Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.165
Filter
Add more filters

Publication year range
1.
J Immunol ; 213(3): 384-393, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38864663

ABSTRACT

Allogeneic hematopoietic cell transplantation is an effective treatment for hematologic malignancies, but the complications such as graft-versus-host disease (GVHD) can limit its benefit. The conditioning regimens before transplant, including chemotherapy or irradiation, can trigger endoplasmic reticulum stress. IRE-1α is a major endoplasmic reticulum stress mediator that can further activate both spliced XBP-1 (XBP-1s) and regulated IRE-1-dependent decay (RIDD). IRE-1α-XBP-1s signaling controls dendritic cell (DC) differentiation and Ag presentation, crucial in GVHD progression. In this study, we used DC-specific XBP-1-deficient mice as donors or recipients and observed that XBP-1s was crucial for host DCs in the induction of GVHD but dispensable for the graft-versus-leukemia response. To specifically target IRE-1α in the host, we treated recipient mice with the IRE-1α inhibitor B-I09 for 3 d prior to bone marrow transplantation, which significantly suppressed GVHD development while maintaining the graft-versus-leukemia effect. XBP-1-deficient or BI09-treated recipients showed reduced DC survival after irradiation and bone marrow transplantation. Inhibition of IRE-1α also led to a reduction in DC alloreactivity, subsequently decreasing the proliferation and activation of allogeneic T cells. With further study using RIDD-deficient DCs, we observed that RIDD was also required for optimal DC activation. Taken together, XBP-1s and RIDD both promote host DC survival and alloreactivity that contribute to GVHD development.


Subject(s)
Dendritic Cells , Endoplasmic Reticulum Stress , Endoribonucleases , Graft vs Host Disease , Protein Serine-Threonine Kinases , X-Box Binding Protein 1 , Animals , Dendritic Cells/immunology , Graft vs Host Disease/immunology , Mice , Endoplasmic Reticulum Stress/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , Mice, Knockout , Mice, Inbred C57BL , Hematopoietic Stem Cell Transplantation , Bone Marrow Transplantation , Signal Transduction , Cell Differentiation/immunology , Graft vs Leukemia Effect/immunology
2.
Blood ; 141(8): 945-950, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36477272

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for both malignant and nonmalignant hematologic disorders. However, graft-versus-host disease (GVHD) and malignant relapse limit its therapeutic success. We previously demonstrated that the blockade of interferon-gamma receptor (IFNGR) signaling in donor T cells resulted in a reduction in GVHD while preserving graft-versus-leukemia (GVL) effects. However, the underlying molecular mechanisms remain inconclusive. In this study, we found that S100A9 is a novel GVHD suppressor upregulated when IFNGR is blocked in T cells. Both Ifngr1-/- and S100a9-overexpressing T cells significantly reduced GVHD without compromising GVL, altering donor T-cell trafficking to GVHD target organs in our mouse model of allo-HSCT. In addition, in vivo administration of recombinant murine S100A9 proteins prolongs the overall survival of recipient mice. Furthermore, in vivo administration of anti-human IFNGRα neutralizing antibody (αhGR-Nab) significantly upregulates the expression of S100A9 in human T cells and improved GVHD in our mouse model of xenogeneic human peripheral blood mononuclear cell transplantation. Consistent with S100a9-overexpressing T cells in our allo-HSCT model, αhGR-Nab reduced human T-cell trafficking to the GVHD target organs. Taken together, S100A9, a downstream molecule suppressed by IFNGR signaling, functions as a novel GVHD suppressor without compromising GVL.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Humans , Animals , Transplantation, Homologous , Leukocytes, Mononuclear/metabolism , Hematopoietic Stem Cell Transplantation/methods , T-Lymphocytes , Recombinant Proteins/metabolism , Graft vs Leukemia Effect , Calgranulin B
3.
Br J Haematol ; 204(6): 2173-2183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602216

ABSTRACT

Allogeneic stem cell transplantation is a centrally important curative strategy in adults with acute myeloid leukaemia; however, relapse occurs in a significant proportion of patients and remains the leading cause of treatment failure. The prognosis for patients who relapse post-transplant remains poor, and the development of new strategies with the ability to reduce disease recurrence without increasing transplant toxicity remains a priority. In this review, within the context of our understanding of disease biology and the graft-versus-leukaemia (GVL) effect, we will discuss established, evolving and novel approaches for increasing remission rates, decreasing measurable residual disease pretransplant, future methods to augment the GVL effect and the opportunities for post-transplant maintenance. Future progress depends upon the development of innovative trials and networks, which will ensure the rapid assessment of emerging therapies in prospective clinical trials.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Transplantation, Homologous , Humans , Leukemia, Myeloid, Acute/therapy , Hematopoietic Stem Cell Transplantation/methods , Recurrence , Graft vs Leukemia Effect , Neoplasm, Residual
4.
Blood ; 140(19): 2076-2090, 2022 11 10.
Article in English | MEDLINE | ID: mdl-35981499

ABSTRACT

Graft-versus-host disease (GVHD) remains a major complication after allogeneic hematopoietic stem cell transplantation, a widely used therapy for hematologic malignancies and blood disorders. Here, we report an unexpected role of cytokine leukemia inhibitory factor (LIF) in protecting against GVHD development. Administrating recombinant LIF protein (rLIF) protects mice from GVHD-induced tissue damage and lethality without compromising the graft-versus-leukemia activity, which is crucial to prevent tumor relapse. We found that rLIF decreases the infiltration and activation of donor immune cells and protects intestinal stem cells to ameliorate GVHD. Mechanistically, rLIF downregulates IL-12-p40 expression in recipient dendritic cells after irradiation through activating STAT1 signaling, which results in decreased major histocompatibility complex II levels on intestinal epithelial cells and decreased donor T-cell activation and infiltration. This study reveals a previously unidentified protective role of LIF for GVHD-induced tissue pathology and provides a potential effective therapeutic strategy to limit tissue pathology without compromising antileukemic efficacy.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia Inhibitory Factor , Leukemia , Animals , Mice , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Leukemia/therapy , Leukemia Inhibitory Factor/genetics , Transplantation, Homologous
5.
Rinsho Ketsueki ; 65(4): 265-271, 2024.
Article in Japanese | MEDLINE | ID: mdl-38684437

ABSTRACT

Hematopoietic cell transplantation (HCT) is considered a curative treatment for hematological malignancies. However, HCT recipients often face complications such as graft-versus-host disease (GVHD) and disease relapse. Clinical factors like age and HLA disparity are recognized as risks for GVHD. Notably, sex-mismatched HCT, particularly with female donors and male recipients (F→M), is reported to increase the risk of chronic GVHD. This adverse effect of F→M HCT is thought to result from allogeneic immune response against minor histocompatibility antigens encoded on the Y-chromosome of a male recipient (HY-antigens). Indeed, antibodies against HY-antigens (HY-Abs) were detected three months after F→M HCT, and the cumulative number of HY-Abs was significantly associated with increased risks of chronic GVHD and non-relapse mortality. This review focuses on F→M HCT, shedding light on its impact in several clinical settings and presenting clinical evidence of its allogeneic response, encompassing GVHD and graft-versus-leukemia (GVL) effects. Additionally, potential clinical options to mitigate adverse effects in F→M HCT will be discussed. Further investigation is required to improve clinical outcomes and understand allogenic immunological reconstitution after F→M HCT.


Subject(s)
Graft vs Host Disease , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation , Tissue Donors , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/immunology , Graft vs Host Disease/etiology , Graft vs Leukemia Effect/immunology , Female , Male
6.
Blood ; 137(16): 2243-2255, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33511398

ABSTRACT

Donor T cells mediate both graft-versus-leukemia (GVL) activity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Development of methods that preserve GVL activity while preventing GVHD remains a long-sought goal. Tolerogenic anti-interleukin-2 (IL-2) monoclonal antibody (JES6-1) forms anti-IL-2/IL-2 complexes that block IL-2 binding to IL-2Rß and IL-2Rγ on conventional T cells that have low expression of IL-2Rα. Here, we show that administration of JES6 early after allo-HCT in mice markedly attenuates acute GVHD while preserving GVL activity that is dramatically stronger than observed with tacrolimus (TAC) treatment. The anti-IL-2 treatment downregulated activation of the IL-2-Stat5 pathway and reduced production of granulocyte-macrophage colony-stimulating factor (GM-CSF). In GVHD target tissues, enhanced T-cell programmed cell death protein 1 (PD-1) interaction with tissue-programmed cell death-ligand 1 (PD-L1) led to reduced activation of protein kinase-mammalian target of rapamycin pathway and increased expression of eomesodermin and B-lymphocyte-induced maturation protein-1, increased T-cell anergy/exhaustion, expansion of Foxp3-IL-10-producing type 1 regulatory (Tr1) cells, and depletion of GM-CSF-producing T helper type 1 (Th1)/cytotoxic T cell type 1 (Tc1) cells. In recipient lymphoid tissues, lack of donor T-cell PD-1 interaction with tissue PD-L1 preserved donor PD-1+TCF-1+Ly108+CD8+ T memory progenitors and functional effectors that have strong GVL activity. Anti-IL-2 and TAC treatments have qualitatively distinct effects on donor T cells in the lymphoid tissues, and CD8+ T memory progenitor cells are enriched with anti-IL-2 treatment compared with TAC treatment. We conclude that administration of tolerogenic anti-IL-2 monoclonal antibody early after allo-HCT represents a novel approach for preventing acute GVHD while preserving GVL activity.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect/drug effects , Hematopoietic Stem Cell Transplantation , Interleukin-2/immunology , Animals , Antibodies, Monoclonal/immunology , Graft vs Host Disease/immunology , Immunosuppressive Agents/therapeutic use , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Tacrolimus/therapeutic use , Transplantation, Homologous
7.
Blood ; 137(19): 2585-2597, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33270816

ABSTRACT

Relapse after allogeneic hematopoietic stem cell transplantation (HCT) is the leading cause of death in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Infusion of unselected donor lymphocytes (DLIs) enhances the graft-versus-leukemia (GVL) effect. However, because the infused lymphocytes are not selected for leukemia specificity, the GVL effect is often accompanied by life-threatening graft-versus-host disease (GVHD), related to the concurrent transfer of alloreactive lymphocytes. Thus, to minimize GVHD and maximize GVL, we selectively activated and expanded stem cell donor-derived T cells reactive to multiple antigens expressed by AML/MDS cells (PRAME, WT1, Survivin, and NY-ESO-1). Products that demonstrated leukemia antigen specificity were generated from 29 HCT donors. In contrast to DLIs, leukemia-specific T cells (mLSTs) selectively recognized and killed leukemia antigen-pulsed cells, with no activity against recipient's normal cells in vitro. We administered escalating doses of mLSTs (0.5 to 10 × 107 cells per square meter) to 25 trial enrollees, 17 with high risk of relapse and 8 with relapsed disease. Infusions were well tolerated with no grade >2 acute or extensive chronic GVHD seen. We observed antileukemia effects in vivo that translated into not-yet-reached median leukemia-free and overall survival at 1.9 years of follow-up and objective responses in the active disease cohort (1 complete response and 1 partial response). In summary, mLSTs are safe and promising for the prevention and treatment of AML/MDS after HCT. This trial is registered at www.clinicaltrials.com as #NCT02494167.


Subject(s)
Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute/therapy , Lymphocyte Transfusion , Myelodysplastic Syndromes/therapy , Salvage Therapy , T-Lymphocytes/transplantation , Adolescent , Adult , Aged , Allografts , Antigens, Neoplasm/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Combined Modality Therapy , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Humans , Leukemia, Myeloid, Acute/drug therapy , Lymphocyte Transfusion/adverse effects , Male , Middle Aged , Myelodysplastic Syndromes/drug therapy , Recurrence , T-Cell Antigen Receptor Specificity , T-Lymphocytes/immunology , Tissue Donors , Young Adult
8.
Blood ; 137(8): 1090-1103, 2021 02 25.
Article in English | MEDLINE | ID: mdl-32976550

ABSTRACT

The nuclear receptor (NR) subclass, retinoid X receptors (RXRs), exert immunomodulatory functions that control inflammation and metabolism via homodimers and heterodimers, with several other NRs, including retinoic acid receptors. IRX4204 is a novel, highly specific RXR agonist in clinical trials that potently and selectively activates RXR homodimers, but not heterodimers. In this study, in vivo IRX4204 compared favorably with FK506 in abrogating acute graft-versus-host disease (GVHD), which was associated with inhibiting allogeneic donor T-cell proliferation, reducing T-helper 1 differentiation, and promoting regulatory T-cell (Treg) generation. Recipient IRX4204 treatment reduced intestinal injury and decreased IFN-γ and TNF-α serum levels. Transcriptional analysis of donor T cells isolated from intestines of GVHD mice treated with IRX4204 revealed significant decreases in transcripts regulating proinflammatory pathways. In vitro, inducible Treg differentiation from naive CD4+ T cells was enhanced by IRX4204. In vivo, IRX4204 increased the conversion of donor Foxp3- T cells into peripheral Foxp3+ Tregs in GVHD mice. Using Foxp3 lineage-tracer mice in which both the origin and current FoxP3 expression of Tregs can be tracked, we demonstrated that IRX4204 supports Treg stability. Despite favoring Tregs and reducing Th1 differentiation, IRX4204-treated recipients maintained graft-versus-leukemia responses against both leukemia and lymphoma cells. Notably, IRX4204 reduced in vitro human T-cell proliferation and enhanced Treg generation in mixed lymphocyte reaction cultures. Collectively, these beneficial effects indicate that targeting RXRs with IRX4204 could be a novel approach to preventing acute GVHD in the clinic.


Subject(s)
Bone Marrow Transplantation , Cyclopropanes/therapeutic use , Graft vs Host Disease/drug therapy , Graft vs Leukemia Effect/drug effects , Retinoid X Receptors/agonists , Animals , Bone Marrow Transplantation/adverse effects , Drug Repositioning , Female , Graft vs Host Disease/pathology , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/pathology
9.
Haematologica ; 108(2): 321-341, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36722403

ABSTRACT

The treatment of acute myeloid leukemia (AML) has evolved over the past few years with the advent of next-generation sequencing. Targeted therapies alone or in combination with low-dose or high-intensity chemotherapy have improved the outcome of patients with AML treated in the frontline and relapsed/refractory settings. Despite these advances, allogeneic stem cell transplantation (allo-HCT) remains essential as consolidation therapy following frontline treatment in intermediate-and adverse-risk and relapsed/refractory disease. However, many patients relapse, with limited treatment options, hence the need for post-transplant strategies to mitigate relapse risk. Maintenance therapy following allo-HCT was developed for this specific purpose and can exploit either a direct anti-leukemia effect and/or enhance the bona fide graft-versus-leukemia effect without increasing the risk of graft-versus-host disease. In this paper, we summarize novel therapies for AML before, during, and after allo-HCT and review ongoing studies.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect , High-Throughput Nucleotide Sequencing
10.
Blood ; 135(1): 28-40, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31697815

ABSTRACT

T-cell activation releases inositol 1,4,5-trisphosphate (IP3), inducing cytoplasmic calcium (Ca2+) influx. In turn, inositol 1,4,5-trisphosphate 3-kinase B (Itpkb) phosphorylates IP3 to negatively regulate and thereby tightly control Ca2+ fluxes that are essential for mature T-cell activation and differentiation and protection from cell death. Itpkb pathway inhibition increases intracellular Ca2+, induces apoptosis of activated T cells, and can control T-cell-mediated autoimmunity. In this study, we employed genetic and pharmacological approaches to inhibit Itpkb signaling as a means of controlling graft-versus-host disease (GVHD). Murine-induced, Itpkb-deleted (Itpkb-/-) T cells attenuated acute GVHD in 2 models without eliminating A20-luciferase B-cell lymphoma graft-versus-leukemia (GVL). A highly potent, selective inhibitor, GNF362, ameliorated acute GVHD without impairing GVL against 2 acute myeloid leukemia lines (MLL-AF9-eGFP and C1498-luciferase). Compared with FK506, GNF362 more selectively deleted donor alloreactive vs nominal antigen-responsive T cells. Consistent with these data and as compared with FK506, GNF362 had favorable acute GVHD and GVL properties against MLL-AF9-eGFP cells. In chronic GVHD preclinical models that have a pathophysiology distinct from acute GVHD, Itpkb-/- donor T cells reduced active chronic GVHD in a multiorgan system model of bronchiolitis obliterans (BO), driven by germinal center reactions and resulting in target organ fibrosis. GNF362 treatment reduced active chronic GVHD in both BO and scleroderma models. Thus, intact Itpkb signaling is essential to drive acute GVHD pathogenesis and sustain active chronic GVHD, pointing toward a novel clinical application to prevent acute or treat chronic GVHD.


Subject(s)
Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect , Leukemia, Experimental/complications , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Tacrolimus/pharmacology , Animals , Chronic Disease , Disease Models, Animal , Graft vs Host Disease/metabolism , Graft vs Host Disease/pathology , Immunosuppressive Agents/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phosphotransferases (Alcohol Group Acceptor)/physiology
11.
J Immunol ; 205(12): 3480-3490, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33158956

ABSTRACT

Acute graft-versus-host disease (aGVHD) is one major serious complication that is induced by alloreactive donor T cells recognizing host Ags and limits the success of allogeneic hematopoietic stem cell transplantation. In the current studies, we identified a critical role of Kras in regulating alloreactive T cell function during aGVHD. Kras deletion in donor T cells dramatically reduced aGVHD mortality and severity in an MHC-mismatched allogeneic hematopoietic stem cell transplantation mouse model but largely maintained the antitumor capacity. Kras-deficient CD4 and CD8 T cells exhibited impaired TCR-induced activation of the ERK pathway. Kras deficiency altered TCR-induced gene expression profiles, including the reduced expression of various inflammatory cytokines and chemokines. Moreover, Kras deficiency inhibited IL-6-mediated Th17 cell differentiation and impaired IL-6-induced ERK activation and gene expression in CD4 T cells. These findings support Kras as a novel and effective therapeutic target for aGVHD.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Graft vs Leukemia Effect/immunology , Hematopoietic Stem Cell Transplantation , Proto-Oncogene Proteins p21(ras)/deficiency , Th17 Cells/immunology , Allografts , Animals , Cell Line, Tumor , Graft vs Host Disease/genetics , Graft vs Leukemia Effect/genetics , Interleukin-6/genetics , Interleukin-6/immunology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Mice , Mice, Transgenic , Proto-Oncogene Proteins p21(ras)/immunology
12.
Br J Haematol ; 195(4): 507-517, 2021 11.
Article in English | MEDLINE | ID: mdl-33877692

ABSTRACT

Over the past three decades, cord blood transplantation (CBT) has established its role as an alternative allograft stem cell source. But the future of stored CB units should be to extend their use in updated transplant approaches and develop new CB applications. Thus, CBT will require a coordinated, multicentric, review of transplantation methods and an upgrade and realignment of banking resources and operations. Significant improvements have already been proposed to support the clinical perspective including definition of the cellular threshold for engraftment, development of transplantation methods for adult patients, engraftment acceleration with single cell expansion and homing technologies, personalised protocols to improve efficacy, use of adoptive cell therapy to mitigate delayed immune reconstitution, and further enhancement of the graft-versus-leukaemia effect using advanced therapies. The role of CB banks in improving transplantation results are also critical by optimizing the collection, processing, storage and characterization of CB units, and improving reproducibility, efficiency and cost of banking. But future developments beyond transplantation are needed. This implies the extension from transplantation banks to banks that support cell therapy, regenerative medicine and specialized transfusion medicine. This new "CB banking 2.0" concept will require promotion of international scientific and technical collaborations between bank specialists, clinical investigators and transplant physicians.


Subject(s)
Blood Banks , Fetal Blood , Adult , Allografts , Blood Banks/organization & administration , Blood Banks/trends , Blood Preservation/methods , Cord Blood Stem Cell Transplantation , Cryopreservation/methods , Forecasting , Graft vs Leukemia Effect , Humans , Immunotherapy, Adoptive , Infant, Newborn , Precision Medicine , Quality Assurance, Health Care , Regenerative Medicine , Tissue and Organ Harvesting , Transfusion Medicine , Treatment Outcome
13.
Br J Haematol ; 195(3): 433-446, 2021 11.
Article in English | MEDLINE | ID: mdl-34046897

ABSTRACT

Allogeneic immune responses underlie the graft-versus-leukaemia effect of stem cell transplantation, but disease relapse occurs in many patients. Minor histocompatibility antigen (mHAg) peptides mediate alloreactive T cell responses and induce graft-versus-leukaemia responses when expressed on patient haematopoietic tissue. We vaccinated nine HA-1-negative donors against HA-1 with a 'prime-boost' protocol of either two or three DNA 'priming' vaccinations prior to 'boost' with modified vaccinia Ankara (MVA). HA-1-specific CD8+ T cell responses were observed in seven donors with magnitude up to 1·5% of total CD8+ T cell repertoire. HA-1-specific responses peaked two weeks post-MVA challenge and were measurable in most donors after 12 months. HA-1-specific T cells demonstrated strong cytotoxic activity and lysed target cells with endogenous HA-1 protein expression. The pattern of T cell receptor (TCR) usage by HA-1-specific T cells revealed strong conservation of T cell receptor beta variable 7-9 (TRBV7-9) usage between donors. These findings describe one of the strongest primary peptide-specific CD8+ T cell responses yet recorded to a DNA-MVA prime-boost regimen and this may reflect the strong immunogenicity of mHAg peptides. Prime-boost vaccination in donors or patients may prove of substantial benefit in boosting graft-versus-leukaemia responses.


Subject(s)
Antigens, Neoplasm/immunology , Graft vs Leukemia Effect/immunology , Minor Histocompatibility Antigens/immunology , Oligopeptides/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccination , Vaccines, DNA/therapeutic use , Vaccinia virus/immunology , Viral Vaccines/therapeutic use , Adult , Aged , Allografts , Cytotoxicity, Immunologic , Epitopes/immunology , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor , HLA-A2 Antigen/immunology , Hematopoietic Stem Cell Transplantation , Humans , Immunogenicity, Vaccine , Immunologic Memory , Male , Middle Aged , Peptides/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Vaccines, Attenuated , Vaccines, DNA/immunology , Viral Vaccines/immunology
14.
Eur J Immunol ; 50(8): 1220-1233, 2020 08.
Article in English | MEDLINE | ID: mdl-32133644

ABSTRACT

Glucocorticoids (GCs) are widely used to treat acute graft-versus-host disease (aGvHD) due to their immunosuppressive activity, but they also reduce the beneficial graft-versus-leukemia (GvL) effect of the allogeneic T cells contained in the graft. Here, we tested whether aGvHD therapy could be improved by delivering GCs with the help of inorganic-organic hybrid nanoparticles (IOH-NPs) that preferentially target myeloid cells. IOH-NPs containing the GC betamethasone (BMP-NPs) efficiently reduced morbidity, mortality, and tissue damage in a totally MHC mismatched mouse model of aGvHD. Therapeutic activity was lost in mice lacking the GC receptor (GR) in myeloid cells, confirming the cell type specificity of our approach. BMP-NPs had no relevant systemic activity but suppressed cytokine and chemokine gene expression locally in the small intestine, which presumably explains their mode of action. Most importantly, BMP-NPs delayed the development of an adoptively transferred B cell lymphoma better than the free drug, although the overall incidence was unaffected. Our findings thus suggest that employing IOH-NPs could diminish the risk of relapse associated with GC therapy of aGvHD patients while still allowing to efficiently ameliorate the disease.


Subject(s)
Betamethasone/analogs & derivatives , Graft vs Host Disease/drug therapy , Graft vs Leukemia Effect/drug effects , Nanoparticles/administration & dosage , Acute Disease , Animals , Betamethasone/administration & dosage , Cytokines/blood , Disease Models, Animal , Intestine, Small/immunology , Intestine, Small/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/drug effects
15.
Blood ; 134(23): 2092-2106, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31578204

ABSTRACT

Graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (alloSCT) is characterized by interleukin-6 (IL-6) dysregulation. IL-6 can mediate effects via various pathways, including classical, trans, and cluster signaling. Given the recent availability of agents that differentially inhibit these discrete signaling cascades, understanding the source and signaling and cellular targets of this cytokine is paramount to inform the design of clinical studies. Here we demonstrate that IL-6 secretion from recipient dendritic cells (DCs) initiates the systemic dysregulation of this cytokine. Inhibition of DC-driven classical signaling after targeted IL-6 receptor (IL-6R) deletion in T cells eliminated pathogenic donor Th17/Th22 cell differentiation and resulted in long-term survival. After engraftment, donor DCs assume the same role, maintaining classical IL-6 signaling-dependent GVHD responses. Surprisingly, cluster signaling was not active after transplantation, whereas inhibition of trans signaling with soluble gp130Fc promoted severe, chronic cutaneous GVHD. The latter was a result of exaggerated polyfunctional Th22-cell expansion that was reversed by IL-22 deletion or IL-6R inhibition. Importantly, inhibition of IL-6 classical signaling did not impair the graft-versus-leukemia effect. Together, these data highlight IL-6 classical signaling and downstream Th17/Th22 differentiation as important therapeutic targets after alloSCT.


Subject(s)
Dendritic Cells/immunology , Graft vs Host Disease/immunology , Interleukin-6/immunology , Signal Transduction/immunology , Skin Diseases/immunology , Stem Cell Transplantation , Allografts , Animals , Cell Differentiation/immunology , Dendritic Cells/pathology , Gene Deletion , Graft vs Host Disease/genetics , Graft vs Host Disease/pathology , Graft vs Leukemia Effect/genetics , Graft vs Leukemia Effect/immunology , Interleukin-6/genetics , Interleukins/genetics , Interleukins/immunology , Mice , Mice, Transgenic , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , Signal Transduction/genetics , Skin Diseases/genetics , Skin Diseases/pathology , Th17 Cells/immunology , Th17 Cells/pathology , Interleukin-22
16.
Blood ; 133(3): 266-279, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30514750

ABSTRACT

Graft-versus-host disease (GVHD) remains one of the major complications after allogeneic bone marrow transplantation (allo-BMT). Sirtuin-1 (Sirt-1) plays a crucial role in various biological processes including cellular senescence, metabolism, and inflammatory responses. Sirt-1 deacetylation regulates different transcription factors that are important for modulating immune responses. In the current study, we addressed the role of Sirt-1 in GVHD induction by employing Sirt-1 conditional knockout mice as well as a pharmacological Sirt-1 inhibitor. Using major histocompatibility complex (MHC)-mismatched and MHC-matched murine BMT models, we found that Sirt-1-/- T cells had a reduced ability to induce acute GVHD (aGVHD) via enhanced p53 acetylation. Sirt-1-deficient T cells also promoted induced regulatory T cell (iTreg) differentiation and inhibited interferon-γ production after allo-BMT. Sirt-1 deletion in iTregs increased Foxp3 stability and restrained iTreg conversion into pathogenic T cells. Furthermore, we found that administration with a Sirt-1 inhibitor, Ex-527, significantly improved recipient survival and clinical scores, with no signs of tumor relapse. These results indicate that Sirt-1 inhibition can attenuate GVHD while preserving the graft-versus-leukemia effect. Consistently, Sirt-1-deficient T cells also displayed a remarkably reduced ability to induce chronic GVHD (cGVHD). Mechanistic studies revealed that Sirt-1 deficiency in T cells enhanced splenic B-cell reconstitution and reduced follicular T helper cell development. Sirt-1 deficiency in T cells modulated donor B-cell responses reducing both B-cell activation and plasma cell differentiation. In addition, therapeutic Sirt-1 inhibition could both prevent cGVHD and reduce established cGVHD. In conclusion, Sirt-1 is a promising therapeutic target for the control of aGVHD and cGVHD pathogenesis and possesses high potential for clinical application.


Subject(s)
B-Lymphocytes/immunology , Graft vs Host Disease/immunology , Graft vs Leukemia Effect/immunology , Lymphocyte Activation/immunology , Sirtuin 1/physiology , T-Lymphocytes, Regulatory/immunology , Acetylation , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Bone Marrow Transplantation , Carbazoles/pharmacology , Cell Differentiation , Female , Graft vs Host Disease/drug therapy , Graft vs Host Disease/pathology , Graft vs Leukemia Effect/drug effects , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Sirtuin 1/antagonists & inhibitors , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Transplantation, Homologous , Tumor Suppressor Protein p53/metabolism
17.
Haematologica ; 106(10): 2588-2597, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33054128

ABSTRACT

Type 1 regulatory (Tr1) T cells induced by enforced expression of IL-10 (LV-10) are being developed as a novel treatment for chemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft vs host disease while mediating graft vs leukemia (GvL) effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature. Overlaying the signatures of sensitive and resistant pAML onto the public NCI TARGET pAML dataset revealed that sensitive pAML clustered with M5 monocytic pAML and pAML with MLL rearrangement. Resistant pAML clustered with myelomonocytic leukemias and those bearing the core binding factor translocations inv(16) or t(8;21)(RUNX1-RUNX1T1). Furthermore, resistant pAML upregulated the membrane glycoprotein CD200, which binds to the inhibitory receptor CD200R1 on LV-10 cells. To examine if CD200 expression on target cells can impair LV-10 cell function, we overexpressed CD200 in myeloid leukemia cell lines ordinarily sensitive to LV-10 killing. Indeed, LV-10 cells degranulated less and killed fewer CD200-overexpressing cells compared to controls, indicating that pAML can utilize CD200 expression for immune evasion. Altogether, the majority of pAML are killed by LV-10 cells in vitro, supporting further LV-10 cell development as an innovative cell therapy for pAML.


Subject(s)
Leukemia, Myeloid, Acute , T-Lymphocytes, Regulatory , Adult , CD4-Positive T-Lymphocytes , Child , Graft vs Leukemia Effect , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Translocation, Genetic
18.
Cytotherapy ; 23(11): 1017-1028, 2021 11.
Article in English | MEDLINE | ID: mdl-34404616

ABSTRACT

BACKGROUND AIMS: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapeutic approach for many hematological disorders. However, allo-HSCT is frequently accompanied by a serious side effect: graft-versus-host disease (GVHD). The clinical use of allo-HSCT is limited by the inability of current immunosuppressive regimens to adequately control GvHD without impairing the graft-versus-leukemia effect (GvL) conferred by transplanted healthy immune cells. To address this, the authors have developed an engineered type 1 regulatory T-cell product called CD4IL-10 cells. CD4IL-10 cells are obtained through lentiviral transduction, which delivers the human IL10 gene into purified polyclonal CD4+ T cells. CD4IL-10 cells may provide an advantage over standard-of-care immunosuppressants because of the ability to suppress GvHD through continuous secretion of IL-10 and enhance the GvL effect in myeloid malignancies through targeted killing of malignant myeloid cells. METHODS: Here the authors established a production process aimed at current Good Manufacturing Practice (cGMP) production for CD4IL-10 cells. RESULTS: The authors demonstrated that the CD4IL-10 cell product maintains the suppressive and cytotoxic functions of previously described CD4IL-10 cells. In addition, RNA sequencing analysis of CD4IL-10 identified novel transcriptome changes, indicating that CD4IL-10 cells primarily upregulate cytotoxicity-related genes. These include four molecules with described roles in CD8+ T and natural killer cell-mediated cytotoxicity: CD244, KLRD1, KLRC1 and FASLG. Finally, it was shown that CD4IL-10 cells upregulate IL-22, which mediates wound healing and tissue repair, particularly in the gut. CONCLUSIONS: Collectively, these results pave the way toward clinical translation of the cGMP-optimized CD4IL-10 cell product and uncover new molecules that have a role in the clinical application of CD4IL-10 cells.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , CD4-Positive T-Lymphocytes , Graft vs Host Disease/genetics , Graft vs Host Disease/therapy , Graft vs Leukemia Effect , Humans , Immunotherapy , T-Lymphocytes, Regulatory
19.
Trends Immunol ; 39(7): 577-590, 2018 07.
Article in English | MEDLINE | ID: mdl-29793748

ABSTRACT

Natural killer (NK) cells are involved in innate defenses against viruses and tumors. Their function is finely tuned by activating and inhibitory receptors. Among the latter, killer immunoglobulin-like receptors and CD94/NKG2A recognize human leukocyte antigen (HLA) Class I molecules, allowing NK cells to discriminate between normal and aberrant cells, as well as to recognize allogeneic cells, because of their ability to sense HLA polymorphisms. This latter phenomenon plays a key role in HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) for high-risk acute leukemia patients transplanted from an NK-alloreactive donor. Different haplo-HSCT settings have been developed, either T depleted or T replete - the latter requiring graft-versus-host disease prophylaxis. A novel graft manipulation, based on depletion of αß T cells and B cells, allows infusion of fully mature, including alloreactive, NK cells. The excellent patient clinical outcome underscores the importance of these innate cells in cancer therapy.


Subject(s)
Graft vs Leukemia Effect/immunology , Killer Cells, Natural/immunology , Leukemia/immunology , HLA Antigens/immunology , Hematopoietic Stem Cell Transplantation/methods , Humans
20.
Ann Hematol ; 100(7): 1871-1878, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33341918

ABSTRACT

Low intake of magnesium has been associated with the occurrence of lymphomas and decreased magnesium levels suppress the cytotoxic function of T cells and natural killer cells in patients with "X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia" (XMEN) syndrome. These cell types are also important mediators of immune-mediated effects after allogeneic hematopoietic stem cell transplantation. Here, we show that high posttransplant magnesium levels independently associate with a lower incidence of relapse, a higher risk of acute graft-versus-host disease, and a higher non-relapse mortality in 368 patients with acute myeloid leukemia from our center. Magnesium serum levels might impact on donor-cell-mediated immune responses in acute myeloid leukemia.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute/therapy , Magnesium/blood , Adolescent , Adult , Aged , Female , Follow-Up Studies , Graft vs Host Disease/blood , Graft vs Host Disease/diagnosis , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/diagnosis , Male , Middle Aged , Prognosis , Retrospective Studies , Transplantation, Homologous , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL