D-galactose was the most potent glycator of melamine, followed by D-glucose, then lactose. Methylglyoxal, glyoxal, and DL-glyceraldehyde glycated melamine more extensively than D-galactose, with each yielding a broader range of AGEs. The non-enzymatic modification of melamine by sugars and sugar-like compounds warrants further investigation, as this process may influence melamine's toxicity in vivo.


Subject(s)
Carbohydrates/analysis , Food Contamination/analysis , Glycation End Products, Advanced/analysis , Triazines/chemistry , Animals , Carbohydrate Metabolism , Galactose/analysis , Galactose/metabolism , Glucose/analysis , Glucose/metabolism , Glycation End Products, Advanced/metabolism , Glyceraldehyde/analysis , Glyceraldehyde/metabolism , Glycosylation , Glyoxal/analysis , Glyoxal/metabolism , Lactose/analysis , Lactose/metabolism , Milk/chemistry , Milk/metabolism , Pyruvaldehyde/analysis , Pyruvaldehyde/metabolism , Triazines/metabolism
20.
Chemosphere ; 319: 137977, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736840

ABSTRACT

Among the highly oxygenated species formed in situ in the atmosphere, α-dicarbonyl compounds are the most reactive species, thus contributing to the formation of secondary organic aerosols that affect both air quality and climate. They are ubiquitous in the atmosphere and are easily transferred to the atmospheric aqueous phase due to their high solubility. In addition, α-dicarbonyl compounds are toxic compounds found in food in biochemistry studies as they can be produced endogenously through various pathways and exogenously through the Maillard reaction. In this work, we take advantage of the high reactivity of α-dicarbonyl compounds in alkaline solutions (intramolecular Cannizzaro reaction) to develop an analytical method based on high performance ion chromatography. This fast and efficient method is suitable for glyoxal, methylglyoxal and phenylglyoxal which are detected as glycolate, lactate and mandelate anions respectively, with 100% conversion at pH > 12 and room temperature for exposure times to hydroxide ranging from 5 min to 4 h. Diacetyl is detected as 2,4-dihydroxy-2,4-dimethyl-5-oxohexanoate due to a base-catalysed aldol reaction that occurs before the Cannizzaro reaction. The analytical method is successfully applied to monitor glyoxal consumption during aqueous phase HO∙-oxidation, an atmospherically relevant reaction using concentrations that can be observed in fog and cloud water. The method also reveals potential analytical artifacts that can occur in the use of ion chromatography for α-hydroxy carboxylates measurements in complex matrices due to α-dicarbonyl conversion during the analysis time. An estimation of the artifact is given for each of the studied α-hydroxy carboxylates. Other polyfunctional and pH-sensitive compounds that are potentially present in environmental samples (such as nitrooxycarbonyls) can also be converted into α-hydroxy carboxylates and/or nitrite ions within the HPIC run. This shows the need for complementary analytical measurements when complex matrices are studied.


Subject(s)
Glyoxal , Pyruvaldehyde , Glyoxal/analysis , Glyoxal/chemistry , Pyruvaldehyde/analysis , Pyruvaldehyde/chemistry , Diacetyl/analysis , Carboxylic Acids , Water
SELECTION OF CITATIONS
SEARCH DETAIL