Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 602(7895): 135-141, 2022 02.
Article in English | MEDLINE | ID: mdl-34987223

ABSTRACT

The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two ß-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.


Subject(s)
Anti-Bacterial Agents/history , Arthrodermataceae/metabolism , Hedgehogs/metabolism , Hedgehogs/microbiology , Methicillin Resistance/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Selection, Genetic/genetics , Animals , Anti-Bacterial Agents/metabolism , Arthrodermataceae/genetics , Denmark , Europe , Evolution, Molecular , Geographic Mapping , History, 20th Century , Humans , Methicillin-Resistant Staphylococcus aureus/metabolism , New Zealand , One Health , Penicillins/biosynthesis , Phylogeny , beta-Lactams/metabolism
2.
Nature ; 588(7839): 664-669, 2020 12.
Article in English | MEDLINE | ID: mdl-33328632

ABSTRACT

Current organoid models are limited by their inability to mimic mature organ architecture and associated tissue microenvironments1,2. Here we create multilayer bladder 'assembloids' by reconstituting tissue stem cells with stromal components to represent an organized architecture with an epithelium surrounding stroma and an outer muscle layer. These assembloids exhibit characteristics of mature adult bladders in cell composition and gene expression at the single-cell transcriptome level, and recapitulate in vivo tissue dynamics of regenerative responses to injury. We also develop malignant counterpart tumour assembloids to recapitulate the in vivo pathophysiological features of urothelial carcinoma. Using the genetically manipulated tumour-assembloid platform, we identify tumoural FOXA1, induced by stromal bone morphogenetic protein (BMP), as a master pioneer factor that drives enhancer reprogramming for the determination of tumour phenotype, suggesting the importance of the FOXA1-BMP-hedgehog signalling feedback axis between tumour and stroma in the control of tumour plasticity.


Subject(s)
Organoids/pathology , Organoids/physiology , Regeneration , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/physiopathology , Urinary Bladder/pathology , Urinary Bladder/physiology , Adult , Animals , Bone Morphogenetic Proteins/metabolism , Female , Hedgehogs/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Organoids/physiopathology , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/pathology , Stem Cells/physiology , Transcriptome , Urinary Bladder/cytology , Urinary Tract Infections/metabolism , Urinary Tract Infections/pathology
3.
Proc Natl Acad Sci U S A ; 120(1): e2208623119, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36584300

ABSTRACT

Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous Sox9 null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous Sox9 null mutation (Sox9+/-) with the Sox9+/Y440X CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some Sox9+/Y440X mice survived, all Sox9+/- mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in Sox9+/Y440X compared with Sox9+/-. Activating Sox9Y440X specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing Sox9+/Y440X limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9Y440X failed to interact with ß-catenin and was unable to suppress transactivation of Ihh in cell-based assays. We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9Y440X, cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.


Subject(s)
Hedgehogs , Wnt Signaling Pathway , Humans , Mice , Animals , Hedgehogs/metabolism , Gene Expression Regulation , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Cell Differentiation/genetics , Proteins/metabolism , Chondrocytes/metabolism
4.
Am J Respir Cell Mol Biol ; 68(5): 523-536, 2023 05.
Article in English | MEDLINE | ID: mdl-36693140

ABSTRACT

Normal lung development critically depends on HH (Hedgehog) and PDGF (platelet-derived growth factor) signaling, which coordinate mesenchymal differentiation and proliferation. PDGF signaling is required for postnatal alveolar septum formation by myofibroblasts. Recently, we demonstrated a requirement for HH in postnatal lung development involving alveolar myofibroblast differentiation. Given shared features of HH signaling and PDGF signaling and their impact on this key cell type, we sought to clarify their relationship during murine postnatal lung development. Timed experiments revealed that HH inhibition phenocopies the key lung myofibroblast phenotypes of Pdgfa (platelet-derived growth factor subunit A) and Pdgfra (platelet-derived growth factor receptor alpha) knockouts during secondary alveolar septation. Using a dual signaling reporter, Gli1lZ;PdgfraEGFP, we show that HH and PDGF pathway intermediates are concurrently expressed during alveolar septal myofibroblast accumulation, suggesting pathway convergence in the generation of lung myofibroblasts. Consistent with this hypothesis, HH inhibition reduces Pdgfra expression and diminishes the number of Pdgfra-positive and Pdgfra-lineage cells in postnatal lungs. Bulk RNA sequencing data of Pdgfra-expressing cells from Postnatal Day 8 (P8) lungs show that HH inhibition alters the expression not only of well-established HH targets but also of several putative PDGF target genes. This, together with the presence of Gli-binding sites in PDGF target genes, suggests HH input into PDGF signaling. We identified these HH/PDGF targets in several postnatal lung mesenchymal cell populations, including myofibroblasts, using single-cell transcriptomic analysis. Collectively, our data indicate that HH signaling and PDGF signaling intersect to support myofibroblast/fibroblast function during secondary alveolar septum formation. Moreover, they provide a molecular foundation relevant to perinatal lung diseases associated with impaired alveolarization.


Subject(s)
Hedgehogs , Lung , Pregnancy , Female , Animals , Mice , Hedgehogs/metabolism , Lung/metabolism , Platelet-Derived Growth Factor/metabolism , Myofibroblasts/metabolism , Fibroblasts/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism
5.
Hepatology ; 76(6): 1673-1689, 2022 12.
Article in English | MEDLINE | ID: mdl-35257388

ABSTRACT

BACKGROUND AND AIMS: It remains unknown how patients with liver failure maintain essential albumin levels. Here, we delineate a hierarchical transcription regulatory network that ensures albumin expression under different disease conditions. APPROACH AND RESULTS: We examined albumin levels in liver tissues and serum in 157 patients, including 84 with HCC, 38 decompensated cirrhosis, and 35 acute liver failure. Even in patients with liver failure, the average serum albumin concentrations were 30.55 g/L. In healthy subjects and patients with chronic liver diseases, albumin was expressed in hepatocytes. In patients with massive hepatocyte loss, albumin was expressed in liver progenitor cells (LPCs). The albumin gene (ALB) core promoter possesses a TATA box and nucleosome-free area, which allows constitutive RNA polymerase II binding and transcription initiation. Chromatin immunoprecipitation assays revealed that hepatocyte nuclear factor 4 alpha (HNF4α), CCAAT/enhancer-binding protein alpha (C/EBPα), and forkhead box A2 (FOXA2) bound to the ALB enhancer. Knockdown of either of these factors reduced albumin expression in hepatocytes. FOXA2 acts as a pioneer factor to support HNF4α and C/EBPα. In hepatocytes lacking HNF4α and C/EBPα expression, FOXA2 synergized with retinoic acid receptor (RAR) to maintain albumin transcription. RAR nuclear translocation was induced by retinoic acids released by activated HSCs. In patients with massive hepatocyte loss, LPCs expressed HNF4α and FOXA2. RNA sequencing and quantitative PCR analyses revealed that lack of HNF4α and C/EBPα in hepatocytes increased hedgehog ligand biosynthesis. Hedgehog up-regulates FOXA2 expression through glioblastoma family zinc finger 2 binding to the FOXA2 promoter in both hepatocytes and LPCs. CONCLUSIONS: A hierarchical regulatory network formed by master and pioneer transcription factors ensures essential albumin expression in various pathophysiological conditions.


Subject(s)
Carcinoma, Hepatocellular , Liver Failure , Liver Neoplasms , Humans , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Hedgehogs/metabolism , Liver Neoplasms/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Liver/metabolism , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Albumins , Liver Failure/metabolism
6.
Inflammopharmacology ; 31(2): 845-858, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36811777

ABSTRACT

Hepatic fibrosis is one of the major worldwide health concerns which requires tremendous research due to the limited outcomes of the current therapies. The present study was designed to assess, for the first time, the potential therapeutic effect of rupatadine (RUP) in diethylnitrosamine (DEN)-induced liver fibrosis and to explore its possible mechanistic actions. For the induction of hepatic fibrosis, rats were treated with DEN (100 mg/kg, i.p.) once weekly for 6 consecutive weeks, and on the 6th week, RUP (4 mg/kg/day, p.o.) was administered for 4 weeks. Treatment with RUP ameliorated changes in body weights, liver indices, liver function enzymes, and histopathological alterations induced by DEN. Besides, RUP amended oxidative stress, which led to the inhibition of PAF/NF-κB p65-induced inflammation, and, subsequently, prevention of TGF-ß1 elevation and HSCs activation as indicated by reduced α-SMA expression and collagen deposition. Moreover, RUP exerted significant anti-fibrotic and anti-angiogenic effects by suppressing Hh and HIF-1α/VEGF signaling pathways. Our results highlight, for the first time, a promising anti-fibrotic potential of RUP in rat liver. The molecular mechanisms underlying this effect involve the attenuation of PAF/NF-κB p65/TGF-ß1 and Hh pathways and, subsequently, the pathological angiogenesis (HIF-1α/VEGF).


Subject(s)
NF-kappa B , Transforming Growth Factor beta1 , Rats , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , Hedgehogs/metabolism , Vascular Endothelial Growth Factor A , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver/metabolism
7.
J Chem Ecol ; 47(6): 588-596, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33948884

ABSTRACT

Bioluminescence has been recognized as an important means for inter- and intra-species communication. A growing number of reports of red fluorescence occurring in keratinaceous materials have become available. The fluorophore(s) in these cases were shown to be, or suspected to be, free base porphyrins. The red fluorescence found in the downs of bustards was associated with inter-species signaling in mate selection. First reported in 1925, we confirm that spines of the European hedgehog (Erinaceus europaeus) when irradiated with UV (365-395 nm) light display red fluorescence localized in the light-colored sections of their proximal ends. Using reflectance fluorescence spectroscopy, we confirmed that the fluorophores responsible for the emission are free-base porphyrins, as suspected in the original report. Base-induced degradation of the spine matrix and subsequent HPLC, UV-vis, and ESI+ mass spectrometry analysis revealed the presence of a mixture of coproporphyrin III and uroporphyrin III as predominant porphyrins and a minor fraction of protoporphyrin IX. Investigation of the spine microbiome uncovered the abundant presence of bacteria known to secrete and/or interconvert porphyrins and that are not present on the non-fluorescing quills of the North American porcupine (Erethizon dorsatum). Given this circumstantial evidence, we propose the porphyrins could originate from commensal bacteria. Furthermore, we hypothesize that the fluorescence may be incidental and of no biological function for the hedgehog.


Subject(s)
Fluorescence , Hedgehogs/metabolism , Hedgehogs/microbiology , Porphyrins/metabolism , Spine , Animals , Hedgehogs/anatomy & histology
8.
J Cell Sci ; 131(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29930086

ABSTRACT

Hedgehog (Hh) transduces signals by promoting cell surface accumulation and activation of the G-protein-coupled receptor (GPCR)-family protein Smoothened (Smo) in Drosophila, but the molecular mechanism underlying the regulation of Smo trafficking remains poorly understood. Here, we identified the Cul4-DDB1 E3 ubiquitin ligase complex as being essential for Smo ubiquitylation and cell surface clearance. We found that the C-terminal intracellular domain of Smo recruits Cul4-DDB1 through the ß subunit of trimeric G protein (Gß), and that Cul4-DDB1-Gß promotes the ubiquitylation of both Smo and its binding partner G-protein-coupled-receptor kinase 2 (Gprk2) and induces the internalization and degradation of Smo. Hh dissociates Cul4-DDB1 from Smo by recruiting the catalytic subunit of protein kinase A (PKA) to phosphorylate DDB1, which disrupts its interaction with Gß. Inactivation of the Cul4-DDB1 complex resulted in elevated Smo cell surface expression, whereas an excessive amount of Cul4-DDB1 blocked Smo accumulation and attenuated Hh pathway activation. Taken together, our study identifies an E3 ubiquitin ligase complex targeting Smo for ubiquitylation and provides new insight into how Hh signaling regulates Smo trafficking and cell surface expression.


Subject(s)
Cullin Proteins/metabolism , Drosophila Proteins/metabolism , Signal Transduction/physiology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology , Animals , Cullin Proteins/genetics , Drosophila Proteins/genetics , Hedgehogs/genetics , Hedgehogs/metabolism , Protein Binding , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics
10.
Pharm Res ; 35(1): 17, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29305793

ABSTRACT

PURPOSE: The aim of this study was to determine whether co-administration of hedgehog (Hh) pathway inhibitor cyclopamine (CYP) and microtubule stabilizer docetaxel (DTX) as polymer-drug conjugates, methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-cyclopamine) (P-CYP) and methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol-graft-docetaxel) (P-DTX) could synergistically inhibit orthotopic pancreatic tumor growth in NSG mice. METHODS: P-DTX and P-CYP were synthesized from mPEG-b-PCC through carbodiimide coupling reaction and characterized by 1H-NMR. The micelles were prepared by film hydration and particle size was measured by dynamic light scattering (DLS). Cytotoxicity, apoptosis and cell cycle analysis of P-DTX and P-CYP were evaluated in MIA PaCa-2 cells. In vivo efficacy of P-DTX and P-CYP were evaluated in NSG mice bearing MIA PaCa-2 cells derived orthotopic pancreatic tumor. RESULTS: P-CYP and P-DTX self-assembled into micelles of <90 nm and their combination therapy efficiently inhibited the proliferation of MIA PaCa-2 cells, induced apoptosis and cell cycle arrest at M-phase more efficiently than P-CYP and P-DTX monotherapies. Furthermore, the combination therapy of P-CYP and P-DTX significantly reduced Hh component expression compared to P-CYP alone as determined by Western blot analysis. Lastly, the combination therapy induced greater inhibition of orthotopic pancreatic tumor growth in NSG mice compared to their monotherapies. CONCLUSION: Combination of polymer conjugated anticancer drug (P-DTX) with polymer conjugated Hh inhibitor (P-CYP) enhanced pancreatic cancer cell killing, apoptosis as well as in vivo tumor growth inhibition with no obvious toxicities.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Pancreatic Neoplasms/drug therapy , Polymers/chemistry , Taxoids/pharmacology , Veratrum Alkaloids/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Docetaxel , Drug Carriers , Drug Liberation , Hedgehogs/metabolism , Humans , Mice , Micelles , Microtubules/metabolism , Neoplasm Metastasis , Pancreatic Neoplasms/pathology , Proton Magnetic Resonance Spectroscopy , Taxoids/administration & dosage , Taxoids/chemistry , Veratrum Alkaloids/administration & dosage , Veratrum Alkaloids/chemistry
11.
Bull Environ Contam Toxicol ; 100(3): 361-368, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29333580

ABSTRACT

The residues of persistent organochlorinated pollutants (POPs), namely polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) (HCHs, CHLs, HCCPs, DDTs, and dicofol congeners) were investigated in the hair and muscle of road-killed Erinaceus roumanicus and E. concolor in Turkey. Mean residue levels were as follows: in hair, PCBs = 7.43 ± 4.88 ng/g and OCPs = 9.21 ± 1.27 ng/g; in muscle, PCBs = 30.73 ± 2.51 ng/g and OCPs = 145.04 ± 16.59 ng/g. There was no significant difference between species and sex, while there was significant difference between habitats and regions in terms of either total PCB and OCP levels, or POP levels (p < 0.05). Age was a determinative factor for the bio-accumulation of POPs. The contaminant levels were high in the species, sample areas, and habitats. The data also showed that tissues of hedgehogs are suitable for monitoring and evaluating the bioaccumulation of POP levels in Turkey.


Subject(s)
Environmental Monitoring/methods , Hedgehogs/metabolism , Hydrocarbons, Chlorinated/analysis , Pesticide Residues/analysis , Polychlorinated Biphenyls/analysis , Animals , Female , Hair/chemistry , Male , Muscles/chemistry , Species Specificity , Turkey
12.
Semin Cell Dev Biol ; 28: 78-85, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24780858

ABSTRACT

The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'.


Subject(s)
Neoplasms/genetics , Neoplasms/metabolism , Receptors, Notch/metabolism , Signal Transduction/physiology , Animals , Hedgehogs/metabolism , Humans , Mutation/genetics , Receptors, Notch/genetics , Signal Transduction/genetics
13.
BMC Cancer ; 16: 150, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26911235

ABSTRACT

BACKGROUND: Aberrant Hedgehog (Hh) signaling is associated with the development of many cancers including prostate cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, ovarian cancer, and basal cell carcinoma. The Hh signaling pathway has been one of the most intensely investigated targets for cancer therapy, and a number of compounds inhibiting Hh signaling are being tested clinically for treating many cancers. Lung cancer causes more deaths than the next three most common cancers (colon, breast, and prostate) combined. Cyclopamine was the first compound found to inhibit Hh signaling and has been invaluable for understanding the function of Hh signaling in development and cancer. To find novel strategies for combating lung cancer, we decided to characterize the effect of cyclopamine tartrate (CycT), an improved analogue of cyclopamine, on lung cancer cells and its mechanism of action. METHODS: The effect of CycT on oxygen consumption and proliferation of non-small-cell lung cancer (NSCLC) cell lines was quantified by using an Oxygraph system and live cell counting, respectively. Apoptosis was detected by using Annexin V and Propidium Iodide staining. CycT's impact on ROS generation, mitochondrial membrane potential, and mitochondrial morphology in NSCLC cells was monitored by using fluorometry and fluorescent microscopy. Western blotting and fluorescent microscopy were used to detect the levels and localization of Hh signaling targets, mitochondrial fission protein Drp1, and heme-related proteins in various NSCLC cells. RESULTS: Our findings identified a novel function of CycT, as well as another Hh inhibitor SANT1, to disrupt mitochondrial function and aerobic respiration. Our results showed that CycT, like glutamine depletion, caused a substantial decrease in oxygen consumption in a number of NSCLC cell lines, suppressed NSCLC cell proliferation, and induced apoptosis. Further, we found that CycT increased ROS generation, mitochondrial membrane hyperpolarization, and mitochondrial fragmentation, thereby disrupting mitochondrial function in NSCLC cells. CONCLUSIONS: Together, our work demonstrates that CycT, and likely other Hh signaling inhibitors, can interrupt NSCLC cell function by promoting mitochondrial fission and fragmentation, mitochondrial membrane hyperpolarization, and ROS generation, thereby diminishing mitochondrial respiration, suppressing cell proliferation, and causing apoptosis. Our work provides novel mechanistic insights into the action of Hh inhibitors in cancer cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Hedgehogs/metabolism , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Tartrates/pharmacokinetics , Veratrum Alkaloids/pharmacology , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Respiration/drug effects , Humans , Lung Neoplasms/drug therapy , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism
14.
Angew Chem Int Ed Engl ; 54(19): 5596-602, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25736574

ABSTRACT

Biology-oriented synthesis employs the structural information encoded in complex natural products to guide the synthesis of compound collections enriched in bioactivity. The trans-hydrindane dehydro-δ-lactone motif defines the characteristic scaffold of the steroid-like withanolides, a plant-derived natural product class with a diverse pattern of bioactivity. A withanolide-inspired compound collection was synthesized by making use of three key intermediates that contain this characteristic framework derivatized with different reactive functional groups. Biological evaluation of the compound collection in cell-based assays that monitored biological signal-transduction processes revealed a novel class of Hedgehog signaling inhibitors that target the protein Smoothened.


Subject(s)
Biological Products/pharmacology , Hedgehogs/metabolism , Signal Transduction/drug effects , Withanolides/pharmacology , Animals , Biological Products/chemical synthesis , Biological Products/chemistry , Dose-Response Relationship, Drug , Molecular Conformation , Structure-Activity Relationship , Withanolides/chemical synthesis , Withanolides/chemistry
15.
Nutrients ; 16(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474826

ABSTRACT

The crosstalk between oncogenic signaling pathways plays a crucial role in driving cancer development. We previously demonstrated that dietary polyphenols, specifically resveratrol (RSV) and other stilbenoids, epigenetically target oncogenes for silencing via DNA hypermethylation in breast cancer. In the present study, we identify signal transduction regulators among RSV-hypermethylated targets and investigate the functional role of RSV-mediated DNA hypermethylation in the regulation of Hedgehog and Wnt signaling. Non-invasive ER-positive MCF-7 and highly invasive triple-negative MCF10CA1a human breast cancer cell lines were used as experimental models. Upon 9-day exposure to 15 µM RSV, pyrosequencing and qRT-PCR were performed to assess DNA methylation and expression of GLI2 and WNT4, which are upstream regulators of the Hedgehog and Wnt pathways, respectively. Our results showed that RSV led to a DNA methylation increase within GLI2 and WNT4 enhancers, which was accompanied by decreases in gene expression. Consistently, we observed the downregulation of genes downstream of the Hedgehog and Wnt signaling, including common targets shared by both pathways, CCND1 and CYR61. Further analysis using chromatin immunoprecipitation identified increased H3K27 trimethylation and decreased H3K9 and H3K27 acetylation, along with abolishing OCT1 transcription factor binding. Those changes indicate a transcriptionally silent chromatin state at GLI2 and WNT4 enhancers. The inhibition of the Wnt signal transduction was confirmed using a phospho-antibody array that demonstrated suppression of positive and stimulation of negative Wnt regulators. In conclusion, our results provide scientific evidence for dietary polyphenols as epigenetics-modulating agents that act to re-methylate and silence oncogenes, reducing the oncogenic signal transduction. Targeting such an action could be an effective strategy in breast cancer prevention and/or adjuvant therapy.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Animals , Breast Neoplasms/metabolism , Resveratrol , Hedgehogs/genetics , Hedgehogs/metabolism , DNA Methylation , Epigenesis, Genetic , Triple Negative Breast Neoplasms/genetics , Wnt Signaling Pathway , DNA/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
16.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2563-79, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24311597

ABSTRACT

Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU-GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU-GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics.


Subject(s)
Hedgehogs/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Interaction Maps , Signal Transduction , Zinc Finger Protein GLI1
17.
Dev Cell ; 58(22): 2545-2562.e6, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37607545

ABSTRACT

Neural stem cells (NSCs) in the adult hippocampus are composed of multiple subpopulations. However, their origin and functional heterogeneity are still unclear. Here, we found that the contribution of murine Wnt-responsive (Axin2+) and Hedgehog-responsive (Gli1+) embryonic neural progenitors to adult NSCs started from early and late postnatal stages, respectively. Axin2+ adult NSCs were intended to actively proliferate, whereas Gli1+ adult NSCs were relatively quiescent and responsive to external stimuli. Moreover, Gli1+ NSC-derived adult-born neurons exhibited more complex dendritic arborization and connectivity than Axin2+ NSC-derived ones. Importantly, genetic cell ablation analysis identified that Axin2+ and Gli1+ adult NSCs were involved in hippocampus-dependent learning, but only Axin2+ adult NSCs were engaged in buffering stress responses and depressive behavior. Together, our study not only defined the heterogeneous multiple origins of adult NSCs but also advanced the concept that different subpopulations of adult NSCs may function differently.


Subject(s)
Adult Stem Cells , Neural Stem Cells , Mice , Animals , Hedgehogs/metabolism , Zinc Finger Protein GLI1/genetics , Neural Stem Cells/metabolism , Hippocampus/metabolism , Neurons/metabolism , Adult Stem Cells/metabolism , Neurogenesis/physiology
18.
Pathol Res Pract ; 249: 154736, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37579591

ABSTRACT

Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/ß-catenin, Notch, DNA damage response, TGF-ß, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/ß-catenin, Notch, TGF-ß, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , Animals , Breast Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , beta Catenin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , NF-kappa B/metabolism , Hedgehogs/genetics , Hedgehogs/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic/genetics
19.
J Invest Dermatol ; 142(1): 179-188.e4, 2022 01.
Article in English | MEDLINE | ID: mdl-34224745

ABSTRACT

The hedgehog (Hh) pathway is essential for animal development, but aberrant activation promotes cancer growth. In this study, we show that GIPC3, a PDZ domain-containing protein with putative adaptor protein function, positively modulates Hh target gene expression in normal fibroblasts and melanoma cells and supports melanoma tumor growth. Using overexpression and epistasis studies, we show that Gipc3 potentiates Hh transcriptional output and that it modulates GLI-dependent transcription independently of Sufu. Whereas we find that GIPC3 protein does not interact with Hh pathway components, Ingenuity Pathway Analyses of GIPC3-interacting proteins identified by coimmunoprecipitation and mass spectrometry show an association with cancer pathogenesis. Subsequent interrogation of The Cancer Genome Atlas and the Human Protein Atlas databases reveals GIPC3 upregulation in many cancers. Using expression screens in selected groups of GIPC3-upregulated cancers with reported Hh pathway activation, we find a significant positive correlation of GIPC3 expression with Hh pathway components GLI1, GLI2, and GPR161 in melanoma lines. Consistently, GIPC3 knockdown in melanoma lines significantly reduces GLI1 and GLI2 expression, cell viability, colony formation, and allograft tumor growth. Our findings highlight previously unidentified roles of GIPC3 in potentiating Hh response and melanoma tumorigenesis and suggest that GIPC3 modulation on Hh signaling may be targeted to reduce melanoma growth.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Melanoma/metabolism , Skin Neoplasms/metabolism , Adaptor Proteins, Signal Transducing/genetics , Allografts , Animals , Carcinogenesis , Cell Growth Processes , Gene Expression Regulation, Neoplastic , Hedgehogs/metabolism , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein Gli2/genetics , Zinc Finger Protein Gli2/metabolism
20.
J Invest Dermatol ; 142(1): 65-76.e7, 2022 01.
Article in English | MEDLINE | ID: mdl-34293352

ABSTRACT

Disruption of the transcriptional activity of the Hippo pathway members YAP1 and TAZ has become a major target for cancer treatment. However, detailed analysis of the effectiveness and networks affected by YAP1/TAZ transcriptional targeting is limited. In this study, we utilize TEAD inhibitor, an inhibitor of the binding of YAP1 and TAZ with their main transcriptional target TEAD in a mouse model of basal cell carcinoma, to unveil the consequences of YAP1/TAZ transcriptional blockage in cancer cells. Both TEAD inhibitor and YAP1/TAZ knockdown lead to reduced proliferation and increased differentiation of mouse basal cell carcinoma driven by oncogenic hedgehog-smoothened (SmoM2) activity. Although TEAD-transcriptional networks were essential to inactivate differentiation, this inactivation was found to be indirect and potentially mediated through the repression of KLF4 by SNAI2. By comparing the transcriptional effects of TEAD inhibition with those caused by YAP1/TAZ depletion, we determined YAP1/TAZ‒TEAD‒independent effects in cancer cells that impact STAT3 and NF-κB. Our results reveal the gene networks affected by targeting YAP1/TAZ‒TEAD in basal cell carcinoma tumors and expose the potential pitfalls for targeting TEAD transcription in cancer.


Subject(s)
Carcinoma, Basal Cell/metabolism , Hedgehogs/metabolism , TEA Domain Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , YAP-Signaling Proteins/metabolism , Animals , Carcinogenesis , Carcinoma, Basal Cell/genetics , Cell Differentiation , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Hippo Signaling Pathway , Humans , Kruppel-Like Factor 4/metabolism , Mice , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Snail Family Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics , YAP-Signaling Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL