Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.437
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 89: 637-666, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569522

ABSTRACT

The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.


Subject(s)
Endoplasmic Reticulum/metabolism , Evolution, Molecular , Gene Duplication , Saccharomyces cerevisiae/metabolism , Selection, Genetic , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Animals , Antiporters/genetics , Antiporters/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Endoplasmic Reticulum/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sphingosine N-Acyltransferase/genetics , Sphingosine N-Acyltransferase/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
2.
Cell ; 182(6): 1531-1544.e15, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32846158

ABSTRACT

The fidelity of intracellular signaling hinges on the organization of dynamic activity architectures. Spatial compartmentation was first proposed over 30 years ago to explain how diverse G protein-coupled receptors achieve specificity despite converging on a ubiquitous messenger, cyclic adenosine monophosphate (cAMP). However, the mechanisms responsible for spatially constraining this diffusible messenger remain elusive. Here, we reveal that the type I regulatory subunit of cAMP-dependent protein kinase (PKA), RIα, undergoes liquid-liquid phase separation (LLPS) as a function of cAMP signaling to form biomolecular condensates enriched in cAMP and PKA activity, critical for effective cAMP compartmentation. We further show that a PKA fusion oncoprotein associated with an atypical liver cancer potently blocks RIα LLPS and induces aberrant cAMP signaling. Loss of RIα LLPS in normal cells increases cell proliferation and induces cell transformation. Our work reveals LLPS as a principal organizer of signaling compartments and highlights the pathological consequences of dysregulating this activity architecture.


Subject(s)
Carcinogenesis/metabolism , Carcinoma, Hepatocellular/genetics , Cell Compartmentation/genetics , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Cyclic AMP/metabolism , HSP40 Heat-Shock Proteins/genetics , Liver Neoplasms/genetics , Signal Transduction , Animals , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinoma, Hepatocellular/metabolism , Cell Compartmentation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cyclic AMP/pharmacology , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoplasm/metabolism , Humans , Liver Neoplasms/metabolism , Mice , Oncogenes/genetics , Protein Domains , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins , Spectroscopy, Fourier Transform Infrared , Time-Lapse Imaging/methods
3.
Cell ; 175(4): 1088-1104.e23, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30318146

ABSTRACT

Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.


Subject(s)
ATP Synthetase Complexes/metabolism , Brain/metabolism , HSP40 Heat-Shock Proteins/metabolism , Mitochondria/metabolism , Williams Syndrome/genetics , Animals , Brain/growth & development , Cells, Cultured , Female , HEK293 Cells , HSP40 Heat-Shock Proteins/genetics , Humans , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Oxidative Phosphorylation
4.
Cell ; 171(7): 1625-1637.e13, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29198525

ABSTRACT

When unfolded proteins accumulate in the endoplasmic reticulum (ER), the unfolded protein response (UPR) increases ER-protein-folding capacity to restore protein-folding homeostasis. Unfolded proteins activate UPR signaling across the ER membrane to the nucleus by promoting oligomerization of IRE1, a conserved transmembrane ER stress receptor. However, the coupling of ER stress to IRE1 oligomerization and activation has remained obscure. Here, we report that the ER luminal co-chaperone ERdj4/DNAJB9 is a selective IRE1 repressor that promotes a complex between the luminal Hsp70 BiP and the luminal stress-sensing domain of IRE1α (IRE1LD). In vitro, ERdj4 is required for complex formation between BiP and IRE1LD. ERdj4 associates with IRE1LD and recruits BiP through the stimulation of ATP hydrolysis, forcibly disrupting IRE1 dimers. Unfolded proteins compete for BiP and restore IRE1LD to its default, dimeric, and active state. These observations establish BiP and its J domain co-chaperones as key regulators of the UPR.


Subject(s)
Endoribonucleases/metabolism , HSP40 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response , Animals , Cricetinae , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Humans , Protein Folding
6.
Mol Cell ; 84(13): 2455-2471.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38908370

ABSTRACT

Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.


Subject(s)
Escherichia coli Proteins , Escherichia coli , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Protein Biosynthesis , Protein Folding , Ribosomes , Ribosomes/metabolism , Ribosomes/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Protein Binding , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Models, Molecular , Protein Conformation , Peptidylprolyl Isomerase
7.
Cell ; 163(5): 1108-1123, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26582131

ABSTRACT

Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here, we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication, and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals.


Subject(s)
Dengue/virology , HSP70 Heat-Shock Proteins/metabolism , Virus Replication , Animals , Capsid Proteins/metabolism , Culicidae/virology , Dengue/metabolism , Dengue Virus , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Humans , Virus Replication/drug effects
8.
Mol Cell ; 82(4): 741-755.e11, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35148816

ABSTRACT

Stresses such as heat shock trigger the formation of protein aggregates and the induction of a disaggregation system composed of molecular chaperones. Recent work reveals that several cases of apparent heat-induced aggregation, long thought to be the result of toxic misfolding, instead reflect evolved, adaptive biomolecular condensation, with chaperone activity contributing to condensate regulation. Here we show that the yeast disaggregation system directly disperses heat-induced biomolecular condensates of endogenous poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used misfolded model substrate, firefly luciferase. Beyond its efficiency, heat-induced condensate dispersal differs from heat-induced aggregate dispersal in its molecular requirements and mechanistic behavior. Our work establishes a bona fide endogenous heat-induced substrate for long-studied heat shock proteins, isolates a specific example of chaperone regulation of condensates, and underscores needed expansion of the proteotoxic interpretation of the heat shock response to encompass adaptive, chaperone-mediated regulation.


Subject(s)
Biomolecular Condensates/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response , Poly(A)-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding, Competitive , Biomolecular Condensates/genetics , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Poly(A)-Binding Proteins/genetics , Protein Aggregates , Protein Binding , Protein Folding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
9.
Mol Cell ; 82(3): 555-569.e7, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35063133

ABSTRACT

In the eukaryotic cytosol, the Hsp70 and the Hsp90 chaperone machines work in tandem with the maturation of a diverse array of client proteins. The transfer of nonnative clients between these systems is essential to the chaperoning process, but how it is regulated is still not clear. We discovered that NudC is an essential transfer factor with an unprecedented mode of action: NudC interacts with Hsp40 in Hsp40-Hsp70-client complexes and displaces Hsp70. Then, the interaction of NudC with Hsp90 allows the direct transfer of Hsp40-bound clients to Hsp90 for further processing. Consistent with this mechanism, NudC increases client activation in vitro as well as in cells and is essential for cellular viability. Together, our results show the complexity of the cooperation between the major chaperone machineries in the eukaryotic cytosol.


Subject(s)
Cell Cycle Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Nuclear Proteins/metabolism , Binding Sites , Cell Cycle Proteins/genetics , Cell Survival , HEK293 Cells , HSP40 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Humans , K562 Cells , Kinetics , Molecular Docking Simulation , Nuclear Proteins/genetics , Protein Binding , Protein Folding , Protein Interaction Domains and Motifs , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Mol Cell ; 81(12): 2549-2565.e8, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33957083

ABSTRACT

Hsp70s comprise a deeply conserved chaperone family that has a central role in maintaining protein homeostasis. In humans, Hsp70 client specificity is provided by 49 different co-factors known as J domain proteins (JDPs). However, the cellular function and client specificity of JDPs have largely remained elusive. We have combined affinity purification-mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID) to characterize the interactome of all human JDPs and Hsp70s. The resulting network suggests specific functions for many uncharacterized JDPs, and we establish a role of conserved JDPs DNAJC9 and DNAJC27 in histone chaperoning and ciliogenesis, respectively. Unexpectedly, we find that the J domain of DNAJC27 but not of other JDPs can fully replace the function of endogenous DNAJC27, suggesting a previously unappreciated role for J domains themselves in JDP specificity. More broadly, our work expands the role of the Hsp70-regulated proteostasis network and provides a platform for further discovery of JDP-dependent functions.


Subject(s)
HSP40 Heat-Shock Proteins/physiology , HSP70 Heat-Shock Proteins/physiology , Protein Interaction Domains and Motifs/physiology , HEK293 Cells , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Molecular Chaperones/metabolism , Protein Binding , Protein Domains , rab GTP-Binding Proteins/metabolism
11.
Mol Cell ; 81(12): 2533-2548.e9, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33857403

ABSTRACT

From biosynthesis to assembly into nucleosomes, histones are handed through a cascade of histone chaperones, which shield histones from non-specific interactions. Whether mechanisms exist to safeguard the histone fold during histone chaperone handover events or to release trapped intermediates is unclear. Using structure-guided and functional proteomics, we identify and characterize a histone chaperone function of DNAJC9, a heat shock co-chaperone that promotes HSP70-mediated catalysis. We elucidate the structure of DNAJC9, in a histone H3-H4 co-chaperone complex with MCM2, revealing how this dual histone and heat shock co-chaperone binds histone substrates. We show that DNAJC9 recruits HSP70-type enzymes via its J domain to fold histone H3-H4 substrates: upstream in the histone supply chain, during replication- and transcription-coupled nucleosome assembly, and to clean up spurious interactions. With its dual functionality, DNAJC9 integrates ATP-resourced protein folding into the histone supply pathway to resolve aberrant intermediates throughout the dynamic lives of histones.


Subject(s)
HSP40 Heat-Shock Proteins/metabolism , Histone Chaperones/metabolism , Cell Line, Tumor , Chromatin , Chromatin Assembly and Disassembly , DNA Replication , HSP40 Heat-Shock Proteins/physiology , HSP70 Heat-Shock Proteins/metabolism , HeLa Cells , Histone Chaperones/physiology , Histones/metabolism , Humans , Minichromosome Maintenance Complex Component 2/metabolism , Models, Molecular , Molecular Chaperones/metabolism , Nucleosomes , Protein Binding , Proteomics/methods
12.
EMBO J ; 43(11): 2166-2197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600242

ABSTRACT

The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.


Subject(s)
Centromere Protein A , Chromosomal Instability , Histones , Humans , Centromere Protein A/metabolism , Centromere Protein A/genetics , Histones/metabolism , Histones/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 2/genetics , HeLa Cells , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Centromere/metabolism
13.
Cell ; 154(1): 134-45, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23791384

ABSTRACT

Dysfunction of protein quality control contributes to the cellular pathology of polyglutamine (polyQ) expansion diseases and other neurodegenerative disorders associated with aggregate deposition. Here we analyzed how polyQ aggregation interferes with the clearance of misfolded proteins by the ubiquitin-proteasome system (UPS). We show in a yeast model that polyQ-expanded proteins inhibit the UPS-mediated degradation of misfolded cytosolic carboxypeptidase Y(∗) fused to green fluorescent protein (GFP) (CG(∗)) without blocking ubiquitylation or proteasome function. Quantitative proteomic analysis reveals that the polyQ aggregates sequester the low-abundant and essential Hsp40 chaperone Sis1p. Overexpression of Sis1p restores CG(∗) degradation. Surprisingly, we find that Sis1p, and its homolog DnaJB1 in mammalian cells, mediates the delivery of misfolded proteins into the nucleus for proteasomal degradation. Sis1p shuttles between cytosol and nucleus, and its cellular level limits the capacity of this quality control pathway. Upon depletion of Sis1p by polyQ aggregation, misfolded proteins are barred from entering the nucleus and form cytoplasmic inclusions.


Subject(s)
Peptides/metabolism , Protein Folding , Proteolysis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Cell Nucleus/metabolism , Cytosol/metabolism , Fructose-Bisphosphatase/chemistry , Fructose-Bisphosphatase/metabolism , HEK293 Cells , HSP40 Heat-Shock Proteins/metabolism , HSP72 Heat-Shock Proteins/metabolism , Humans , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination
14.
Cell ; 152(5): 1134-45, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23452858

ABSTRACT

Translocation into the endoplasmic reticulum (ER) is an initial and crucial biogenesis step for all secreted and endomembrane proteins in eukaryotes. ER insertion can take place through the well-characterized signal recognition particle (SRP)-dependent pathway or the less-studied route of SRP-independent translocation. To better understand the prevalence of the SRP-independent pathway, we systematically defined the translocational dependence of the yeast secretome. By combining hydropathy-based analysis and microscopy, we uncovered that a previously unappreciated fraction of the yeast secretome translocates without the aid of the SRP. Furthermore, we validated a family of SRP-independent substrates-the glycosylphosphatidylinositol (GPI)-anchored proteins. Studying this family, we identified a determinant for ER targeting and uncovered a network of cytosolic proteins that facilitate SRP-independent targeting and translocation. These findings highlight the underappreciated complexity of SRP-independent translocation, which enables this pathway to efficiently cope with its extensive substrate flux.


Subject(s)
Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Molecular Chaperones/metabolism , Protein Transport , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Glycosylphosphatidylinositols/metabolism , HSP40 Heat-Shock Proteins/metabolism , Metabolic Networks and Pathways , Saccharomyces cerevisiae/cytology , Signal Recognition Particle/metabolism
15.
Mol Cell ; 78(2): 346-358.e9, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32268123

ABSTRACT

CAG-repeat expansions in at least eight different genes cause neurodegeneration. The length of the extended polyglutamine stretches in the corresponding proteins is proportionally related to their aggregation propensity. Although these proteins are ubiquitously expressed, they predominantly cause toxicity to neurons. To understand this neuronal hypersensitivity, we generated induced pluripotent stem cell (iPSC) lines of spinocerebellar ataxia type 3 and Huntington's disease patients. iPSC generation and neuronal differentiation are unaffected by polyglutamine proteins and show no spontaneous aggregate formation. However, upon glutamate treatment, aggregates form in neurons but not in patient-derived neural progenitors. During differentiation, the chaperone network is drastically rewired, including loss of expression of the anti-amyloidogenic chaperone DNAJB6. Upregulation of DNAJB6 in neurons antagonizes glutamate-induced aggregation, while knockdown of DNAJB6 in progenitors results in spontaneous polyglutamine aggregation. Loss of DNAJB6 expression upon differentiation is confirmed in vivo, explaining why stem cells are intrinsically protected against amyloidogenesis and protein aggregates are dominantly present in neurons.


Subject(s)
Amyloidogenic Proteins/genetics , Cell Differentiation/genetics , HSP40 Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Nerve Tissue Proteins/genetics , Neural Stem Cells/metabolism , Gene Expression Regulation/genetics , Gene Knockout Techniques , Glutamic Acid/metabolism , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Neural Stem Cells/pathology , Neurons/metabolism , Neurons/pathology , Protein Aggregates/genetics , Trinucleotide Repeat Expansion/genetics
16.
PLoS Biol ; 22(4): e3002585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648719

ABSTRACT

Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.


Subject(s)
Drosophila Proteins , HSP40 Heat-Shock Proteins , Memory, Long-Term , Animals , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Memory, Long-Term/physiology , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Mushroom Bodies/metabolism , Protein Multimerization , Transcription Factors/metabolism , Transcription Factors/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
17.
Cell ; 151(5): 1068-82, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23142051

ABSTRACT

Through in vivo selection of human cancer cell populations, we uncover a convergent and cooperative miRNA network that drives melanoma metastasis. We identify miR-1908, miR-199a-5p, and miR-199a-3p as endogenous promoters of metastatic invasion, angiogenesis, and colonization in melanoma. These miRNAs convergently target apolipoprotein E (ApoE) and the heat shock factor DNAJA4. Cancer-secreted ApoE suppresses invasion and metastatic endothelial recruitment (MER) by engaging melanoma cell LRP1 and endothelial cell LRP8 receptors, respectively, while DNAJA4 promotes ApoE expression. Expression levels of these miRNAs and ApoE correlate with human metastatic progression outcomes. Treatment of cells with locked nucleic acids (LNAs) targeting these miRNAs inhibits metastasis to multiple organs, and therapeutic delivery of these LNAs strongly suppresses melanoma metastasis. We thus identify miRNAs with dual cell-intrinsic/cell-extrinsic roles in cancer, reveal convergent cooperativity in a metastatic miRNA network, identify ApoE as an anti-angiogenic and metastasis-suppressive factor, and uncover multiple prognostic miRNAs with synergistic combinatorial therapeutic potential in melanoma.


Subject(s)
Apolipoproteins E/metabolism , Melanoma/genetics , MicroRNAs/metabolism , Neoplasm Metastasis/genetics , Neovascularization, Pathologic/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Disease Models, Animal , Endothelial Cells/metabolism , Gene Expression Regulation, Neoplastic , HSP40 Heat-Shock Proteins/metabolism , Humans , LDL-Receptor Related Proteins/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mice, Nude , MicroRNAs/antagonists & inhibitors , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Oligonucleotides/pharmacology
18.
Mol Cell ; 74(4): 831-843.e4, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31027880

ABSTRACT

The activity of the tumor suppressor p53 has to be timed and balanced closely to prevent untimely induction of cell death. The stability of p53 depends on the ubiquitin ligase Mdm2 but also on Hsp70 and Hsp90 chaperones that interact with its DNA binding domain (DBD). Using hydrogen exchange mass spectrometry and biochemical methods, we analyzed conformational states of wild-type p53-DBD at physiological temperatures and conformational perturbations in three frequent p53 cancer mutants. We demonstrate that the Hsp70/Hdj1 system shifts the conformational equilibrium of p53 toward a flexible, more mutant-like, DNA binding inactive state by binding to the DNA binding loop. The analyzed cancer mutants are likewise destabilized by interaction with the Hsp70/Hdj1 system. In contrast, Hsp90 protects the DBD of p53 wild-type and mutant proteins from unfolding. We propose that the Hsp70 and Hsp90 chaperone systems assume complementary functions to optimally balance conformational plasticity with conformational stability.


Subject(s)
HSP40 Heat-Shock Proteins/chemistry , Neoplasms/genetics , Protein Conformation , Tumor Suppressor Protein p53/chemistry , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/genetics , Humans , Mass Spectrometry , Molecular Chaperones , Neoplasms/pathology , Protein Domains/genetics , Protein Unfolding , Tumor Suppressor Protein p53/genetics
19.
Proc Natl Acad Sci U S A ; 121(24): e2320064121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833477

ABSTRACT

Synapse maintenance is essential for generating functional circuitry, and decrement in this process is a hallmark of neurodegenerative disease. Yet, little is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single-nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in the CSPα KO brain. Significantly, all neuronal classes in CSPα KO brains show strong signatures of repression in synaptic pathways, while up-regulating autophagy-related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. Glial responses varied by cell type, with microglia exhibiting activation. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, with the classical Neurexin1-Neuroligin 1 pair being the most prominent, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice to preserve synapse maintenance. Together, this study provides a rich dataset of transcriptional changes in the CSPα KO cortex and reveals insights into synapse maintenance and neurodegeneration.


Subject(s)
HSP40 Heat-Shock Proteins , Membrane Proteins , Mice, Knockout , Neurons , Synapses , Transcriptome , Animals , Synapses/metabolism , Mice , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Neurons/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neuroglia/metabolism
20.
PLoS Genet ; 20(3): e1011216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512964

ABSTRACT

Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Adolescent , Humans , Young Adult , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Liver Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL