Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.038
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(3): 560-576.e17, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36693374

ABSTRACT

Downward social mobility is a well-known mental risk factor for depression, but its neural mechanism remains elusive. Here, by forcing mice to lose against their subordinates in a non-violent social contest, we lower their social ranks stably and induce depressive-like behaviors. These rank-decline-associated depressive-like behaviors can be reversed by regaining social status. In vivo fiber photometry and single-unit electrophysiological recording show that forced loss, but not natural loss, generates negative reward prediction error (RPE). Through the lateral hypothalamus, the RPE strongly activates the brain's anti-reward center, the lateral habenula (LHb). LHb activation inhibits the medial prefrontal cortex (mPFC) that controls social competitiveness and reinforces retreats in contests. These results reveal the core neural mechanisms mutually promoting social status loss and depressive behaviors. The intertwined neuronal signaling controlling mPFC and LHb activities provides a mechanistic foundation for the crosstalk between social mobility and psychological disorder, unveiling a promising target for intervention.


Subject(s)
Habenula , Social Status , Mice , Animals , Reward , Social Behavior , Habenula/physiology , Depression
2.
Cell ; 185(19): 3568-3587.e27, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36113428

ABSTRACT

Computational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula (a structure with diverse, intermingled molecular, anatomical, and computational features), we identified encoding of reward-predictive cues and reward outcomes in distinct genetically defined neural populations, including TH+ cells and Tac1+ cells. Data from genetically targeted recordings were used to train an optimized nonlinear dynamical systems model and revealed activity dynamics consistent with a line attractor. High-density, cell-type-specific electrophysiological recordings and optogenetic perturbation provided supporting evidence for this model. Reverse-engineering predicted how Tac1+ cells might integrate reward history, which was complemented by in vivo experimentation. This integrated approach describes a process by which data-driven computational models of population activity can generate and frame actionable hypotheses for cell-type-specific investigation in biological systems.


Subject(s)
Habenula , Reward , Population Dynamics
3.
Cell ; 180(3): 536-551.e17, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31955849

ABSTRACT

Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.


Subject(s)
Cerebellum/physiology , Decision Making/physiology , Reaction Time/physiology , Zebrafish/physiology , Animals , Behavior, Animal/physiology , Brain Mapping/methods , Cerebrum/physiology , Cognition/physiology , Conditioning, Operant/physiology , Goals , Habenula/physiology , Hot Temperature , Larva/physiology , Motor Activity/physiology , Movement , Neurons/physiology , Psychomotor Performance/physiology , Rhombencephalon/physiology
4.
Cell ; 177(4): 970-985.e20, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031000

ABSTRACT

Prolonged behavioral challenges can cause animals to switch from active to passive coping strategies to manage effort-expenditure during stress; such normally adaptive behavioral state transitions can become maladaptive in psychiatric disorders such as depression. The underlying neuronal dynamics and brainwide interactions important for passive coping have remained unclear. Here, we develop a paradigm to study these behavioral state transitions at cellular-resolution across the entire vertebrate brain. Using brainwide imaging in zebrafish, we observed that the transition to passive coping is manifested by progressive activation of neurons in the ventral (lateral) habenula. Activation of these ventral-habenula neurons suppressed downstream neurons in the serotonergic raphe nucleus and caused behavioral passivity, whereas inhibition of these neurons prevented passivity. Data-driven recurrent neural network modeling pointed to altered intra-habenula interactions as a contributory mechanism. These results demonstrate ongoing encoding of experience features in the habenula, which guides recruitment of downstream networks and imposes a passive coping behavioral strategy.


Subject(s)
Adaptation, Psychological/physiology , Habenula/physiology , Animals , Behavior, Animal/physiology , Brain/metabolism , Habenula/metabolism , Larva , Neural Pathways/metabolism , Neurons/metabolism , Raphe Nuclei/metabolism , Serotonergic Neurons/metabolism , Serotonin , Stress, Physiological/physiology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
5.
Cell ; 166(3): 716-728, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27426949

ABSTRACT

Fear behaviors are regulated by adaptive mechanisms that dampen their expression in the absence of danger. By studying circuits and the molecular mechanisms underlying this adaptive response, we show that cholinergic neurons of the medial habenula reduce fear memory expression through GABAB presynaptic excitation. Ablating these neurons or inactivating their GABAB receptors impairs fear extinction in mice, whereas activating the neurons or their axonal GABAB receptors reduces conditioned fear. Although considered exclusively inhibitory, here, GABAB mediates excitation by amplifying presynaptic Ca(2+) entry through Cav2.3 channels and potentiating co-release of glutamate, acetylcholine, and neurokinin B to excite interpeduncular neurons. Activating the receptors for these neurotransmitters or enhancing neurotransmission with a phosphodiesterase inhibitor reduces fear responses of both wild-type and GABAB mutant mice. We identify the role of an extra-amygdalar circuit and presynaptic GABAB receptors in fear control, suggesting that boosting neurotransmission in this pathway might ameliorate some fear disorders.


Subject(s)
Cholinergic Neurons/metabolism , Fear/physiology , Habenula/physiology , Memory/physiology , Receptors, GABA-B/metabolism , Animals , Calcium/metabolism , Calcium Channels/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Neural Pathways , Neurotransmitter Agents/metabolism , Synaptic Transmission
6.
Nature ; 622(7984): 802-809, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37853123

ABSTRACT

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist1, has revolutionized the treatment of depression because of its potent, rapid and sustained antidepressant effects2-4. Although the elimination half-life of ketamine is only 13 min in mice5, its antidepressant activities can last for at least 24 h6-9. This large discrepancy poses an interesting basic biological question and has strong clinical implications. Here we demonstrate that after a single systemic injection, ketamine continues to suppress burst firing and block NMDARs in the lateral habenula (LHb) for up to 24 h. This long inhibition of NMDARs is not due to endocytosis but depends on the use-dependent trapping of ketamine in NMDARs. The rate of untrapping is regulated by neural activity. Harnessing the dynamic equilibrium of ketamine-NMDAR interactions by activating the LHb and opening local NMDARs at different plasma ketamine concentrations, we were able to either shorten or prolong the antidepressant effects of ketamine in vivo. These results provide new insights into the causal mechanisms of the sustained antidepressant effects of ketamine. The ability to modulate the duration of ketamine action based on the biophysical properties of ketamine-NMDAR interactions opens up new opportunities for the therapeutic use of ketamine.


Subject(s)
Antidepressive Agents , Depression , Habenula , Ketamine , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Antidepressive Agents/administration & dosage , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/metabolism , Habenula/drug effects , Habenula/metabolism , Half-Life , Ketamine/administration & dosage , Ketamine/metabolism , Ketamine/pharmacokinetics , Ketamine/pharmacology , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Time Factors , Protein Binding
7.
Proc Natl Acad Sci U S A ; 121(8): e2301449121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346189

ABSTRACT

GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the "Flash and Freeze-fracture" method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.


Subject(s)
Habenula , Receptors, GABA-B , Animals , Receptors, GABA-B/genetics , Receptors, GABA-B/metabolism , Habenula/metabolism , Astacoidea/metabolism , Presynaptic Terminals/metabolism , Caffeine , Neurotransmitter Agents/metabolism , gamma-Aminobutyric Acid/metabolism
8.
PLoS Biol ; 21(9): e3002282, 2023 09.
Article in English | MEDLINE | ID: mdl-37676855

ABSTRACT

Light in the environment greatly impacts a variety of brain functions, including sleep. Clinical evidence suggests that bright light treatment has a beneficial effect on stress-related diseases. Although stress can alter sleep patterns, the effect of bright light treatment on stress-induced sleep alterations and the underlying mechanism are poorly understood. Here, we show that bright light treatment reduces the increase in nonrapid eye movement (NREM) sleep induced by chronic stress through a di-synaptic visual circuit consisting of the thalamic ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), lateral habenula (LHb), and rostromedial tegmental nucleus (RMTg). Specifically, chronic stress causes a marked increase in NREM sleep duration and a complementary decrease in wakefulness time in mice. Specific activation of RMTg-projecting LHb neurons or activation of RMTg neurons receiving direct LHb inputs mimics the effects of chronic stress on sleep patterns, while inhibition of RMTg-projecting LHb neurons or RMTg neurons receiving direct LHb inputs reduces the NREM sleep-promoting effects of chronic stress. Importantly, we demonstrate that bright light treatment reduces the NREM sleep-promoting effects of chronic stress through the vLGN/IGL-LHb-RMTg pathway. Together, our results provide a circuit mechanism underlying the effects of bright light treatment on sleep alterations induced by chronic stress.


Subject(s)
Habenula , Sleep, Slow-Wave , Animals , Mice , Sleep , Cell Nucleus , Geniculate Bodies
9.
J Neurosci ; 44(30)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38897723

ABSTRACT

Light plays an essential role in a variety of physiological processes, including vision, mood, and glucose homeostasis. However, the intricate relationship between light and an animal's feeding behavior has remained elusive. Here, we found that light exposure suppresses food intake, whereas darkness amplifies it in male mice. Interestingly, this phenomenon extends its reach to diurnal male Nile grass rats and healthy humans. We further show that lateral habenula (LHb) neurons in mice respond to light exposure, which in turn activates 5-HT neurons in the dorsal Raphe nucleus (DRN). Activation of the LHb→5-HTDRN circuit in mice blunts darkness-induced hyperphagia, while inhibition of the circuit prevents light-induced anorexia. Together, we discovered a light-responsive neural circuit that relays the environmental light signals to regulate feeding behavior in mice.


Subject(s)
Feeding Behavior , Habenula , Light , Animals , Male , Mice , Habenula/physiology , Feeding Behavior/physiology , Dorsal Raphe Nucleus/physiology , Humans , Mice, Inbred C57BL , Eating/physiology , Neural Pathways/physiology , Rats , Serotonergic Neurons/physiology , Nerve Net/physiology , Darkness
10.
Nat Rev Neurosci ; 21(5): 277-295, 2020 05.
Article in English | MEDLINE | ID: mdl-32269316

ABSTRACT

The past decade has witnessed exponentially growing interest in the lateral habenula (LHb) owing to new discoveries relating to its critical role in regulating negatively motivated behaviour and its implication in major depression. The LHb, sometimes referred to as the brain's 'antireward centre', receives inputs from diverse limbic forebrain and basal ganglia structures, and targets essentially all midbrain neuromodulatory systems, including the noradrenergic, serotonergic and dopaminergic systems. Its unique anatomical position enables the LHb to act as a hub that integrates value-based, sensory and experience-dependent information to regulate various motivational, cognitive and motor processes. Dysfunction of the LHb may contribute to the pathophysiology of several psychiatric disorders, especially major depression. Recently, exciting progress has been made in identifying the molecular and cellular mechanisms in the LHb that underlie negative emotional state in animal models of drug withdrawal and major depression. A future challenge is to translate these advances into effective clinical treatments.


Subject(s)
Basal Ganglia/physiology , Basal Ganglia/physiopathology , Habenula/physiology , Habenula/physiopathology , Limbic System/physiology , Limbic System/physiopathology , Mesencephalon/physiology , Mesencephalon/physiopathology , Animals , Health , Humans , Mental Disorders/physiopathology , Neural Pathways/physiology , Neural Pathways/physiopathology
11.
Nature ; 574(7778): 372-377, 2019 10.
Article in English | MEDLINE | ID: mdl-31619789

ABSTRACT

Diabetes is far more prevalent in smokers than non-smokers, but the underlying mechanisms of vulnerability are unknown. Here we show that the diabetes-associated gene Tcf7l2 is densely expressed in the medial habenula (mHb) region of the rodent brain, where it regulates the function of nicotinic acetylcholine receptors. Inhibition of TCF7L2 signalling in the mHb increases nicotine intake in mice and rats. Nicotine increases levels of blood glucose by TCF7L2-dependent stimulation of the mHb. Virus-tracing experiments identify a polysynaptic connection from the mHb to the pancreas, and wild-type rats with a history of nicotine consumption show increased circulating levels of glucagon and insulin, and diabetes-like dysregulation of blood glucose homeostasis. By contrast, mutant Tcf7l2 rats are resistant to these actions of nicotine. Our findings suggest that TCF7L2 regulates the stimulatory actions of nicotine on a habenula-pancreas axis that links the addictive properties of nicotine to its diabetes-promoting actions.


Subject(s)
Glucose Metabolism Disorders/genetics , Habenula/metabolism , Signal Transduction , Tobacco Use Disorder/complications , Transcription Factor 7-Like 2 Protein/metabolism , Animals , Cyclic AMP/metabolism , Glucose/metabolism , Glucose Metabolism Disorders/metabolism , Humans , Mice , Mutagenesis , Nicotine/metabolism , PC12 Cells , Pancreas/metabolism , Rats , Receptors, Nicotinic/metabolism , Tobacco Use Disorder/genetics , Tobacco Use Disorder/metabolism , Transcription Factor 7-Like 2 Protein/genetics
12.
Proc Natl Acad Sci U S A ; 119(46): e2209870119, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36346845

ABSTRACT

Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.


Subject(s)
Habenula , Lung Diseases , Receptors, Nicotinic , Mice , Animals , Nicotine/pharmacology , Nicotine/metabolism , Habenula/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Receptors, Nicotinic/metabolism , Cholinergic Neurons/metabolism , Lung Diseases/metabolism
13.
Proc Natl Acad Sci U S A ; 119(50): e2208867119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36469769

ABSTRACT

As a critical node connecting the forebrain with the midbrain, the lateral habenula (LHb) processes negative feedback in response to aversive events and plays an essential role in value-based decision-making. Compulsive drug use, a hallmark of substance use disorder, is attributed to maladaptive decision-making regarding aversive drug-use-related events and has been associated with dysregulation of various frontal-midbrain circuits. To understand the contributions of frontal-habenula-midbrain circuits in the development of drug dependence, we employed a rat model of methamphetamine self-administration (SA) in the presence of concomitant footshock, which has been proposed to model compulsive drug-taking in humans. In this longitudinal study, functional MRI data were collected at pretraining baseline, after 20 d of long-access SA phase, and after 5 d of concomitant footshock coupled with SA (punishment phase). Individual differences in response to punishment were quantified by a "compulsivity index (CI)," defined as drug infusions at the end of punishment phase, normalized by those at the end of SA phase. Functional connectivity of LHb with the frontal cortices and substantia nigra (SN) after the punishment phase was positively correlated with the CI in rats that maintained drug SA despite receiving increasing-intensity footshock. In contrast, functional connectivity of the same circuits was negatively correlated with CI in rats that significantly reduced SA. These findings suggest that individual differences in compulsive drug-taking are reflected by alterations within frontal-LHb-SN circuits after experiencing the negative consequences from SA, suggesting these circuits may serve as unique biomarkers and potential therapeutic targets for individualized treatment of addiction.


Subject(s)
Habenula , Methamphetamine , Substance-Related Disorders , Humans , Rats , Animals , Habenula/physiology , Longitudinal Studies , Compulsive Behavior , Frontal Lobe/diagnostic imaging
14.
J Neurosci ; 43(48): 8259-8270, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37821229

ABSTRACT

The recent increase in the use of nicotine products by teenagers has revealed an urgent need to better understand the impact of nicotine on the adolescent brain. Here, we sought to examine the actions of extracellular ATP as a neurotransmitter and to investigate whether ATP and nicotinic signaling interact during adolescence. With the GRABATP (G-protein-coupled receptor activation-based ATP sensor), we first demonstrated that nicotine induces extracellular ATP release in the medial habenula, a brain region involved in nicotine aversion and withdrawal. Using patch-clamp electrophysiology, we then demonstrated that activation of the ATP receptors P2X or P2Y1 increases the neuronal firing of cholinergic neurons. Surprisingly, contrasting interactive effects were observed with nicotine exposure. For the P2X receptor, activation had no observable effect on acute nicotine-mediated activity, but during abstinence after 10 d of nicotine exposure, coexposure to nicotine and the P2X agonist potentiated neuronal activity in female, but not male, neurons. For P2Y1 signaling, a potentiated effect of the agonist and nicotine was observed with acute exposure, but not following extended nicotine exposure. These data reveal a complex interactive effect between nicotinic and ATP signaling in the adolescent brain and provide mechanistic insights into extracellular ATP signaling with sex-specific alterations of neuronal responses based on prior drug exposure.SIGNIFICANCE STATEMENT In these studies, it was discovered that nicotine induces extracellular ATP release in the medial habenula and subsequent activation of the ATP purinergic receptors increases habenular cholinergic neuronal firing in the adolescent brain. Interestingly, following extended nicotine exposure, nicotine was found to alter the interplay between purinergic and nicotinic signaling in a sex-specific manner. Together, these studies provide a novel understanding for the role of extracellular ATP in mediating habenular activity and reveal how nicotine exposure during adolescence alters these signaling mechanisms, which has important implications given the high incidence of e-cigarette/vape use by youth.


Subject(s)
Electronic Nicotine Delivery Systems , Habenula , Receptors, Purinergic P2 , Male , Adolescent , Female , Humans , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Synaptic Transmission , Cholinergic Neurons , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/pharmacology
15.
Neurobiol Dis ; 191: 106392, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145853

ABSTRACT

Having experienced stress during sensitive periods of brain development strongly influences how individuals cope with later stress. Some are prone to develop anxiety or depression, while others appear resilient. The as-yet-unknown mechanisms underlying these differences may lie in how genes and environmental stress interact to shape the circuits that control emotions. Here, we investigated the role of the habenulo-interpeduncular system (HIPS), a critical node in reward circuits, in early stress-induced anxiety in mice. We found that habenular and IPN components characterized by the expression of Otx2 are synaptically connected and particularly sensitive to chronic stress (CS) during the peripubertal period. Stress-induced peripubertal activation of this HIPS subcircuit elicits both HIPS hypersensitivity to later stress and susceptibility to develop anxiety. We also show that HIPS silencing through conditional Otx2 knockout counteracts these effects of stress. Together, these results demonstrate that a genetic factor, Otx2, and stress interact during the peripubertal period to shape the stress sensitivity of the HIPS, which is shown to be a key modulator of susceptibility or resilience to develop anxiety.


Subject(s)
Habenula , Resilience, Psychological , Mice , Animals , Anxiety Disorders/metabolism , Emotions , Habenula/metabolism , Anxiety
16.
Neurobiol Dis ; 198: 106543, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821376

ABSTRACT

Opioid system dysregulation in response to stress is known to lead to psychiatric disorders including major depression. Among three different types of opioid receptors, the mu-type receptors (mORs) are highly expressed in the habenula complex, however, the action of mORs in this area and its interaction with stress exposure is largely unknown. Therefore, we investigated the roles of mORs in the habenula using male rats of an acute learned helplessness (aLH) model. First, we found that mOR activation decreased both excitatory and inhibitory synaptic transmission onto the lateral habenula (LHb). Intriguingly, this mOR-induced synaptic depression was reduced in an animal model of depression compared to that of controls. In naïve animals, we found an unexpected interaction between mORs and the endocannabinoid (eCB) signaling occurring in the LHb, which mediates presynaptic alteration occurring with mOR activation. However, we did not observe presynaptic alteration by mOR activation after stress exposure. Moreover, selective mOR activation in the habenula before, but not after, stress exposure effectively reduced helpless behaviors compared to aLH animals. Our observations are consistent with clinical reports suggesting the involvement of mOR signaling in depression, and additionally reveal a critical time window of mOR action in the habenula for ameliorating helplessness symptoms.


Subject(s)
Depression , Habenula , Helplessness, Learned , Receptors, Opioid, mu , Synaptic Transmission , Animals , Habenula/metabolism , Male , Receptors, Opioid, mu/metabolism , Synaptic Transmission/physiology , Rats , Depression/metabolism , Rats, Sprague-Dawley , Stress, Psychological/metabolism , Disease Models, Animal
17.
BMC Neurosci ; 25(Suppl 1): 22, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627616

ABSTRACT

BACKGROUND: The habenula is a major regulator of serotonergic neurons in the dorsal raphe, and thus of brain state. The functional connectivity between these regions is incompletely characterized. Here, we use the ability of changes in irradiance to trigger reproducible changes in activity in the habenula and dorsal raphe of zebrafish larvae, combined with two-photon laser ablation of specific neurons, to establish causal relationships. RESULTS: Neurons in the habenula can show an excitatory response to the onset or offset of light, while neurons in the anterior dorsal raphe display an inhibitory response to light, as assessed by calcium imaging. The raphe response changed in a complex way following ablations in the dorsal habenula (dHb) and ventral habenula (vHb). After ablation of the ON cells in the vHb (V-ON), the raphe displayed no response to light. After ablation of the OFF cells in the vHb (V-OFF), the raphe displayed an excitatory response to darkness. After ablation of the ON cells in the dHb (D-ON), the raphe displayed an excitatory response to light. We sought to develop in silico models that could recapitulate the response of raphe neurons as a function of the ON and OFF cells of the habenula. Early attempts at mechanistic modeling using ordinary differential equation (ODE) failed to capture observed raphe responses accurately. However, a simple two-layer fully connected neural network (NN) model was successful at recapitulating the diversity of observed phenotypes with root-mean-squared error values ranging from 0.012 to 0.043. The NN model also estimated the raphe response to ablation of D-off cells, which can be verified via future experiments. CONCLUSION: Lesioning specific cells in different regions of habenula led to qualitatively different responses to light in the dorsal raphe. A simple neural network is capable of mimicking experimental observations. This work illustrates the ability of computational modeling to integrate complex observations into a simple compact formalism for generating testable hypotheses, and for guiding the design of biological experiments.


Subject(s)
Habenula , Laser Therapy , Animals , Dorsal Raphe Nucleus , Zebrafish , Habenula/surgery , Habenula/physiology , Computer Simulation
18.
J Magn Reson Imaging ; 59(3): 737-746, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37254969

ABSTRACT

The habenula (Hb) is involved in many natural human behaviors, and the relevance of its alterations in size and neural activity to several psychiatric disorders and addictive behaviors has been presumed and investigated in recent years using magnetic resonance imaging (MRI). Although the Hb is small, an increasing number of studies have overcome the difficulties in MRI. Conventional structural-based imaging also has great defects in observing the Hb contrast with adjacent structures. In addition, more and more attention should be paid to the Hb's functional, structural, and quantitative imaging studies. Several advanced MRI methods have recently been employed in clinical studies to explore the Hb and its involvement in psychiatric diseases. This review summarizes the anatomy and function of the human Hb; moreover, it focuses on exploring the human Hb with noninvasive MRI approaches, highlighting strategies to overcome the poor contrast with adjacent structures and the need for multiparametric MRI to develop imaging markers for diagnosis and treatment follow-up. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Habenula , Mental Disorders , Multiparametric Magnetic Resonance Imaging , Humans , Habenula/anatomy & histology , Magnetic Resonance Imaging/methods
19.
Brain Behav Immun ; 117: 412-427, 2024 03.
Article in English | MEDLINE | ID: mdl-38320683

ABSTRACT

Rheumatoid arthritis (RA) patients have a high prevalence for depression. On the other hand, comorbid with depression is associated with worse prognosis for RA. However, little is known about the underlying mechanisms for the comorbidity between RA and depression. It remains to be elucidated which brain region is critically involved in the development of depression in RA, and whether alterations in the brain may affect pathological development of RA symptoms. Here, by combining clinical and animal model studies, we show that in RA patients, the level of depression is significantly correlated with the severity of RA disease activity and affects patients' quality of life. The collagen antibody-induced arthritis (CAIA) mouse model of RA also develops depression-like behaviors, accompanied by hyperactivity and alterations in gene expression reflecting cerebrovascular disruption in the lateral habenula (LHb), a brain region critical for processing negative valence. Importantly, inhibition of the LHb not only alleviates depression-like behaviors, but also results in rapid remission of RA symptoms and amelioration of RA-related pathological changes. Together, our study highlights a critical but previously overlooked contribution of hyperactive LHb to the comorbidity between RA and depression, suggesting that targeting LHb in conjunction with RA treatments may be a promising strategy for RA patients comorbid with depression.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Habenula , Animals , Mice , Humans , Depression/epidemiology , Quality of Life , Arthritis, Rheumatoid/complications , Comorbidity
20.
Neurochem Res ; 49(3): 771-784, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38102342

ABSTRACT

The aversion to cold is a fundamental motivated behavior that contributes to the body temperature homeostasis. However, the involvement of the lateral habenula (LHb) as a regulatory hub for negative emotions in this physiological process remains uninvestigated. In this study, we demonstrate an elevation in the population activity of LHb neurons following exposure to cold stimuli. Additionally, we establish the necessity of Vglut2-expressing neurons within the LHb for the encoding of cold aversion behaviors. Furthermore, we have elucidated a neural circuit from excitatory neurons of the dorsomedial hypothalamus (DMH) to LHb that plays a crucial role in this progress. Manipulation of the DMH-LHb circuit has a significant impact on cold aversion behavior in mice. It is worth noting that this circuit does not exhibit any noticeable effects on autonomic thermoregulation or depression-like behavior. The identification of these neural mechanisms involved in behavioral thermoregulation provides a promising avenue for future research.


Subject(s)
Habenula , Mice , Animals , Habenula/physiology , Avoidance Learning/physiology , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL