Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters

Publication year range
1.
Nature ; 602(7895): 135-141, 2022 02.
Article in English | MEDLINE | ID: mdl-34987223

ABSTRACT

The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two ß-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.


Subject(s)
Anti-Bacterial Agents/history , Arthrodermataceae/metabolism , Hedgehogs/metabolism , Hedgehogs/microbiology , Methicillin Resistance/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Selection, Genetic/genetics , Animals , Anti-Bacterial Agents/metabolism , Arthrodermataceae/genetics , Denmark , Europe , Evolution, Molecular , Geographic Mapping , History, 20th Century , Humans , Methicillin-Resistant Staphylococcus aureus/metabolism , New Zealand , One Health , Penicillins/biosynthesis , Phylogeny , beta-Lactams/metabolism
2.
Med Mycol ; 62(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39020251

ABSTRACT

Enterocytozoon bieneusi microsporidia are emerging pathogens infecting a wide range of vertebrate and invertebrate hosts, known to have zoonotic features since they infect both wild and domestic animals, and humans. Despite their significance, there is very limited epidemiological data on microsporidia in hedgehogs, especially European hedgehogs (Erinaceus europaeus) and long-eared hedgehogs (Hemiechinus auritus), the former known as synantropic hedgehogs, and the latter suited as pets. As such, the present study aimed to assess the presence of E. bieneusi in hedgehogs from Portugal. For this purpose, fecal samples from 110 hedgehogs of three species-E. europaeus (n = 106), H. auritus (n = 1), and Atelerix albiventris (n = 3)-were collected and tested for E. bieneusi by PCR targeting the internal transcribed spacer region and the flanking small and large subunits of the rRNA. We found an overall occurrence of 22.7% (25/110; 95% confidence interval [CI]: 15.28-31.70), with 22.6% (24/106; 95% [CI]: 15.08-31.79) in E. europaeus, 100% (1/1) in H. auritus, and 0% in A. albiventris. Interestingly, three novel genotypes were identified, all belonging to the potentially zoonotic Group 1. Our findings highlight the importance of hedgehogs as potential reservoirs for E. bieneusi and emphasize the need for further research to understand their role in transmission dynamics and assess the associated risks to public and veterinary health.


Synanthropic hedgehogs were tested for Enterocytozoon bieneusi, the main cause of human microsporidiosis. Results showed 22.7% of hedgehogs were shedding E. bieneusi spores, with three new genotypes from the zoonotic Group 1. Hedgehogs may transmit to humans/animals, warranting more research.


Subject(s)
DNA, Fungal , Enterocytozoon , Feces , Hedgehogs , Microsporidiosis , Hedgehogs/microbiology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , Animals , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Portugal/epidemiology , Feces/microbiology , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Polymerase Chain Reaction , Phylogeny , Sequence Analysis, DNA , Genotype
3.
BMC Infect Dis ; 24(1): 1041, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333956

ABSTRACT

Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a type of zoonoses withwidespread distribution. In 2019, a case of Q fever was diagnosed by metagenomic next-generation sequencing (mNGS) method in Xuyi County (Jiangsu province, China). The seroprevalence of previous fever patients and the molecular epidemiology of Coxiella in wild hedgehogs and harbouring ticks around the confirmed patient were detected to reveal the genetic characteristics and pathogenicity of the Coxiella strains. Four of the 90 serum samples (4.44%) were positive for specific C. burnetii IgM antibody, suggesting that local humans are at risk of Q fever. The positive rates of C. burnetii in hedgehogs and ticks were 21.9% (7/32) and 70.5% (122/173), respectively. At least 3 strains of Coxiella were found prevalent in the investigated area, including one new genotype of pathogenic C. burnetii (XYHT29) and two non-pathogenic Coxiella-like organisms (XYHT19 and XYHT3). XYHT29 carried by ticks and wild hedgehogs successfully infected mice, imposing a potential threat to local humans. XYHT19, a novel Coxiella-like microorganism, was first discovered in the world to co-infect with C. burnetii in Haemaphysalis flava. The study provided significant epidemic information that could be used for prevention and control strategies against Q fever for local public health departments and medical institutions.


Subject(s)
Coxiella burnetii , Hedgehogs , Q Fever , Ticks , Q Fever/epidemiology , Q Fever/microbiology , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Animals , China/epidemiology , Humans , Ticks/microbiology , Hedgehogs/microbiology , Mice , Coinfection/microbiology , Coinfection/epidemiology , Female , Male , Seroepidemiologic Studies , Genotype , Antibodies, Bacterial/blood , High-Throughput Nucleotide Sequencing , Zoonoses/microbiology , Zoonoses/epidemiology , Coxiella/genetics , Coxiella/isolation & purification , Molecular Epidemiology , Phylogeny
4.
Euro Surveill ; 29(25)2024 Jun.
Article in English | MEDLINE | ID: mdl-38904114

ABSTRACT

BackgroundTo be better prepared for emerging wildlife-borne zoonoses, we need to strengthen wildlife disease surveillance.AimThe aim of this study was to create a topical overview of zoonotic pathogens in wildlife species to identify knowledge gaps and opportunities for improvement of wildlife disease surveillance.MethodsWe created a database, which is based on a systematic literature review in Embase focused on zoonotic pathogens in 10 common urban wildlife mammals in Europe, namely brown rats, house mice, wood mice, common voles, red squirrels, European rabbits, European hedgehogs, European moles, stone martens and red foxes. In total, we retrieved 6,305 unique articles of which 882 were included.ResultsIn total, 186 zoonotic pathogen species were described, including 90 bacteria, 42 helminths, 19 protozoa, 22 viruses and 15 fungi. Most of these pathogens were only studied in one single animal species. Even considering that some pathogens are relatively species-specific, many European countries have no (accessible) data on zoonotic pathogens in these relevant animal species. We used the Netherlands as an example to show how this database can be used by other countries to identify wildlife disease surveillance gaps on a national level. Only 4% of all potential host-pathogen combinations have been studied in the Netherlands.ConclusionsThis database comprises a comprehensive overview that can guide future research on wildlife-borne zoonotic diseases both on a European and national scale. Sharing and expanding this database provides a solid starting point for future European-wide collaborations to improve wildlife disease surveillance.


Subject(s)
Animals, Wild , Zoonoses , Animals , Animals, Wild/microbiology , Europe/epidemiology , Zoonoses/epidemiology , Databases, Factual , Humans , Rats , Sciuridae/microbiology , Hedgehogs/microbiology , Rabbits , Mice , Population Surveillance , Foxes/microbiology , Foxes/parasitology
5.
J Dtsch Dermatol Ges ; 22(10): 1337-1342, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39106217

ABSTRACT

BACKGROUND: Trichophyton (T.) erinacei is a rare but emerging zoonotic dermatophyte that is rarely isolated as a human pathogen, with only a few cases extensively described in the literature. PATIENTS AND METHODS: We conducted a systematic search to identify eligible articles reporting demographics, clinical characteristics, and the therapeutic approach regarding T. erinacei infection in humans. RESULTS: 168 patients affected by T. erinacei were reported in the international literature between inception and November 2023. Only 56 cases (32.1%) were fully described. The median age at diagnosis was 26 years, the female/male ratio was around 2:1. The main source of the disease was the hedgehog. The infection presented with a combination of erythema, scaly plaques, pustules, papules, vesicles, oedema, and erosion; the most common locations were the hands and the head. The most frequently conducted examination was fungal culture, but gene sequencing and mass spectrometry improved both speed and precision in the most recent diagnostic course. Topical clotrimazole and systemic terbinafine were the most chosen treatment. CONCLUSIONS: Trichophyton erinacei should be considered in patients with erythematous scaly patches and recent contact with hedgehogs. Terbinafine should be considered as a first-line effective treatment, griseofulvin and azoles could be considered valid alternatives.


Subject(s)
Antifungal Agents , Tinea , Trichophyton , Humans , Tinea/drug therapy , Tinea/microbiology , Tinea/diagnosis , Female , Male , Trichophyton/isolation & purification , Antifungal Agents/therapeutic use , Adult , Animals , Zoonoses/microbiology , Zoonoses/drug therapy , Zoonoses/diagnosis , Terbinafine/therapeutic use , Hedgehogs/microbiology
6.
Trop Anim Health Prod ; 56(7): 252, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225870

ABSTRACT

Tick-borne pathogens are significant for human, veterinary, and wildlife health. Coxiella burnetii is an example that is widely distributed across various hosts and can cross species boundaries. In Pakistan, there is a scarcity of data regarding C. burnetii at the intersection of wildlife and livestock. Ticks were collected from ruminants and wildlife from the districts of Kasur, Pakpattan, and Okara in Pakistan. Five tick species totaling 571 ticks were collected, with the following distribution: 56.4% Hyalomma anatolicum, 22.4% Rhipicephalus microplus, 10.5% Hyalomma marginatum, 7.9% Rhipicephalus sanguineus, and 2.8% Rhipicephalus turanicus. Fifty tick pools were screened for C. burnetii to amplify a segment of the IS1111 using real-time PCR assays. Ticks collected from sheep and goats had a greater rate of positivity for C. burnetii (40% and 38%, respectively) compared to Indian long-eared hedgehogs with a prevalence of 2%. Coxiella burnetii was prominent in Rhipicephalus microplus (92.3%) and Hyalomma anatolicum (88.9%), followed by Rhipicephalus turanicus (66.6%), Rhipicephalus sanguineus (33.3%), and Hyalomma marginatum (25.0%). Ticks from Pakpattan district displayed the highest prevalence of C. burnetii (88.9%), whereas the lowest was observed in ticks from Kasur district (77.3%). There was no significant association between tick gender and C. burnetii infection. Female host animals were more likely to harbor ticks containing C. burnetii, with a prevalence rate of 81.8%. The research underscores the urgent need for comprehensive studies on C. burnetii in Pakistan, especially at the interface of wildlife and livestock. The high prevalence rates observed in certain tick species and geographic regions emphasize the importance of targeted public health interventions. Future research should focus on elucidating the transmission dynamics and implementing effective control measures to mitigate the impact of these pathogens on human, veterinary, and wildlife health in the region.


Subject(s)
Animals, Wild , Coxiella burnetii , Goats , Ixodidae , Q Fever , Tick Infestations , Animals , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Pakistan/epidemiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Female , Q Fever/veterinary , Q Fever/epidemiology , Q Fever/microbiology , Ixodidae/microbiology , Male , Sheep , Prevalence , Hedgehogs/microbiology , Hedgehogs/parasitology , Real-Time Polymerase Chain Reaction/veterinary , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Goat Diseases/epidemiology , Goat Diseases/microbiology , Animals, Domestic
7.
Microb Ecol ; 84(2): 363-375, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34536095

ABSTRACT

The European hedgehog (Erinaceus europaeus Linnaeus) frequently colonises areas located close to human life in cities, as these are more suitable nest sites offering an abundance of food and allowing avoidance of predators. However, urbanisation has a significant impact on the epidemiology of infectious diseases, including dermatophytoses, the primary source of which are wild animals. In this study, we determined the spectrum of dermatophytes isolated from the European hedgehog and assessed their susceptibility profile to antifungal drugs. Symptomatic and asymptomatic dermatophyte infections were observed in 7.7% and 8% of the 182 examined free-living hedgehogs, respectively. In the pool of the isolated dermatophyte strains, Trichophyton erinacei was dominant (29.9%), followed by Trichophyton mentagrophytes (17.9%), Trichophyton benhamiae (13.4%), Nannizzia gypsea (11.9%), Microsporum canis (10.4%), Nannizzia nana (7.5%), Paraphyton cookei (6.0%), and Nannizzia fulva (3.0%). Susceptibility tests revealed the highest activity of luliconazole and the lowest of activity fluconazole among the azole drugs applied. Although terbinafine generally exhibited high efficacy, two Trichophyton mentagrophytes isolates showed resistance to this drug (MIC = 2 µg/ml) resulting from missense mutations in the SQLE gene corresponding to the amino acid substitution Leu393Phe. Summarising, our study has also revealed that such wildlife animals as hedgehogs can be a reservoir of pathogenic human dermatophytes, including harmful strains resistant to commonly used antifungal drugs.


Subject(s)
Arthrodermataceae , Tinea , Animals , Animals, Wild , Antifungal Agents/pharmacology , Arthrodermataceae/genetics , Hedgehogs/microbiology , Humans , Microbial Sensitivity Tests , Poland/epidemiology , Tinea/epidemiology , Tinea/microbiology , Tinea/veterinary , Trichophyton/genetics
8.
BMC Microbiol ; 21(1): 212, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34266385

ABSTRACT

BACKGROUND: A high carriage rate of methicillin-resistant Staphylococcus aureus with the mecC gene (mecC-MRSA) has been described among Wild European hedgehogs (Europeaus erineaus). Due to this frequent occurrence, it has been suggested that hedgehogs could be a natural reservoir for mecC-MRSA. However, the reason why hedgehogs carry mecC-MRSA remains unknown, but it has been hypothesized that mecC-MRSA could have evolved on the skin of hedgehogs due to the co-occurrence with antibiotic producing dermatophytes. The aim of this pilot-study was therefore to investigate if hedgehogs in Sweden carry Trichophyton spp. and to provide evidence that these dermatophytes are able to produce penicillin or similar substances. In addition, the study aimed to identify if dermatophytes co-occurred with mecC-MRSA. METHODS: Samples were collected from hedgehogs (Europeaus erineaus) that were euthanized or died of natural causes. All samples were screened for dermatophytes and mecC-MRSA using selective cultivation methods. Suspected isolates were characterized using PCR-based methods, genome sequencing and bioinformatic analyses. Identification of penicillin was performed by ultra-high-performance liquid chromatography-tandem mass spectrometry. RESULTS: In total 23 hedgehogs were investigated, and it was shown that two carried Trichophyton erinacei producing benzyl-penicillin, and that these hedgehogs also carried mecC-MRSA. The study also showed that 60% of the hedgehogs carried mecC-MRSA. CONCLUSION: The pilot-study demonstrated that Trichophyton erinacei, isolated from Swedish hedgehogs, can produce benzylpenicillin and that these benzylpenicillin-producing T. erinacei co-occurred with mecC-MRSA. The study also reconfirmed the high occurrence of mecC-MRSA among hedgehogs.


Subject(s)
Arthrodermataceae/physiology , Hedgehogs/microbiology , Animals , Arthrodermataceae/genetics , Arthrodermataceae/isolation & purification , Dermatomycoses/complications , Dermatomycoses/epidemiology , Dermatomycoses/microbiology , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Penicillin G/isolation & purification , Pilot Projects , Staphylococcal Infections/complications , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Sweden/epidemiology
9.
J Chem Ecol ; 47(6): 588-596, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33948884

ABSTRACT

Bioluminescence has been recognized as an important means for inter- and intra-species communication. A growing number of reports of red fluorescence occurring in keratinaceous materials have become available. The fluorophore(s) in these cases were shown to be, or suspected to be, free base porphyrins. The red fluorescence found in the downs of bustards was associated with inter-species signaling in mate selection. First reported in 1925, we confirm that spines of the European hedgehog (Erinaceus europaeus) when irradiated with UV (365-395 nm) light display red fluorescence localized in the light-colored sections of their proximal ends. Using reflectance fluorescence spectroscopy, we confirmed that the fluorophores responsible for the emission are free-base porphyrins, as suspected in the original report. Base-induced degradation of the spine matrix and subsequent HPLC, UV-vis, and ESI+ mass spectrometry analysis revealed the presence of a mixture of coproporphyrin III and uroporphyrin III as predominant porphyrins and a minor fraction of protoporphyrin IX. Investigation of the spine microbiome uncovered the abundant presence of bacteria known to secrete and/or interconvert porphyrins and that are not present on the non-fluorescing quills of the North American porcupine (Erethizon dorsatum). Given this circumstantial evidence, we propose the porphyrins could originate from commensal bacteria. Furthermore, we hypothesize that the fluorescence may be incidental and of no biological function for the hedgehog.


Subject(s)
Fluorescence , Hedgehogs/metabolism , Hedgehogs/microbiology , Porphyrins/metabolism , Spine , Animals , Hedgehogs/anatomy & histology
11.
Hautarzt ; 69(7): 576-585, 2018 Jul.
Article in German | MEDLINE | ID: mdl-29435597

ABSTRACT

Patient 1: After contact to a central European hedgehog (Erinaceus europaeus), a 50-year-old female with atopy developed erythrosquamous tinea manus on the thumb and thenar eminence of the right hand. The patient had previously been scalded by hot steam at the affected site. The zoophilic dermatophyte Trichophyton erinacei could be cultured from the hedgehog as well as from scrapings from the woman's skin. Antifungal treatment of the hedgehog was initiated using 2 weekly cycles of itraconazole solution (0.1 ml/kg body weight, BW). In addition, every other day enilconazole solution was used for topical treatment. The patient was treated with ciclopirox olamine cream and oral terbinafine 250 mg daily for 2 weeks, which led to healing of the Tinea manus .Patient 2: An 18-year-old woman presented for emergency consultation with rimmed, papulous, vesicular and erosive crusted skin lesions of the index finger, and an erythematous dry scaling round lesion on the thigh. The patient worked at an animal care facility, specifically caring for hedgehogs. One of the hedgehogs suffered from a substantial loss of spines. Fungal cultures from skin scrapings of both lesions yielded T. erinacei. Treatment with ciclopirox olamine cream and oral terbinafine 250 mg for 14 days was initiated which led to healing of the lesions. Identification of all three T. erinacei isolates from both patients and from the hedgehog was confirmed by sequencing of the internal transcribed spacer (ITS) region of the ribosomal DNA, and of the translation elongation factor (TEF)-1-alpha gene. Using ITS sequencing discrimination between T. erinacei strains from European and from African hedgehogs is possible. T. erinacei should be considered a so-called emerging pathogen. In Germany the zoophilic dermatophyte T. erinacei should be taken into account as causative agent of dermatomycoses in humans after contact to hedgehogs.


Subject(s)
Hedgehogs , Tinea , Trichophyton , Adolescent , Animals , Arthrodermataceae/isolation & purification , Arthrodermataceae/pathogenicity , Female , Germany , Hedgehogs/microbiology , Humans , Middle Aged , Tinea/diagnosis , Tinea/microbiology , Trichophyton/isolation & purification , Trichophyton/pathogenicity
12.
Med Mycol ; 55(2): 164-172, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27486214

ABSTRACT

Hedgehogs have increased in popularity as pets in Spain but there are no data of infection rates of this exotic animal with dermatophytes in our country. During the period of 2008-2011 a total of 20 pet hedgehogs (19 African pygmy hedgehogs and 1 Egyptian long-eared hedgehog) suspected of having dermatophytoses were studied. This is the first survey of the occurrence of T. erinacei in household hedgehogs in Spain. The T. erinacei infection rate was 50% (9 out of 19 African pygmy hedgehogs, and the one Egyptian long-eared hedgehog surveyed). Morphological identification of the isolates was confirmed by molecular analysis. All the strains had the same ITS sequence and showed 100% sequence similarity to T. erinacei type strain CBS 511.73 (AB 105793). The Spanish isolates were confirmed as T. erinacei urease positive. On the basis of ITS sequences, T. erinacei is a species close to but separate from the taxa included in the A. benhamiae complex. Review of the current literature on DNA-based methods for identification of species included in this complex has highlighted the urgent need to reach a consensus in species circumscription and classification system accepted by all mycologists.


Subject(s)
Hedgehogs/microbiology , Pets/microbiology , Tinea/veterinary , Trichophyton/classification , Trichophyton/isolation & purification , Animals , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Female , Genotype , Male , Microbiological Techniques , Microscopy , Phylogeny , Prevalence , Sequence Analysis, DNA , Spain/epidemiology , Tinea/epidemiology , Tinea/microbiology , Trichophyton/enzymology , Trichophyton/genetics , Urease/analysis
14.
Parasitology ; 143(10): 1232-42, 2016 09.
Article in English | MEDLINE | ID: mdl-27210612

ABSTRACT

Bartonella infection was explored in wild animals from Israel. Golden jackals (Canis aureus), red foxes (Vulpes vulpes), rock hyraxes (Procavia capensis), southern white-breasted hedgehogs (Erinaceus concolor), social voles (Microtus socialis), Tristram's jirds (Meriones tristrami), Cairo spiny mice (Acomys cahirinus), house mice (Mus musculus) and Indian crested porcupines (Hystrix indica) were sampled and screened by molecular and isolation methods. Bartonella-DNA was detected in 46 animals: 9/70 (13%) golden jackals, 2/11 (18%) red foxes, 3/35 (9%) rock hyraxes, 1/3 (33%) southern white-breasted hedgehogs, 5/57 (9%) Cairo spiny mice, 25/43 (58%) Tristram's jirds and 1/6 (16%) house mice. Bartonella rochalimae and B. rochalimae-like were widespread among jackals, foxes, hyraxes and jirds. This report represents the first detection of this zoonotic Bartonella sp. in rock hyraxes and golden jackals. Moreover, DNA of Bartonella vinsonii subsp. berkhoffii, Bartonella acomydis, Candidatus Bartonella merieuxii and other uncharacterized genotypes were identified. Three different Bartonella strains were isolated from Tristram's jirds, and several genotypes were molecularly detected from these animals. Furthermore, this study reports the first detection of Bartonella infection in a southern hedgehog. Our study indicates that infection with zoonotic and other Bartonella species is widespread among wild animals and stresses their potential threat to public health.


Subject(s)
Animals, Wild/microbiology , Bartonella Infections/veterinary , Bartonella/isolation & purification , Carnivora/microbiology , Hedgehogs/microbiology , Hyraxes/microbiology , Rodentia/microbiology , Animals , Bartonella/genetics , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Foxes/microbiology , Genotype , Israel/epidemiology , Murinae/microbiology , Polymerase Chain Reaction , Rodent Diseases/epidemiology
16.
Clin Exp Dermatol ; 39(1): 38-40, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24016062

ABSTRACT

We describe a case of kerion tinea barbae infection due to Trichophyton erinacei in a 37-year-old man. The infection had also been transferred to his partner by direct contact from kissing. T. erinacei is a zoophilic dermatophyte occasionally harboured by the hedgehog (Erinaceus europaeus). There are few reports of human infection in the literature, and it rarely causes a kerion. There is only one previous report of tinea barbae occurrence due to T. erinacei. This case highlights the possibility of one of the more unusual fungal infections that can be acquired in the UK, and highlights the necessity of asking specific questions to identify possible sources of infection.


Subject(s)
Dermatomycoses/microbiology , Hedgehogs/microbiology , Tinea/transmission , Trichophyton/isolation & purification , Adult , Animals , Humans , Male , Saliva
17.
Mycoses ; 57(2): 125-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23889168

ABSTRACT

The unusual case of a 29-year-old woman with tinea manus caused by infection due to Trichophyton erinacei is described. The patient presented with marked erosive inflammation of the entire fifth finger of her right hand. Mycological and genomic diagnostics resulted in identification of T. erinacei as the responsible pathogen, which had been transmitted by a domestic African pygmy hedgehog, Atelerix albiventris. Upon prolonged treatment with topical and systemic antifungal agents skin lesions slowly resolved. This case illustrates that the increasingly popular keeping of extraordinary pets such as hedgehogs may bear the risk of infections with uncommon dermatophytes.


Subject(s)
Hand/pathology , Hedgehogs/microbiology , Tinea/diagnosis , Tinea/pathology , Trichophyton/isolation & purification , Zoonoses/diagnosis , Zoonoses/pathology , Animals , Antifungal Agents/therapeutic use , Female , Humans , Tinea/drug therapy , Tinea/microbiology , Treatment Outcome , Zoonoses/drug therapy , Zoonoses/microbiology
18.
Ned Tijdschr Geneeskd ; 1682024 08 21.
Article in Dutch | MEDLINE | ID: mdl-39228347

ABSTRACT

This case describes a 58-year-old woman who presented to the dermatology outpatient clinic with progressive skin lesions on the hands. Physical examination showed erythematosquamous plaques. The diagnosis zoonotic dermatomycosis was made based on fungal cultures, which showed a Trichophyton erinacei. This dermatophyte is particularly transmitted through hedgehogs. The patient appeared to have taken care of an infected hedgehog.


Subject(s)
Hedgehogs , Tinea , Trichophyton , Humans , Female , Middle Aged , Hedgehogs/microbiology , Tinea/diagnosis , Tinea/drug therapy , Tinea/microbiology , Animals , Trichophyton/isolation & purification , Zoonoses/diagnosis , Antifungal Agents/therapeutic use
19.
Acta Vet Scand ; 66(1): 32, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010071

ABSTRACT

BACKGROUND: European hedgehogs (Erinaceus europaeus) are widely distributed across Europe. They may play an important role by spreading zoonotic bacteria in the environment and to humans and animals. The aim of our work was to study the prevalence and characteristics of the most important foodborne bacterial pathogens in wild hedgehogs. RESULTS: Faecal samples from 148 hospitalised wild hedgehogs originating from the Helsinki region in southern Finland were studied. Foodborne pathogens were detected in 60% of the hedgehogs by PCR. Listeria (26%) and STEC (26%) were the most common foodborne pathogens. Salmonella, Yersinia, and Campylobacter were detected in 18%, 16%, and 7% of hedgehogs, respectively. Salmonella and Yersinia were highly susceptible to the tested antimicrobials. Salmonella Enteritidis and Listeria monocytogenes 2a were the most common types found in hedgehogs. All S. Enteritidis belonged to one sequence type (ST11), forming four clusters of closely related isolates. L. monocytogenes was genetically more diverse than Salmonella, belonging to 11 STs. C. jejuni ST45 and ST677, Y. pseudotuberculosis O:1 of ST9 and ST42, and Y. enterocolitica O:9 of ST139 were also found. CONCLUSIONS: Our study shows that wild European hedgehogs should be considered an important source of foodborne pathogens, and appropriate hygiene measures after any contact with hedgehogs and strict biosecurity around farms are therefore important.


Subject(s)
Hedgehogs , Hedgehogs/microbiology , Animals , Finland/epidemiology , Prevalence , Feces/microbiology , Animals, Wild/microbiology , Foodborne Diseases/microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/veterinary , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
20.
J Chromatogr A ; 1724: 464923, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38653039

ABSTRACT

Efficient separation of deoxyribonucleic acid (DNA) through magnetic nanoparticles (MN) is a widely used biotechnology. Hedgehog-inspired MNs (HMN) possess a high-surface-area due to the distinct burr-like structure of hedgehog, but there is no report about the usage of HMN for DNA extraction. Herein, to improve the selection of MN and illustrate the performance of HMN for DNA separation, HMN and silica-coated Fe3O4 nanoparticles (Fe3O4@SiO2) were fabricated and compared for the high-efficient separation of pathogenic bacteria of DNA. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are typical Gram-negative and Gram-positive bacteria and are selected as model pathogenic bacteria. To enhance the extraction efficiency of two kinds of MNs, various parameters, including pretreatment, lysis, binding and elution conditions, have been optimized in detail. In most separation experiments, the DNA yield of HMN was higher than that of Fe3O4@SiO2. Therefore, a HMN-based magnetic solid-phase microextraction (MSPE) and quantitative real-time PCR (qPCR) were integrated and used to detect pathogenic bacteria in real samples. Interestingly, the HMN-based MSPE combined qPCR strategy exhibited high sensitivity with a limit of detection of 2.0 × 101 CFU mL-1 for E. coli and 4.0 × 101 CFU mL-1 for S. aureus in orange juice, and 2.8 × 102 CFU mL-1 for E. coli and 1.1 × 102 CFU mL-1 for S. aureus in milk, respectively. The performance of the proposed strategy was significantly better than that of commercial kit. This work could prove that the novel HMN could be applicable for the efficient separation of DNA from complex biological samples.


Subject(s)
DNA, Bacterial , Escherichia coli , Magnetite Nanoparticles , Solid Phase Microextraction , Staphylococcus aureus , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/chemistry , Escherichia coli/chemistry , Escherichia coli/isolation & purification , Magnetite Nanoparticles/chemistry , DNA, Bacterial/isolation & purification , DNA, Bacterial/analysis , Solid Phase Microextraction/methods , Silicon Dioxide/chemistry , Real-Time Polymerase Chain Reaction , Limit of Detection , Hedgehogs/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL