Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
Add more filters

Publication year range
1.
Immunity ; 50(6): 1513-1529.e9, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31126879

ABSTRACT

Broadly neutralizing antibodies (bNAbs) against HIV-1 envelope (Env) inform vaccine design and are potential therapeutic agents. We identified SF12 and related bNAbs with up to 62% neutralization breadth from an HIV-infected donor. SF12 recognized a glycan-dominated epitope on Env's silent face and was potent against clade AE viruses, which are poorly covered by V3-glycan bNAbs. A 3.3Å cryo-EM structure of a SF12-Env trimer complex showed additional contacts to Env protein residues by SF12 compared with VRC-PG05, the only other known donor-derived silentface antibody, explaining SF12's increased neutralization breadth, potency, and resistance to Env mutation routes. Asymmetric binding of SF12 was associated with distinct N-glycan conformations across Env protomers, demonstrating intra-Env glycan heterogeneity. Administrating SF12 to HIV-1-infected humanized mice suppressed viremia and selected for viruses lacking the N448gp120 glycan. Effective bNAbs can therefore be raised against HIV-1 Env's silent face, suggesting their potential for HIV-1 prevention, therapy, and vaccine development.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Amino Acid Sequence , Antibodies, Neutralizing/isolation & purification , Antibody Affinity/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Epitopes/chemistry , Epitopes/immunology , Glycosylation , HIV Antibodies/isolation & purification , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , Humans , Models, Molecular , Phylogeny , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding/immunology , Protein Conformation , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
2.
J Virol ; 96(2): e0158221, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34730398

ABSTRACT

BG505 SOSIP.664 (hereafter referred to as SOSIP), a stabilized trimeric mimic of the HIV-1 envelope spike resembling the native viral spike, is a useful tool for isolating anti-HIV-1 neutralizing antibodies. We screened long-term SHIV-AD8 infected rhesus monkeys for potency and breadth of serum neutralizing activity against autologous and heterologous viruses: SHIV-AD8, HIV-1 YU2, HIV-1 JR-CSF, and HIV-1 NL4-3. Monkey rh2436 neutralized all viruses tested and showed strong reactivity to the SOSIP trimer, suggesting this was a promising candidate for attempts at monoclonal antibody (MAb) isolation. MAbs were isolated by performing single B-cell sorts from peripheral blood mononuclear cells (PBMC) by FACS using the SOSIP trimer as a probe. An initial round of sorted cells revealed the majority of isolated MAbs were directed to the gp41 external domain portion of the SOSIP trimer and were mostly non-neutralizing against tested isolates. A second sort was performed, introducing a gp41 blocking step prior to PBMC staining and FACS sorting. These isolated MAbs bound SOSIP trimer but were no longer directed to the gp41 external domain portion. A significantly higher proportion of MAbs with neutralizing activity were obtained with this strategy. Our data show this pre-blocking step with gp41 greatly increases the yield of non-gp41-reactive, SOSIP-specific MAbs and increases the likelihood of isolating MAbs with neutralizing activity. IMPORTANCE Recent advancements in the field have focused on the isolation and use of broadly neutralizing antibodies for both prophylaxis and therapy. Finding a useful probe to isolate broad potent neutralizing antibodies while avoiding non-neutralizing antibodies is important. The SOSIP trimer has been shown to be a great tool for this purpose because it binds known broadly neutralizing antibodies. However, the SOSIP trimer can isolate non-neutralizing antibodies as well, including gp41-specific MAbs. Introducing a pre-blocking step with gp41 recombinant protein decreased the percent of gp41-specific antibodies isolated with SOSIP probe, as well as increased the number of neutralizing antibodies isolated. This method can be used as a tool to increase the chances of isolating neutralizing antibodies.


Subject(s)
Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , Simian Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibody Specificity , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/isolation & purification , HIV Antibodies/genetics , HIV Antibodies/isolation & purification , HIV Envelope Protein gp41/immunology , HIV-1/immunology , Immunoglobulin Variable Region/genetics , Macaca mulatta , Recombinant Proteins/immunology
3.
Proc Natl Acad Sci U S A ; 117(50): 32066-32077, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33239444

ABSTRACT

In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/therapy , HIV-1/immunology , Virus Replication/immunology , Adult , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Blood Transfusion, Autologous/methods , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Combined Modality Therapy/methods , Female , HIV Antibodies/blood , HIV Antibodies/isolation & purification , HIV Antibodies/therapeutic use , HIV Infections/blood , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Immunoglobulin G/therapeutic use , Leukapheresis , Male , Middle Aged , Primary Cell Culture , Virus Latency/drug effects , Virus Latency/immunology , Virus Replication/drug effects , env Gene Products, Human Immunodeficiency Virus/immunology
4.
Retrovirology ; 18(1): 17, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183026

ABSTRACT

BACKGROUND: HIV remains one of the most important health issues worldwide, with almost 40 million people living with HIV. Although patients develop antibodies against the virus, its high mutation rate allows evasion of immune responses. Some patients, however, produce antibodies that are able to bind to, and neutralise different strains of HIV. One such 'broadly neutralising' antibody is 'N6'. Identified in 2016, N6 can neutralise 98% of HIV-1 isolates with a median IC50 of 0.066 µg/mL. This neutralisation breadth makes N6 a very promising therapeutic candidate. RESULTS: N6 was expressed in a glycoengineered line of N. benthamiana plants (pN6) and compared to the mammalian cell-expressed equivalent (mN6). Expression at 49 mg/kg (fresh leaf tissue) was achieved in plants, although extraction and purification are more challenging than for most plant-expressed antibodies. N-glycoanalysis demonstrated the absence of xylosylation and a reduction in α(1,3)-fucosylation that are typically found in plant glycoproteins. The N6 light chain contains a potential N-glycosylation site, which was modified and displayed more α(1,3)-fucose than the heavy chain. The binding kinetics of pN6 and mN6, measured by surface plasmon resonance, were similar for HIV gp120. pN6 had a tenfold higher affinity for FcγRIIIa, which was reflected in an antibody-dependent cellular cytotoxicity assay, where pN6 induced a more potent response from effector cells than that of mN6. pN6 demonstrated the same potency and breadth of neutralisation as mN6, against a panel of HIV strains. CONCLUSIONS: The successful expression of N6 in tobacco supports the prospect of developing a low-cost, low-tech production platform for a monoclonal antibody cocktail to control HIV in low-to middle income countries.


Subject(s)
Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV-1/immunology , Nicotiana/immunology , HEK293 Cells , HIV Antibodies/isolation & purification , HIV Infections/immunology , HIV Infections/therapy , HIV-1/genetics , Humans , Inhibitory Concentration 50 , Neutralization Tests , Plant Leaves/genetics , Nicotiana/genetics
5.
Nature ; 509(7498): 55-62, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24590074

ABSTRACT

Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp160/chemistry , HIV Envelope Protein gp160/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Amino Acid Sequence , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/isolation & purification , Antibody Affinity/genetics , Antibody Affinity/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Binding Sites/immunology , CD4 Antigens/immunology , CD4 Antigens/metabolism , Cell Lineage , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Evolution, Molecular , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV Antibodies/isolation & purification , HIV Infections/immunology , HIV-1/chemistry , HIV-1/immunology , Humans , Models, Molecular , Molecular Sequence Data , Neutralization Tests , Protein Structure, Tertiary , Somatic Hypermutation, Immunoglobulin/genetics
6.
PLoS Pathog ; 13(1): e1006074, 2017 01.
Article in English | MEDLINE | ID: mdl-28076415

ABSTRACT

A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing antibodies and identifies a set of mutations in the gp120 C terminus that exposes the membrane-proximal external region of gp41, with potential utility in HIV vaccine design.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites, Antibody/genetics , HIV Antibodies/immunology , HIV Antigens/ultrastructure , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/immunology , HIV-1/immunology , Immune Evasion/genetics , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/isolation & purification , Binding Sites, Antibody/immunology , CD4 Antigens/pharmacology , Cell Line, Tumor , Complementarity Determining Regions/genetics , Crystallography, X-Ray , Epitopes/immunology , Glycosylation , HIV Antibodies/isolation & purification , HIV Antigens/genetics , HIV Antigens/immunology , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/genetics , HIV Infections/immunology , HIV-1/genetics , HeLa Cells , Humans , Immune Evasion/immunology , Neutralization Tests , Recombinant Proteins/pharmacology
7.
AIDS Care ; 31(10): 1319-1322, 2019 10.
Article in English | MEDLINE | ID: mdl-31088155

ABSTRACT

To find more effective test and intervention measures, and to achieve the first 90 of the 90-90-90 target, this study was conducted for the first time to develop and assess an innovative HIV anonymous urine test service-based vending machine and Internet at universities of China. From June to December 2016, 11 vending machines were placed in 7 pilot universities in Beijing, Sichuan, Yunnan and Heilongjiang provinces. A total of 957 HIV urine collection kits were dispensed free and also through vending machines and 378 (39.5%) urine samples were returned and 376 (99.5%) of them were qualified to be tested for HIV antibody in professional laboratories. Participants searched for confidential test results using an ID code online. Only seven (1.86%) urine samples were positive. Monitoring data showed 67.8% (255/376) participants searched for test results online, 72.2% of kits were purchased in dormitory buildings and 27.8% were purchased in teaching buildings and 88.9% were purchased between 21:00 and 24:00. In conclusion, this study analyzes the acceptability, feasibility and effectiveness of HIV testing and intervention service.


Subject(s)
AIDS Serodiagnosis/methods , HIV Antibodies/urine , HIV Infections/diagnosis , Mass Screening/methods , Urine Specimen Collection/methods , China , Feasibility Studies , HIV Antibodies/isolation & purification , HIV Infections/urine , HIV-1 , Humans , Patient Acceptance of Health Care , Reagent Kits, Diagnostic , Serologic Tests , Universities
8.
J Immunol ; 199(2): 816-826, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28615419

ABSTRACT

Ab-dependent cellular cytotoxicity (ADCC) responses are of growing interest in the HIV vaccine field but current cell-based assays are usually difficult to reproduce across laboratories. We developed an ELISA and multiplex assay to model the cross-linking of Fcγ receptors (FcγR) by Abs, which is required to initiate an ADCC response. Our FcγR dimer ELISA readily detected Abs in samples from two separate cohorts of the partially efficacious Thai RV144 HIV vaccine efficacy trial. The FcγR dimer-binding Abs induced by the RV144 regimen correlated well with a functional measure of ADCC as well as IgG subclasses. The high-throughput multiplex assay allowed us to simultaneously measure FcγR dimer-binding Abs to 32 different HIV Ags, providing a measure of the breadth of FcγR-binding Abs induced by the RV144 trial. FcγR-binding Abs specific to V regions 1 and 2 were strongly associated with increased breadth of recognition of different Env proteins, suggesting anti-V regions 1 and 2 Abs may be a marker of ADCC breadth. This FcγR dimer provides an important tool for the further analysis and refinement of ADCC-inducing HIV and other antiviral vaccine regimens.


Subject(s)
AIDS Vaccines/immunology , Antibody-Dependent Cell Cytotoxicity , Enzyme-Linked Immunosorbent Assay/methods , HIV Antibodies/immunology , Receptors, IgG/immunology , Antibodies, Monoclonal/immunology , Antibody Formation , Antigens, Viral/chemistry , Antigens, Viral/immunology , Binding Sites, Antibody , Cytotoxicity, Immunologic , HIV Antibodies/blood , HIV Antibodies/isolation & purification , Humans , Receptors, IgG/metabolism
9.
J Virol ; 91(8)2017 04 15.
Article in English | MEDLINE | ID: mdl-28122974

ABSTRACT

In light of the weak or absent neutralizing activity mediated by anti-V2 monoclonal antibodies (MAbs), we tested whether they can mediate Ab-dependent cellular phagocytosis (ADCP), which is an important element of anti-HIV-1 immunity. We tested six anti-V2 MAbs and compared them with 21 MAbs specific for V3, the CD4-binding site (CD4bs), and gp41 derived from chronically HIV-1-infected individuals and produced by hybridoma cells. ADCP activity was measured by flow cytometry using uptake by THP-1 monocytic cells of fluorescent beads coated with gp120, gp41, BG505 SOSIP.664, or BG505 DS-SOSIP.664 complexed with MAbs. The measurement of ADCP activity by the area under the curve showed significantly higher activity of anti-gp41 MAbs than of the members of the three other groups of MAbs tested using beads coated with monomeric gp41 or gp120; anti-V2 MAbs were dominant compared to anti-V3 and anti-CD4bs MAbs against clade C gp120ZM109 ADCP activity mediated by V2 and V3 MAbs was positive against stabilized DS-SOSIP.664 trimer but negligible against SOSIP.664 targets, suggesting that a closed envelope conformation better exposes the variable loops. Two IgG3 MAbs against the V2 and V3 regions displayed dominant ADCP activity compared to a panel of IgG1 MAbs. This superior ADCP activity was confirmed when two of three recombinant IgG3 anti-V2 MAbs were compared to their IgG1 counterparts. The study demonstrated dominant ADCP activity of anti-gp41 against monomers but not trimers, with some higher activity of anti-V2 MAbs than of anti-V3 and anti-CD4bs MAbs. The ability to mediate ADCP suggests a mechanism by which anti-HIV-1 envelope Abs can contribute to protective efficacy.IMPORTANCE Anti-V2 antibodies (Abs) correlated with reduced risk of HIV-1 infection in recipients of the RV144 vaccine, suggesting that they play a protective role, but a mechanism providing such protection remains to be determined. The rare and weak neutralizing activities of anti-V2 MAbs prompted us to study Fc-mediated activities. We compared anti-V2 MAbs with other MAbs specific for V3, CD4bs, and gp41 for Ab-dependent cellular phagocytosis (ADCP) activity, implicated in protective immunity. The anti-V2 MAbs displayed stronger activity than other anti-gp120 MAbs in screening against one of two gp120s and against DS-SOSIP, which mimics the native trimer. The activity of anti-gp41 MAbs was superior in targeting monomeric gp41 but was comparable to that seen against trimers, which may not adequately expose gp41 epitopes. While anti-envelope MAbs in general mediated ADCP activity, anti-V2 MAbs displayed some dominance compared to other MAbs. Our demonstration that anti-V2 MAbs mediate ADCP activity suggests a functional mechanism for their contribution to protective efficacy.


Subject(s)
Antibodies, Monoclonal/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/immunology , Monocytes/immunology , Phagocytosis , Antibodies, Monoclonal/isolation & purification , Binding Sites , Cell Line , Flow Cytometry , HIV Antibodies/isolation & purification , Humans , Immunoglobulin G/immunology
10.
PLoS Pathog ; 12(4): e1005537, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27064278

ABSTRACT

The simian immunodeficiency virus (SIV) challenge model of lentiviral infection is often used as a model to human immunodeficiency virus type 1 (HIV-1) for studying vaccine mediated and immune correlates of protection. However, knowledge of the structure of the SIV envelope (Env) glycoprotein is limited, as is knowledge of binding specificity, function and potential efficacy of SIV antibody responses. In this study we describe the use of a competitive probe binding sort strategy as well as scaffolded probes for targeted isolation of SIV Env-specific monoclonal antibodies (mAbs). We isolated nearly 70 SIV-specific mAbs directed against major sites of SIV Env vulnerability analogous to broadly neutralizing antibody (bnAb) targets of HIV-1, namely, the CD4 binding site (CD4bs), CD4-induced (CD4i)-site, peptide epitopes in variable loops 1, 2 and 3 (V1, V2, V3) and potentially glycan targets of SIV Env. The range of SIV mAbs isolated includes those exhibiting varying degrees of neutralization breadth and potency as well as others that demonstrated binding but not neutralization. Several SIV mAbs displayed broad and potent neutralization of a diverse panel of 20 SIV viral isolates with some also neutralizing HIV-2(7312A). This extensive panel of SIV mAbs will facilitate more effective use of the SIV non-human primate (NHP) model for understanding the variables in development of a HIV vaccine or immunotherapy.


Subject(s)
Gene Products, env/immunology , HIV Antibodies/immunology , Simian Immunodeficiency Virus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites , Epitopes/immunology , HIV Antibodies/isolation & purification , Humans , Neutralization Tests/methods
11.
PLoS Pathog ; 12(3): e1005456, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26982805

ABSTRACT

Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo. .


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , HIV Antibodies/immunology , HIV Antigens/immunology , HIV Infections/immunology , Vaccination , Cohort Studies , Female , Glycosylation , HIV Antibodies/isolation & purification , HIV Seropositivity , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G , Male , Phagocytosis
12.
Nature ; 491(7424): 406-12, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23151583

ABSTRACT

Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein.


Subject(s)
Antibodies, Neutralizing/metabolism , HIV Antibodies/metabolism , HIV Envelope Protein gp41/immunology , HIV-1/physiology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibody Specificity , Cells, Cultured , HEK293 Cells , HIV Antibodies/chemistry , HIV Antibodies/isolation & purification , HIV Envelope Protein gp41/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary
13.
J Virol ; 90(1): 76-91, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26468542

ABSTRACT

UNLABELLED: The epitopes defined by HIV-1 broadly neutralizing antibodies (bNAbs) are valuable templates for vaccine design, and studies of the immunological development of these antibodies are providing insights for vaccination strategies. In addition, the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of 12 V1V2-directed neutralizing antibodies, CAP256-VRC26, isolated from an HIV-1 clade C-infected donor at years 1, 2, and 4 of infection (N. A. Doria-Rose et al., Nature 509:55-62, 2014, http://dx.doi.org/10.1038/nature13036). Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. Thirteen antibodies were isolated from B cell culture, and eight were isolated using trimeric envelope probes for differential single B cell sorting. One of the new antibodies displayed a 10-fold greater neutralization potency than previously published lineage members. This antibody, CAP256-VRC26.25, neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency. Among the viruses neutralized, the median 50% inhibitory concentration was 0.001 µg/ml. All 33 lineage members targeted a quaternary epitope focused on V2. While all known bNAbs targeting the V1V2 region interact with the N160 glycan, the CAP256-VRC26 antibodies showed an inverse correlation of neutralization potency with dependence on this glycan. Overall, our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent. IMPORTANCE: Studies of HIV-1 broadly neutralizing antibodies (bNAbs) provide valuable information for vaccine design, and the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of V1V2-directed neutralizing antibodies from an HIV-1 clade C-infected donor. Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. One of the new antibodies, CAP256-VRC26.25, displayed a 10-fold greater neutralization potency than previously described lineage members. It neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency: the median 50% inhibitory concentration was 0.001 µg/ml. Our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent.


Subject(s)
Antibodies, Neutralizing/immunology , Cross Reactions , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/isolation & purification , Epitope Mapping , Female , HIV Antibodies/genetics , HIV Antibodies/isolation & purification , HIV Envelope Protein gp120/immunology , Humans , Inhibitory Concentration 50 , Molecular Sequence Data , Sequence Analysis, DNA
14.
Public Health ; 131: 71-4, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652710

ABSTRACT

OBJECTIVE: To study trends in human immunodeficiency virus (HIV) seroprevalence in blood donors in northern Pakistan. STUDY DESIGN: Analysis of annual data from blood transfusion centre. PLACE AND DURATION OF STUDY: Data records from people who had donated blood at the Armed Forces Institute of Transfusion (AFIT) between 1998 and 2013 were retrieved and analysed. METHODS: All blood donations were tested for the presence of HIV antibodies using Abbott Inc's AxSYM from 1998 to 2006, and Abbott Inc's Architect 2000i with chemiluminescence microplate immunoassay from 2007 to 2013. RESULTS: Over the 16-year study period, 66 donors tested positive for HIV antibodies out of 626,413 donations (0.01%, i.e. 10 per 100,000 donations). From 1998 to 2006, 16 HIV-positive cases were detected out of 280,245 donations (0.0057%, i.e. 5.7 per 100,000 donations). However, from 2007 to 2013, 50 HIV-positive cases were detected out of 346,168 donations (0.0144%, i.e. 14 per 100,000 donations). The difference in HIV positivity between the two groups was found to be significant (0.0057% vs 0.0144%, χ(2) = 10.4, P = 0.008). CONCLUSION: A gradual and persistent increase in the number of HIV-positive cases among blood donors in northern Pakistan was seen over the study period. The HIV-positive cases reported one or more high-risk activities in the past which predisposed them to HIV infection.


Subject(s)
Blood Donors/statistics & numerical data , HIV Infections/epidemiology , HIV Seroprevalence/trends , Blood Donors/psychology , Female , HIV Antibodies/blood , HIV Antibodies/isolation & purification , HIV Seropositivity/epidemiology , Humans , Male , Pakistan/epidemiology , Risk-Taking
15.
J Virol ; 88(14): 7715-26, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24807721

ABSTRACT

The RV144 ALVAC/AIDSVax HIV-1 vaccine clinical trial showed an estimated vaccine efficacy of 31.2%. Viral genetic analysis identified a vaccine-induced site of immune pressure in the HIV-1 envelope (Env) variable region 2 (V2) focused on residue 169, which is included in the epitope recognized by vaccinee-derived V2 monoclonal antibodies. The ALVAC/AIDSVax vaccine induced antibody-dependent cellular cytotoxicity (ADCC) against the Env V2 and constant 1 (C1) regions. In the presence of low IgA Env antibody levels, plasma levels of ADCC activity correlated with lower risk of infection. In this study, we demonstrate that C1 and V2 monoclonal antibodies isolated from RV144 vaccinees synergized for neutralization, infectious virus capture, and ADCC. Importantly, synergy increased the HIV-1 ADCC activity of V2 monoclonal antibody CH58 at concentrations similar to that observed in plasma of RV144 vaccinees. These findings raise the hypothesis that synergy among vaccine-induced antibodies with different epitope specificities contributes to HIV-1 antiviral antibody responses and is important to induce for reduction in the risk of HIV-1 transmission. Importance: The Thai RV144 ALVAC/AIDSVax prime-boost vaccine efficacy trial represents the only example of HIV-1 vaccine efficacy in humans to date. Studies aimed at identifying immune correlates involved in the modest vaccine-mediated protection identified HIV-1 envelope (Env) variable region 2-binding antibodies as inversely correlated with infection risk, and genetic analysis identified a site of immune pressure within the region recognized by these antibodies. Despite this evidence, the antiviral mechanisms by which variable region 2-specific antibodies may have contributed to lower rates of infection remain unclear. In this study, we demonstrate that vaccine-induced HIV-1 envelope variable region 2 and constant region 1 antibodies synergize for recognition of virus-infected cells, infectious virion capture, virus neutralization, and antibody-dependent cellular cytotoxicity. This is a major step in understanding how these types of antibodies may have cooperatively contributed to reducing infection risk and should be considered in the context of prospective vaccine design.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , HIV Antibodies/immunology , HIV Antibodies/isolation & purification , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , Humans
16.
Int Arch Allergy Immunol ; 167(4): 223-41, 2015.
Article in English | MEDLINE | ID: mdl-26414324

ABSTRACT

HIV infections represent a major global health threat, affecting more than 35 million individuals worldwide. High infection rates and problems associated with lifelong antiretroviral treatment emphasize the need for the development of prophylactic and therapeutic immune intervention strategies. It is conceivable that insights for the design of new immunogens capable of eliciting protective immune responses may come from the analysis of HIV-specific antibody responses in infected patients. Using sophisticated technologies, several monoclonal neutralizing antibodies were isolated from HIV-infected individuals. However, the majority of polyclonal antibody responses found in infected patients are nonneutralizing. Comprehensive analyses of the molecular targets of HIV-specific antibody responses identified that during natural infection antibodies are mainly misdirected towards gp120 epitopes outside of the CD4-binding site and against regions and proteins that are not exposed on the surface of the virus. We therefore argue that vaccines aiming to induce protective responses should include engineered immunogens, which are capable of focusing the immune response towards protective epitopes.


Subject(s)
HIV Antibodies/biosynthesis , HIV Infections/immunology , Amino Acid Sequence , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Antibody Specificity , Epitopes/chemistry , Epitopes/genetics , HIV Antibodies/classification , HIV Antibodies/isolation & purification , HIV Antigens/chemistry , HIV Antigens/genetics , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Infections/virology , Humans , Molecular Sequence Data , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
17.
Biotechnol Bioeng ; 112(12): 2624-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26032261

ABSTRACT

Monoclonal antibodies (mAbs) that bind and neutralize human pathogens have great therapeutic potential. Advances in automated screening and liquid handling have resulted in the ability to discover antigen-specific antibodies either directly from human blood or from various combinatorial libraries (phage, bacteria, or yeast). There remain, however, bottlenecks in the cloning, expression and evaluation of such lead antibodies identified in primary screens that hinder high-throughput screening. As such, "hit-to-lead identification" remains both expensive and time-consuming. By combining the advantages of overlap extension PCR (OE-PCR) and a genetically stable yet easily manipulatable microbial expression host Pichia pastoris, we have developed an automated pipeline for the rapid production and screening of full-length antigen-specific mAbs. Here, we demonstrate the speed, feasibility and cost-effectiveness of our approach by generating several broadly neutralizing antibodies against human immunodeficiency virus (HIV).


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV/immunology , Pichia/metabolism , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/metabolism , Drug Evaluation, Preclinical/methods , HIV Antibodies/genetics , HIV Antibodies/isolation & purification , HIV Antibodies/metabolism , Humans , Pichia/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Time Factors
18.
Nature ; 458(7238): 636-40, 2009 Apr 02.
Article in English | MEDLINE | ID: mdl-19287373

ABSTRACT

Antibodies to conserved epitopes on the human immunodeficiency virus (HIV) surface protein gp140 can protect against infection in non-human primates, and some infected individuals show high titres of broadly neutralizing immunoglobulin (Ig)G antibodies in their serum. However, little is known about the specificity and activity of these antibodies. To characterize the memory antibody responses to HIV, we cloned 502 antibodies from HIV envelope-binding memory B cells from six HIV-infected patients with broadly neutralizing antibodies and low to intermediate viral loads. We show that in these patients, the B-cell memory response to gp140 is composed of up to 50 independent clones expressing high affinity neutralizing antibodies to the gp120 variable loops, the CD4-binding site, the co-receptor-binding site, and to a new neutralizing epitope that is in the same region of gp120 as the CD4-binding site. Thus, the IgG memory B-cell compartment in the selected group of patients with broad serum neutralizing activity to HIV is comprised of multiple clonal responses with neutralizing activity directed against several epitopes on gp120.


Subject(s)
B-Lymphocytes/immunology , HIV Antibodies/analysis , HIV Antibodies/immunology , HIV Infections/immunology , Immunologic Memory/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Antibody Affinity , Binding Sites , CD4 Antigens/metabolism , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , HIV Antibodies/isolation & purification , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/immunology , Humans , Neutralization Tests , Receptors, HIV/metabolism , Viral Load , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism
19.
Plant Biotechnol J ; 12(3): 300-11, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24256218

ABSTRACT

The proposed clinical trial in Africa of VRC01, a potent broadly neutralizing antibody (bNAb) capable of neutralizing 91% of known HIV-1 isolates, raises concerns about testing a treatment which will be too expensive to be accessible by the most important target population, the poor in under-developed regions such as sub-Saharan Africa. Here, we report the expression of VRC01 in plants as an economic alternative to conventional mammalian-cell-based production platforms. The heavy and light chain genes of VRC01 were cloned onto a single vector, pTRAk.2, which was transformed into Nicotiana benthamiana or Nicotiana tabacum using transient and stable expression production systems respectively. VRC01 has been successfully expressed transiently in plants with expression level of approximately 80 mg antibody/kg; stable transgenic lines expressing up to 100 mg antibody/kg were also obtained. Plant-produced VRC01 from both systems showed a largely homogeneous N-glycosylation profile with a single dominant glycoform. The binding kinetics to gp120 IIIB (approximately 1 nM), neutralization of HIV-1 BaL or a panel of 10 VRC01-sensitive HIV-1 Env pseudoviruses of VRC01 produced in transient and stable plants were also consistent with VRC01 from HEK cells.


Subject(s)
Antibodies, Monoclonal/isolation & purification , HIV Antibodies/isolation & purification , HIV-1/immunology , Nicotiana/metabolism , Amino Acid Sequence , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/isolation & purification , Broadly Neutralizing Antibodies , Cell Line, Transformed , Gene Expression , Glycosylation , HIV Antibodies/biosynthesis , Humans , Molecular Sequence Data , Plants, Genetically Modified , Protein Binding , Nicotiana/genetics
20.
J Virol ; 87(2): 1137-49, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23152508

ABSTRACT

Few broadly neutralizing antibodies targeting determinants of the HIV-1 surface envelope glycoprotein (gp120) involved in sequential binding to host CD4 and chemokine receptors have been characterized. While these epitopes show low diversity among various isolates, HIV-1 employs many strategies to evade humoral immune response toward these sensitive sites, including a carbohydrate shield, low accessibility to these buried cavities, and conformational masking. Using trimeric gp140, free or bound to a CD4 mimic, as immunogens in llamas, we selected a panel of broadly neutralizing single-domain antibodies (sdAbs) that bind to either the CD4 or the coreceptor binding site (CD4BS and CoRBS, respectively). When analyzed as monomers or as homo- or heteromultimers, the best sdAb candidates could not only neutralize viruses carrying subtype B envelopes, corresponding to the Env molecule used for immunization and selection, but were also efficient in neutralizing a broad panel of envelopes from subtypes A, C, G, CRF01_AE, and CRF02_AG, including tier 3 viruses. Interestingly, sdAb multimers exhibited a broader neutralizing activity spectrum than the parental sdAb monomers. The extreme stability and high recombinant production yield combined with their broad neutralization capacity make these sdAbs new potential microbicide candidates for HIV-1 transmission prevention.


Subject(s)
Antibodies, Neutralizing/isolation & purification , HIV Antibodies/isolation & purification , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Single-Domain Antibodies/isolation & purification , Animals , Antibodies, Neutralizing/immunology , Binding Sites , Camelids, New World , Cross Reactions , HIV Antibodies/immunology , Humans , Immunization/methods , Single-Domain Antibodies/immunology
SELECTION OF CITATIONS
SEARCH DETAIL