Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS Biol ; 22(6): e3002665, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935589

ABSTRACT

Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.


Subject(s)
Hair Cells, Auditory, Inner , Neurotrophin 3 , Synapses , Animals , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Synapses/metabolism , Synapses/physiology , Neurotrophin 3/metabolism , Neurotrophin 3/genetics , Mice , Auditory Threshold , Evoked Potentials, Auditory/physiology , Reflex, Startle/physiology , Auditory Perception/physiology , Spiral Ganglion/metabolism , Female , Male , Hearing Loss, Hidden
2.
Cell Biol Toxicol ; 40(1): 79, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39289208

ABSTRACT

Noise-induced hidden hearing loss (HHL) is a newly uncovered form of hearing impairment that causes hidden damage to the cochlea. Patients with HHL do not have significant abnormalities in their hearing thresholds, but they experience impaired speech recognition in noisy environments. However, the mechanisms underlying HHL remain unclear. In this study, we developed single-cell transcriptome profiles of the cochlea of mice with HHL, detailing changes in individual cell types. Our study revealed a transient threshold shift, reduced auditory brainstem response wave I amplitude, and decreased number of ribbon synapses in HHL mice. Our findings suggest elevated oxidative stress and GDF15 expression in cochlear hair cells of HHL mice. Notably, the upregulation of GDF15 attenuated oxidative stress and auditory impairment in the cochlea of HHL mice. This suggests that a therapeutic strategy targeting GDF15 may be efficacious against HHL.


Subject(s)
Growth Differentiation Factor 15 , Hearing Loss, Noise-Induced , Oxidative Stress , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/genetics , Animals , Hearing Loss, Noise-Induced/metabolism , Mice , Cochlea/metabolism , Cochlea/pathology , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Male , Mice, Inbred C57BL , Evoked Potentials, Auditory, Brain Stem , Noise/adverse effects , Transcriptome/genetics , Disease Models, Animal , Hearing Loss, Hidden
3.
BMC Public Health ; 24(1): 953, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570765

ABSTRACT

OBJECTIVE: The diagnosis of hidden hearing loss (HHL) in calm state has not yet been determined, while the nutritional status is not involved in its pathogenic risk factors. In utero iron deficiency (ID) may delay auditory neural maturation in infants. We evaluated the association between ID and HHL as well as the modification effect of socioeconomic status (SES) on this association in newborns. STUDY DESIGN: We included 859 mother-newborns from the baseline of this observational northeast cohort. Data on exposure assessment included iron status [maternal hemoglobin (Hb) and neonatal heel prick serum ferritin (SF)] and SES (occupation, education and income). Auditory neural maturation was reflected by auditory brainstem response (ABR) testing and electrocochleography (ECochG). RESULTS: Iron status and SES were independently and jointly associated with the prediction of neonatal HHL by logistic and linear regression model. The mediation effects were performed by Process. ID increased absolute latency wave V, interpeak latency (IPL) III-V, and summting potentials (SP) /action potentials (AP), which were combined as HHL. Low SES showed the highest risk of HHL and the highest levels of related parameters in ID newborns. Moreover, after Corona Virus Disease 2019 (COVID-19) were positive, preschool children who experience ID in neonatal period were more likely to suffer from otitis media with effusion (OME). High SES also showed similar risk effects. CONCLUSION: Both low and high SES may strengthen the risk of ID on neonatal HHL in Northeast China.


Subject(s)
Iron Deficiencies , Mothers , Infant , Female , Child, Preschool , Humans , Infant, Newborn , Hearing Loss, Hidden , Iron , Social Class
4.
Eur Arch Otorhinolaryngol ; 281(9): 4735-4746, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38703194

ABSTRACT

PURPOSE: Patients with age-related hearing loss complain often about reduced speech perception in adverse listening environment. Studies on animals have suggested that cochlear synaptopathy may be one of the primary mechanisms responsible for this phenomenon. A decreased wave I amplitude in supra-threshold auditory brainstem response (ABR) can diagnose this pathology non-invasively. However, the interpretation of the wave I amplitude in humans remains controversial. Recent studies in mice have established a robust and reliable mathematic algorithm, i.e., curve curvature quantification, for detecting cochlear synaptopathy. This study aimed to determine whether the curve curvature has sufficient test-retest reliability to detect cochlear synaptopathy in aging humans. METHODS: Healthy participants were recruited into this prospective study. All subjects underwent an audiogram examination with standard and extended high frequencies ranging from 0.125 to 16 kHz and an ABR with a stimulus of 80 dB nHL click. The peak amplitude, peak latency, curvature at the peak, and the area under the curve of wave I were calculated and analyzed. RESULTS: A total of 80 individuals with normal hearing, aged 18 to 61 years, participated in this study, with a mean age of 26.4 years. Pearson correlation analysis showed a significant negative correlation between curvature and age, as well as between curvature and extended high frequency (EHF) threshold (10-16 kHz). Additionally, the same correlation was observed between age and area as well as age and EHF threshold. The model comparison demonstrated that the curvature at the peak of wave I is the best metric to correlate with EHF threshold. CONCLUSION: The curvature at the peak of wave I is the most sensitive metric for detecting cochlear synaptopathy in humans  and may be applied in routine diagnostics to detect early degenerations of the auditory nerve.


Subject(s)
Cochlea , Evoked Potentials, Auditory, Brain Stem , Humans , Evoked Potentials, Auditory, Brain Stem/physiology , Male , Female , Prospective Studies , Adult , Middle Aged , Cochlea/physiopathology , Cochlea/pathology , Reproducibility of Results , Young Adult , Aged , Synapses/physiology , Synapses/pathology , Auditory Threshold/physiology , Algorithms , Hearing Loss, Hidden
5.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791192

ABSTRACT

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Subject(s)
Cochlea , Intercellular Adhesion Molecule-1 , Noise , Oxidative Stress , Phycocyanin , Synapses , Animals , Oxidative Stress/drug effects , Guinea Pigs , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Synapses/drug effects , Synapses/metabolism , Noise/adverse effects , Intercellular Adhesion Molecule-1/metabolism , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/pathology , Reactive Oxygen Species/metabolism , Male , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Hydrogen Peroxide/metabolism , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Antioxidants/pharmacology , Cell Line , Hearing Loss, Hidden
6.
Article in Zh | MEDLINE | ID: mdl-38677986

ABSTRACT

Objective: To explore the mechanism of noise-induced hidden hearing loss by proteomics. Methods: In October 2022, 64 SPF male C57BL/6J mice were divided into control group and noise exposure group with 32 mice in each group according to random sampling method. The noise exposure group was exposed to 100 dB sound pressure level, 2000-16000 Hz broadband noise for 2 h, and the mouse hidden hearing loss model was established. Auditory brainstem response (ABR) was used to test the change of hearing threshold of mice on the 7th day after noise exposure, the damage of basal membrane hair cells was observed by immunofluorescence, and the differentially expressed proteins in the inner ear of mice in each group were identified and analyzed by 4D-Label-free quantitative proteomics, and verified by Western blotting. The results were statistically analyzed by ANOVA and t test. Results: On the 7th day after noise exposure, there was no significant difference in hearing threshold between the control group and the noise exposure group at click and 8000 Hz acoustic stimulation (P>0.05) . The hearing threshold in the noise exposure group was significantly higher than that in the control group under 16000 Hz acoustic stimulation (P<0.05) . Confocal immunofluorescence showed that the basal membrane hair cells of cochlear tissue in noise exposure group were arranged neatly, but the relative expression of C-terminal binding protein 2 antibody of presynaptic membrane in middle gyrus and basal gyrus was significantly lower than that in control group (P<0.05) . GO enrichment analysis showed that the functions of differentially expressed proteins were mainly concentrated in membrane potential regulation, ligand-gated channel activity, and ligand-gated ion channel activity. KEGG pathway enrichment analysis showed that differentially expressed proteins were significantly enriched in phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway, NOD-like receptor signaling pathway, calcium signaling pathway, etc. Western blotting showed that the expression of inositol 1, 4, 5-trisphosphate receptor 3 (Itpr3) was increased and the expression of solute carrier family 38 member 2 (Slc38a2) was decreased in the noise exposure group (P<0.05) . Conclusion: Through proteomic analysis, screening and verification of the differential expression proteins Itpr3 and Slc38a2 in the constructed mouse noise-induced hidden hearing loss model, the glutaminergic synaptic related pathways represented by Itpr3 and Slc38a2 may be involved in the occurrence of hidden hearing loss.


Subject(s)
Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Noise-Induced , Mice, Inbred C57BL , Noise , Proteomics , Animals , Mice , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/physiopathology , Male , Noise/adverse effects , Disease Models, Animal , Auditory Threshold , Ear, Inner/metabolism , Hearing Loss, Hidden
7.
Clin Neurophysiol ; 165: 44-54, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959535

ABSTRACT

OBJECTIVE: This study aimed to evaluate whether auditory brainstem response (ABR) using a paired-click stimulation paradigm could serve as a tool for detecting cochlear synaptopathy (CS). METHODS: The ABRs to single-clicks and paired-clicks with various inter-click intervals (ICIs) and scores for word intelligibility in degraded listening conditions were obtained from 57 adults with normal hearing. The wave I peak amplitude and root mean square values for the post-wave I response within a range delayed from the wave I peak (referred to as the RMSpost-w1) were calculated for the single- and second-click responses. RESULTS: The wave I peak amplitudes did not correlate with age except for the second-click responses at an ICI of 7 ms, and the word intelligibility scores. However, we found that the RMSpost-w1 values for the second-click responses significantly decreased with increasing age. Moreover, the RMSpost-w1 values for the second-click responses at an ICI of 5 ms correlated significantly with the scores for word intelligibility in degraded listening conditions. CONCLUSIONS: The magnitude of the post-wave I response for the second-click response could serve as a tool for detecting CS in humans. SIGNIFICANCE: Our findings shed new light on the analytical methods of ABR for quantifying CS.


Subject(s)
Acoustic Stimulation , Cochlea , Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Hidden , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Acoustic Stimulation/methods , Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Hidden/diagnosis , Hearing Loss, Hidden/physiopathology
8.
Hear Res ; 441: 108927, 2024 01.
Article in English | MEDLINE | ID: mdl-38096707

ABSTRACT

Cochlear synaptopathy is a common pathology in humans associated with aging and potentially sound overexposure. Synaptopathy is widely expected to cause "hidden hearing loss," including difficulty perceiving speech in noise, but support for this hypothesis is controversial. Here in budgerigars (Melopsittacus undulatus), we evaluated the impact of long-term cochlear synaptopathy on behavioral discrimination of Gaussian noise (GN) and low-noise noise (LNN) signals processed to have a flatter envelope. Stimuli had center frequencies of 1-3kHz, 100-Hz bandwidth, and were presented at sensation levels (SLs) from 10 to 30dB. We reasoned that narrowband, low-SL stimuli of this type should minimize spread of excitation across auditory-nerve fibers, and hence might reveal synaptopathy-related defects if they exist. Cochlear synaptopathy was induced without hair-cell injury using kainic acid (KA). Behavioral threshold tracking experiments characterized the minimum stimulus duration above which animals could reliably discriminate between LNN and GN. Budgerigar thresholds for LNN-GN discrimination ranged from 40 to 60ms at 30dB SL, were similar across frequencies, and increased for lower SLs. Notably, animals with long-term 39-77% estimated synaptopathy performed similarly to controls, requiring on average a ∼7.5% shorter stimulus duration (-0.7±1.0dB; mean difference ±SE) for LNN-GN discrimination. Decision-variable correlation analyses of detailed behavioral response patterns showed that individual animals relied on envelope cues to discriminate LNN and GN, with lesser roles of FM and energy cues; no difference was found between KA-exposed and control groups. These results suggest that long-term cochlear synaptopathy does not impair discrimination of low-level signals with different envelope statistics.


Subject(s)
Hearing Loss, Noise-Induced , Melopsittacus , Humans , Animals , Cochlea/pathology , Kainic Acid/toxicity , Acoustic Stimulation/adverse effects , Auditory Threshold/physiology , Hearing Loss, Hidden , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/pathology
9.
Hear Res ; 443: 108967, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38335624

ABSTRACT

Hearing loss affects approximately 18% of the population worldwide. Hearing difficulties in noisy environments without accompanying audiometric threshold shifts likely affect an even larger percentage of the global population. One of the potential causes of hidden hearing loss is cochlear synaptopathy, the loss of synapses between inner hair cells (IHC) and auditory nerve fibers (ANF). These synapses are the most vulnerable structures in the cochlea to noise exposure or aging. The loss of synapses causes auditory deafferentation, i.e., the loss of auditory afferent information, whose downstream effect is the loss of information that is sent to higher-order auditory processing stages. Understanding the physiological and perceptual effects of this early auditory deafferentation might inform interventions to prevent later, more severe hearing loss. In the past decade, a large body of work has been devoted to better understand hidden hearing loss, including the causes of hidden hearing loss, their corresponding impact on the auditory pathway, and the use of auditory physiological measures for clinical diagnosis of auditory deafferentation. This review synthesizes the findings from studies in humans and animals to answer some of the key questions in the field, and it points to gaps in knowledge that warrant more investigation. Specifically, recent studies suggest that some electrophysiological measures have the potential to function as indicators of hidden hearing loss in humans, but more research is needed for these measures to be included as part of a clinical test battery.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Humans , Hearing Loss, Noise-Induced/diagnosis , Hearing Loss, Noise-Induced/etiology , Noise , Auditory Threshold/physiology , Hearing Loss, Hidden , Auditory Perception , Cochlea , Synapses , Evoked Potentials, Auditory, Brain Stem/physiology
10.
ACS Nano ; 18(8): 6298-6313, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38345574

ABSTRACT

Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.


Subject(s)
Deafness , Glycolates , Hearing Loss, Noise-Induced , Animals , Mice , Brain-Derived Neurotrophic Factor/therapeutic use , Hearing Loss, Hidden , Hydrogels , Acoustic Stimulation/adverse effects , Auditory Threshold , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Noise-Induced/etiology , Deafness/complications , Ear, Middle
11.
JCI Insight ; 9(19)2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39178128

ABSTRACT

Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds and has become a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the effect of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Furthermore, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in patients with CMT1A might help develop robust clinical tests for HHL, which are currently lacking.


Subject(s)
Charcot-Marie-Tooth Disease , Disease Models, Animal , Animals , Charcot-Marie-Tooth Disease/physiopathology , Charcot-Marie-Tooth Disease/genetics , Mice , Cochlear Nerve/physiopathology , Hearing Loss/physiopathology , Humans , Male , Female , Hair Cells, Auditory, Inner/pathology , Auditory Threshold/physiology , Hearing Loss, Central/physiopathology , Hearing Loss, Hidden
12.
Hear Res ; 450: 109050, 2024 09 01.
Article in English | MEDLINE | ID: mdl-38852534

ABSTRACT

Since the presence of tinnitus is not always associated with audiometric hearing loss, it has been hypothesized that hidden hearing loss may act as a potential trigger for increased central gain along the neural pathway leading to tinnitus perception. In recent years, the study of hidden hearing loss has improved with the discovery of cochlear synaptopathy and several objective diagnostic markers. This study investigated three potential markers of peripheral hidden hearing loss in subjects with tinnitus: extended high-frequency audiometric thresholds, the auditory brainstem response, and the envelope following response. In addition, speech intelligibility was measured as a functional outcome measurement of hidden hearing loss. To account for age-related hidden hearing loss, participants were grouped according to age, presence of tinnitus, and audiometric thresholds. Group comparisons were conducted to differentiate between age- and tinnitus-related effects of hidden hearing loss. All three markers revealed age-related differences, whereas no differences were observed between the tinnitus and non-tinnitus groups. However, the older tinnitus group showed improved performance on low-pass filtered speech in noise tests compared to the older non-tinnitus group. These low-pass speech in noise scores were significantly correlated with tinnitus distress, as indicated using questionnaires, and could be related to the presence of hyperacusis. Based on our observations, cochlear synaptopathy does not appear to be the underlying cause of tinnitus. The improvement in low-pass speech-in-noise could be explained by enhanced temporal fine structure encoding or hyperacusis. Therefore, we recommend that future tinnitus research takes into account age-related factors, explores low-frequency encoding, and thoroughly assesses hyperacusis.


Subject(s)
Auditory Threshold , Evoked Potentials, Auditory, Brain Stem , Noise , Speech Perception , Tinnitus , Humans , Tinnitus/physiopathology , Tinnitus/diagnosis , Middle Aged , Male , Female , Adult , Aged , Noise/adverse effects , Age Factors , Speech Intelligibility , Hyperacusis/physiopathology , Hyperacusis/diagnosis , Acoustic Stimulation , Audiometry, Pure-Tone , Young Adult , Surveys and Questionnaires , Perceptual Masking , Hearing , Audiometry, Speech , Cochlea/physiopathology , Hearing Loss/physiopathology , Hearing Loss/diagnosis , Hearing Loss, Hidden
SELECTION OF CITATIONS
SEARCH DETAIL