Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33441484

ABSTRACT

Humans express seven heparan sulfate (HS) 3-O-sulfotransferases that differ in substrate specificity and tissue expression. Although genetic studies have indicated that 3-O-sulfated HS modulates many biological processes, ligand requirements for proteins engaging with HS modified by 3-O-sulfate (3-OS) have been difficult to determine. In particular, the context in which the 3-OS group needs to be presented for binding is largely unknown. We describe herein a modular synthetic approach that can provide structurally diverse HS oligosaccharides with and without 3-OS. The methodology was employed to prepare 27 hexasaccharides that were printed as a glycan microarray to examine ligand requirements of a wide range of HS-binding proteins. The binding selectivity of antithrombin-III (AT-III) compared well with anti-Factor Xa activity supporting robustness of the array technology. Many of the other examined HS-binding proteins required an IdoA2S-GlcNS3S6S sequon for binding but exhibited variable dependence for the 2-OS and 6-OS moieties, and a GlcA or IdoA2S residue neighboring the central GlcNS3S. The HS oligosaccharides were also examined as inhibitors of cell entry by herpes simplex virus type 1, which, surprisingly, showed a lack of dependence of 3-OS, indicating that, instead of glycoprotein D (gD), they competitively bind to gB and gC. The compounds were also used to examine substrate specificities of heparin lyases, which are enzymes used for depolymerization of HS/heparin for sequence determination and production of therapeutic heparins. It was found that cleavage by lyase II is influenced by 3-OS, while digestion by lyase I is only affected by 2-OS. Lyase III exhibited sensitivity to both 3-OS and 2-OS.


Subject(s)
Epithelial Cells/metabolism , Heparin Lyase/metabolism , Heparitin Sulfate/metabolism , Herpesvirus 1, Human/metabolism , Sulfates/metabolism , Sulfotransferases/metabolism , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Antithrombin III/chemistry , Antithrombin III/genetics , Antithrombin III/metabolism , Binding Sites , Binding, Competitive , Carbohydrate Sequence , Cell Line , Cornea/cytology , Cornea/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Factor Xa/chemistry , Factor Xa/genetics , Factor Xa/metabolism , Factor Xa Inhibitors/chemistry , Factor Xa Inhibitors/metabolism , Gene Expression , Glucuronic Acid/chemistry , Glucuronic Acid/metabolism , Heparin Lyase/chemistry , Heparin Lyase/genetics , Heparitin Sulfate/chemistry , Herpesvirus 1, Human/growth & development , Host-Pathogen Interactions/genetics , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Microarray Analysis , Protein Binding , Proteolysis , Small Molecule Libraries , Substrate Specificity , Sulfates/chemistry , Sulfotransferases/chemistry , Sulfotransferases/genetics , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
2.
Prep Biochem Biotechnol ; 53(10): 1297-1305, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37040156

ABSTRACT

Heparinase I (EC 4.2.2.7), is an enzyme that cleaves heparin, showing great potential for eco-friendly production of low molecular weight heparin (LMWH). However, owing to its poor catalytic activity and thermal stability, the industrial application of heparinase I has been severely hindered. To improve the catalytic activity, we proposed to engineer both the substrate and Ca2+ binding domains of heparinase I. Several heparinases I from different organisms were selected for multiple sequence alignment and molecular docking to screen the key residues in the binding domain. Nine single-point mutations were selected to enhance the catalytic activity of heparinase I. Among them, T250D was the most highly active one, whereas mutations around Ca2+ binding domain yielded two active mutants. Mutant D152S/R244K/T250D with significantly increased catalytic activity was obtained by combined mutation. The catalytic efficiency of the mutant was 118,875.8 min-1·µM-1, which was improved 5.26 times. Molecular modeling revealed that the improved activity and stability of the mutants were probably attributed to the formation of new hydrogen bonds. The highly active mutant had great potential applications in industry and the strategy could be used to improve the performance of other enzymes.


HighlightsImproved catalytic activity of heparinase I by engineering the binding domains of substrate and Ca2+.The mutant D152S/R244K/T250D showed the highest catalytic performance.The increased hydrogen bonds attribute to the increased activity.


Subject(s)
Heparin, Low-Molecular-Weight , Heparin , Heparin Lyase/chemistry , Molecular Docking Simulation , Heparin/chemistry , Mutation
3.
Glycobiology ; 32(3): 208-217, 2022 03 30.
Article in English | MEDLINE | ID: mdl-33822051

ABSTRACT

A library of 23 synthetic heparan sulfate (HS) oligosaccharides, varying in chain length, types, and positions of modifications, was used to analyze the substrate specificities of heparin lyase III enzymes from both Flavobacterium heparinum and Bacteroides eggerthii. The influence of specific modifications, including N-substitution, 2-O sulfation, 6-O sulfation, and 3-O sulfation on lyase III digestion was examined systematically. It was demonstrated that lyase III from both sources can completely digest oligosaccharides lacking O-sulfates. 2-O Sulfation completely blocked cleavage at the corresponding site; 6-O and 3-O sulfation on glucosamine residues inhibited enzyme activity. We also observed that there are differences in substrate specificities between the two lyase III enzymes for highly sulfated oligosaccharides. These findings will facilitate obtaining and analyzing the functional sulfated domains from large HS polymer, to better understand their structure/function relationships in biological processes.


Subject(s)
Heparitin Sulfate , Oligosaccharides , Heparin/chemistry , Heparin Lyase/chemistry , Heparitin Sulfate/chemistry , Oligosaccharides/chemistry , Substrate Specificity , Sulfates
4.
Arch Microbiol ; 204(9): 551, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35951138

ABSTRACT

The enzymes are biological macromolecules that biocatalyze certain biochemical reactions without undergoing any modification or degradation at the end of the reaction. In this work, we constructed a recombinant novel Raoultella sp. NX-TZ-3-15 strain that produces heparinase with a maltose binding tag to enhance its production and activity. Additionally, MBP-heparinase was purified and its enzymatic capabilities are investigated to determine its industrial application. Moreover, the recombinant plasmid encoding the MBP-heparinase fusion protein was effectively generated and purified to a high purity. According to SDS-PAGE analysis, the MBP-heparinase has a molecular weight of around 70 kDa and the majority of it being soluble with a maximum activity of 5386 U/L. It has also been noted that the three ions of Ca2 + , Co2 + , and Mg2 + can have an effect on heparinase activities, with Mg2 + being the most noticeable, increasing by about 85%, while Cu2 + , Fe2 + , Zn2 + having an inhibitory effect on heparinase activities. Further investigations on the mechanistic action, structural features, and genomes of Raoultella sp. NX-TZ-3-15 heparinase synthesis are required for industrial-scale manufacturing.


Subject(s)
Escherichia coli , Polysaccharide-Lyases , Enterobacteriaceae/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Heparin Lyase/chemistry , Heparin Lyase/genetics , Heparin Lyase/metabolism , Plasmids/genetics , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism
5.
Mol Biol Rep ; 47(12): 9973-9977, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33170428

ABSTRACT

Peripheral blood is a valuable, non-invasive source of biomarkers which include circulating miRNAs. Using microfluidic array-based techniques, miRNAs can be successfully measured in small amounts of blood plasma (< 0.5 mL) using cDNA pre-amplification. However, the use of heparin-based anticoagulants for blood collection hinders the detection of circulating miRNAs due to its inhibitory effect on PCR components. Although pre-treatment with heparinase have been shown to overcome heparin contamination in blood, its effect has not been described in array-based analyses or more sensitive applications with smaller sample volumes (i.e. 200 µL plasma) requiring pre-amplification. We show that the treatment of miRNA extracted from heparinised plasma with an optimised concentration of Bacteroides heparinase I prior to cDNA pre-amplification dramatically improves the number of detectable miRNA from 2 to 67 targets on the TaqMan® Array Human MicroRNA Cards. Furthermore, the titrated amount of heparinase (3 U) gave the best miRNA detection compared to those used in previous studies (6-24 U). This study provides novel data which demonstrates that heparinase treatment is compatible with protocols that involve pre-amplification of cDNA and microfluidic array-based techniques. This an improved methodology that permits miRNA-based biomarker analysis from small volume of heparinised plasma.


Subject(s)
Heparin Lyase/chemistry , MicroRNAs/blood , Microfluidics/methods , Specimen Handling , Biomarkers/blood , Heparin/metabolism , Humans
6.
J Sep Sci ; 43(15): 3036-3044, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32388896

ABSTRACT

Complete heparin digestion with heparin lyase I and II results in a mixture of hexasaccharides and tetrasaccharides with 3-O-sulfo group-containing glucosamine residues at their reducing ends. Because these tetrasaccharides are derived from antithrombin III-binding sites of heparin, we examined whether this method could be applied to estimate the anticoagulant activity of heparin. Therefore, this paper presents a new low molecular weight heparin sample preparation method-chemical depolymerization. Qualitative analysis of the studied compounds and a comparison of their composition are an important contribution to the structural analysis of low molecular weight heparins, which has not been fully conducted so far. Qualitative on-line liquid chromatography-mass spectrometric analysis of these resistant oligosaccharides is also described in this paper.


Subject(s)
Glucosamine/metabolism , Heparin Lyase/metabolism , Heparin/analysis , Heparin/metabolism , Oligosaccharides/metabolism , Chromatography, High Pressure Liquid , Flavobacterium/enzymology , Glucosamine/chemistry , Heparin Lyase/chemistry , Molecular Weight , Oligosaccharides/chemistry , Quality Control , Spectrometry, Mass, Electrospray Ionization
7.
Prep Biochem Biotechnol ; 50(5): 477-485, 2020.
Article in English | MEDLINE | ID: mdl-31900079

ABSTRACT

Heparinase I (Hep I) specifically degrades heparin to oligosaccharide or unsaturated disaccharide and has been widely used in preparation of low molecular weight heparin (LMWH). In this work, a novel Hep I from Bacteroides eggerthii VPI T5-42B-1 was cloned and overexpressed in Escherichia coli BL21 (DE3). The enzyme has specific activity of 480 IU·mg-1 at the optimal temperature and pH of 30 °C and pH 7.5, and the Km and Vmax were 3.6 mg·mL-1 and 647.93 U·mg-1, respectively. The Hep I has good stability with t1/2 values of 350 and 60 min at 30 and 37 °C, respectively. And it showed a residual relative activity of 70.8% after 21 days incubation at 4 °C. Substrate docking study revealed that Lys99, Arg101, Gln241, Lys270, Asn275, and Lys292 were mainly involved in the substrate binding of Hep I. The shorter hydrogen bonds formed between heparin and these residues suggested the higher specific activity of BeHep I. And the minimum conformational entropy value of 756 J·K-1 provides an evidence for the improved stability of this enzyme. This Hep I could be of interest in the industrial preparation of LMWH for its high specific activity and good stability.


Subject(s)
Bacterial Proteins/chemistry , Bacteroides/enzymology , Heparin Lyase/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Cloning, Molecular , Enzyme Assays , Escherichia coli/genetics , Gene Expression , Heparin/chemistry , Heparin/metabolism , Heparin Lyase/genetics , Heparin Lyase/isolation & purification , Heparin Lyase/metabolism , Molecular Docking Simulation , Pedobacter/enzymology , Protein Binding , Sequence Alignment
8.
Anal Chem ; 91(1): 846-853, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30516363

ABSTRACT

Glycosaminoglycans (GAGs) are biologically and pharmacologically important linear, anionic polysaccharides containing various repeating disaccharides sequences. The analysis of these polysaccharides generally relies on their chemical or enzymatic breakdown to disaccharide units that are separated, by chromatography or electrophoresis, and detected, by UV, fluorescence, or mass spectrometry (MS). Isoelectric focusing (IEF) is an important analytical technique with high resolving power for the separation of analytes exhibiting differences in isoelectric points. One format of IEF, the capillary isoelectric focusing (cIEF), is an attractive approach in that it can be coupled with mass spectrometry (cIEF-MS) to provide online focusing and detection of complex mixtures. In the past three decades, numerous studies have applied cIEF-MS methods to the analysis of protein and peptide mixtures by positive-ion mode mass spectrometry. However, polysaccharide chemists largely rely on negative-ion mode mass spectrometry for the analysis of highly sulfated GAGs. The current study reports a negative-ion mode cIEF-MS method using an electrokinetically pumped sheath liquid nanospray capillary electrophoresis-mass spectrometry (CE-MS) coupling technology. The feasibility of this negative-ion cIEF-MS method and its potential applications are demonstrated using chondroitin sulfate and heparan sulfate oligosaccharides mixtures.


Subject(s)
Disaccharides/analysis , Isoelectric Focusing/methods , Mass Spectrometry/methods , Bacterial Proteins/chemistry , Carbohydrate Sequence , Chondroitin ABC Lyase/chemistry , Chondroitin Sulfates/analysis , Chondroitin Sulfates/chemistry , Disaccharides/chemistry , Escherichia coli/enzymology , Heparin Lyase/chemistry , Heparitin Sulfate/analysis , Heparitin Sulfate/chemistry , Isoelectric Point , Pedobacter/enzymology , Proteus vulgaris/enzymology
9.
BMC Biotechnol ; 19(1): 59, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31399136

ABSTRACT

BACKGROUND: Heparinase I from Pedobacter heparinus (Ph-HepI), which specifically cleaves heparin and heparan sulfate, is one of the most extensively studied glycosaminoglycan lyases. Enzymatic degradation of heparin by heparin lyases not only largely facilitates heparin structural analysis but also showed great potential to produce low-molecular-weight heparin (LMWH) in an environmentally friendly way. However, industrial applications of Ph-HepI have been limited by their poor yield and enzyme activity. In this work, we improve the specific enzyme activity of Ph-HepI based on homology modeling, multiple sequence alignment, molecular docking and site-directed mutagenesis. RESULTS: Three mutations (S169D, A259D, S169D/A259D) exhibited a 50.18, 40.43, and 122.05% increase in the specific enzyme activity and a 91.67, 108.33, and 75% increase in the yield, respectively. The catalytic efficiencies (kcat/Km) of the mutanted enzymes S169D, A259D, and S169D/A259D were higher than those of the wild-type enzyme by 275, 164, and 406%, respectively. Mass spectrometry and activity detection showed the enzyme degradation products were in line with the standards of the European Pharmacopoeia. Protein structure analysis showed that hydrogen bonds and ionic bonds were important factors for improving specific enzyme activity and yield. CONCLUSIONS: We found that the mutant S169D/A259D had more industrial application value than the wild-type enzyme due to molecular modifications. Our results provide a new strategy to increase the catalytic efficiency of other heparinases.


Subject(s)
Heparin Lyase/metabolism , Heparin/metabolism , Amino Acid Sequence , Calcium/metabolism , Heparin/chemistry , Heparin Lyase/chemistry , Humans , Hydrogen-Ion Concentration , Mass Spectrometry , Molecular Docking Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Protein Structure, Secondary , Temperature
10.
Molecules ; 24(16)2019 Aug 17.
Article in English | MEDLINE | ID: mdl-31426507

ABSTRACT

Nowadays, pharmaceutical heparin is purified from porcine and bovine intestinal mucosa. In the past decade there has been an ongoing concern about the safety of heparin, since in 2008, adverse effects associated with the presence of an oversulfated chondroitin sulfate (OSCS) were observed in preparations of pharmaceutical porcine heparin, which led to the death of patients, causing a global public health crisis. However, it has not been clarified whether OSCS has been added to the purified heparin preparation, or whether it has already been introduced during the production of the raw heparin. Using a combination of different analytical methods, we investigate both crude and final heparin products and we are able to demonstrate that the sulfated contaminants are intentionally introduced in the initial steps of heparin preparation. Furthermore, the results show that the oversulfated compounds are not structurally homogeneous. In addition, we show that these contaminants are able to bind to cells in using well known heparin binding sites. Together, the data highlights the importance of heparin quality control even at the initial stages of its production.


Subject(s)
Anticoagulants/isolation & purification , Chondroitin Sulfates/isolation & purification , Drug Contamination , Heparin/isolation & purification , Animals , Anticoagulants/chemistry , Cattle , Chondroitin Sulfates/chemistry , Heparin/chemistry , Heparin Lyase/chemistry , Humans , Hydrolysis , Intestinal Mucosa/chemistry , Magnetic Resonance Spectroscopy , Polysaccharide-Lyases/chemistry , Quality Control , Swine
11.
Glycobiology ; 27(11): 994-998, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28973365

ABSTRACT

We report here a novel observation that immobilization of heparinase I on CNBr-activated Sepharose results in heparin degradation properties that are different from heparinase I in the free solution form. Studies over a range of pHs (5-8) and temperatures (5-50°C) as well as under batch and flow conditions show that immobilized heparinase 1 displays altered pH and temperature optima, and a higher propensity for generation of longer chains (hexa- and octa-) with variable sulfation as compared to that in the free form, which is known to yield disaccharides. The immobilized enzyme retained good eliminase activity over at least five cycles of reuse. In combination, results suggest that heparinase I immobilization may offer a more productive route to longer, variably sulfated sequences.


Subject(s)
Enzymes, Immobilized/metabolism , Heparin Lyase/metabolism , Enzymes, Immobilized/chemistry , Glycosaminoglycans/chemistry , Heparin Lyase/chemistry , Oligosaccharides/chemistry , Sepharose/chemistry
12.
Anal Bioanal Chem ; 409(2): 499-509, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27888308

ABSTRACT

Structural characterization of the microheterogeneity of heparin, heparan sulfate, and other glycosaminoglycans is a major analytical challenge. We present the use of a stable isotope-labeled hydrazide tag (INLIGHT™) with high-resolution/accurate mass (HRAM) reverse-phase LC-MS/MS, which was recently introduced for detailed study of N-glycan heterogeneity, to characterize heparinase-digested heparin (digHep) products without the use of semi-volatile ion pairing reagents. Using both full scan LC-MS and data-dependent LC-MS/MS, we identified 116 unique digHep species, a feat possible because of INLIGHT™ labeling. Of these, 83 digHep products were structurally identified, including the 12 standard disaccharides as well as 34 tetra- (DP4), 26 hexa- (DP6), 21 octa- (DP8), and 2 decasaccharides (DP10). Each of the 116 digHep species co-eluted with both light and heavy INLIGHT™ tags (L/Havg = 1.039 ± 0.163); thus enhancing confidence in their identification via MS and MS/MS. This work sets the foundation for INLIGHT™-based comparative analyses of different forms of heparin, heparan sulfate, and other GAGs with high quantitative precision using mainstay reverse-phase HRAM LC-MS/MS. Graphical Abstract Reducing end labeling strategy for mapping depolymerized heparin/heparan sulfate products by reverse-phase LC-MS/MS.


Subject(s)
Chromatography, Reverse-Phase , Heparin/chemistry , Tandem Mass Spectrometry , Glycosaminoglycans/chemistry , Heparin/analysis , Heparin Lyase/chemistry , Heparitin Sulfate/chemistry , Polymerization
13.
Biochemistry ; 53(4): 777-86, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24437462

ABSTRACT

Pedobacter heparinus (formerly known as Flavobacterium heparinum) is a typical glycosaminoglycan-degrading bacterium that produces three heparin lyases, Hep I, Hep II, and Hep III, which act on heparins with 1,4-glycoside bonds between uronate and amino sugar residues. Being different from Hep I and Hep II, Hep III is specific for heparan sulfate. Here we describe the crystal structure of Hep III with the active site located in a deep cleft. The X-ray crystallographic structure of Hep III was determined at 2.20 Å resolution using single-wavelength anomalous diffraction. This enzyme comprised an N-terminal α/α-barrel domain and a C-terminal antiparallel ß-sheet domain as its basic scaffold. Overall structures of Hep II and Hep III were similar, although Hep III exhibited an open form compared with the closed form of Hep II. Superimposition of Hep III and heparin tetrasaccharide-bound Hep II suggested that an active site of Hep III was located in the deep cleft at the interface between its two domains. Three mutants (N240A, Y294F, and H424A) with mutations at the active site had significantly reduced enzyme activity. This is the first report of the structure-function relationship of P. heparinus Hep III.


Subject(s)
Bacterial Proteins/chemistry , Heparin Lyase/chemistry , Pedobacter/enzymology , Bacterial Proteins/genetics , Catalytic Domain , Crystallography, X-Ray , Heparin Lyase/genetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation
14.
Anal Bioanal Chem ; 406(1): 249-65, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24253408

ABSTRACT

Periodate oxidation followed by borohydride reduction converts the well-known antithrombotics heparin and low-molecular-weight heparins (LMWHs) into their "glycol-split" (gs) derivatives of the "reduced oxyheparin" (RO) type, some of which are currently being developed as potential anti-cancer and anti-inflammatory drugs. Whereas the structure of gs-heparins has been recently studied, details of the more complex and more bioavailable gs-LMWHs have not been yet reported. We obtained RO derivatives of the three most common LMWHs (tinzaparin, enoxaparin, and dalteparin) and studied their structures by two-dimensional nuclear magnetic resonance spectroscopy and ion-pair reversed-phase high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. The liquid chromatography-mass spectrometry (LC-MS) analysis was extended to their heparinase-generated oligosaccharides. The combined NMR/LC-MS analysis of RO-LMWHs provided evidence for glycol-splitting-induced transformations mainly involving internal nonsulfated glucuronic and iduronic acid residues (including partial hydrolysis with formation of "remnants") and for the hydrolysis of the gs uronic acid residues when formed at the non-reducing ends (mainly, in RO-dalteparin). Evidence for minor modifications, such as ring contraction of some dalteparin internal aminosugar residues, was also obtained. Unexpectedly, the N-sulfated 1,6-anhydromannosamine residues at the enoxaparin reducing end were found to be susceptible to the periodate oxidation. In addition, in tinzaparin and enoxaparin, the borohydride reduction converts the hemiacetalic aminosugars at the reducing end to alditols. Typical LC-MS signatures of RO-derivatives of individual LMWH both before and after digestion with heparinases included oligosaccharides generated from the original antithrombin-binding and "linkage" regions.


Subject(s)
Dalteparin/chemistry , Enoxaparin/chemistry , Heparin Lyase/chemistry , Heparin, Low-Molecular-Weight/chemistry , Borohydrides/chemistry , Chromatography, Reverse-Phase , Dalteparin/analysis , Enoxaparin/analysis , Glucuronic Acid/chemistry , Heparin, Low-Molecular-Weight/analysis , Hydrolysis , Iduronic Acid/chemistry , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Periodic Acid/chemistry , Tinzaparin
15.
Eur J Anaesthesiol ; 31(2): 68-75, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23867776

ABSTRACT

BACKGROUND: Rotational thromboelastometry (ROTEM) is a whole blood point-of-test used to assess the patient's coagulation status. Three of the available ROTEM tests are EXTEM, INTEM and HEPTEM. In the latter, heparinase added to the INTEM reagent inactivates heparin to reveal residual heparin effect. Performing ROTEM analysis during cardiopulmonary bypass (CPB) might allow the anaesthesiologist to anticipate the need for blood products. OBJECTIVE: The goal of this study was to validate ROTEM analysis in the presence of very high heparin concentrations during CPB. DESIGN: Prospective, observational trial. SETTING: Single University Hospital. PARTICIPANTS: Twenty patients undergoing coronary artery bypass grafting. MAIN OUTCOME MEASURE: ROTEM analysis was performed before heparin administration (T0), 10 min after heparin (T1), at the end of CPB (T2) and 10 min after protamine (T3). The following tests were performed: EXTEM, INTEM, and HEPTEM. Heparin concentrations were measured at T1 and at the end of bypass (T2). RESULTS: At T1, EXTEM differed from baseline for coagulation time: +26.7 s (18.4 to 34.9, P < 0.0001), α: -3° (1.0 to 5.4, P = 0.006) and A10: -4.4 mm (2.3 to 6.5, P = 0.0004). INTEM at T0 was different from HEPTEM at T1 for coagulation time: + 47 s (34.3 to 59.6, P > 0.0001), A10: -2.3 mm (0.5 to 4.0, P = 0.01) and α -2° (1.0 to 3.0; P = 0.0007). At T2, all parameters in EXTEM and HEPTEM related to fibrin-platelet interaction deteriorated significantly compared to T1. At T3, EXTEM and INTEM were comparable to EXTEM and HEPTEM at T2. CONCLUSION: HEPTEM and EXTEM measurements are valid in the presence of very high heparin concentrations and can be performed before protamine administration in patients undergoing cardiac surgery with CPB. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01455454.


Subject(s)
Anesthesiology/methods , Cardiopulmonary Bypass/methods , Heparin/therapeutic use , Protamines/therapeutic use , Thrombelastography/methods , Aged , Algorithms , Animals , Blood Coagulation , Blood Coagulation Tests , Factor Xa Inhibitors , Female , Hemostasis , Heparin Antagonists/pharmacology , Heparin Lyase/chemistry , Humans , Intraoperative Period , Male , Middle Aged , Prospective Studies , Rotation , Swine , Treatment Outcome , Whole Blood Coagulation Time
16.
J Agric Food Chem ; 72(6): 3045-3054, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38307881

ABSTRACT

A novel heparinase III from Pedobacter schmidteae (PsHep-III) with high activity and good stability was successfully cloned, expressed, and characterized. PsHep-III displayed the highest specific activity ever reported of 192.8 U mg-1 using heparin as the substrate. It was stable at 25 °C with a half-life of 323 h in an aqueous solution. PsHep-III was employed for the depolymerization of heparin, and the enzymatic hydrolyzed products were analyzed with gel permeation chromatography and high-performance liquid chromatography. PsHep-III can break glycosidic bonds in heparin like →4]GlcNAc/GlcNAc6S/GlcNS/GlcNS6S/GlcN/GlcN6S(1 → 4)ΔUA/ΔUA2S[1 → and efficiently digest heparin into seven disaccharides including N-acetylated, N-sulfated, and N-unsubstituted modification, with molecular masses of 503, 605, 563, 563, 665, 360, and 563 Da, respectively. These results indicated that PsHep-III with broad substrate specificity could be combined with heparinase I to overcome the low selectivity at the N-acetylated modification binding sites of heparinase I. This work will contribute to the application of PsHep-III for characterizing heparin and producing low-molecular-weight heparin effectively.


Subject(s)
Heparin , Polysaccharide-Lyases , Heparin/analysis , Heparin/chemistry , Heparin/metabolism , Heparin Lyase/genetics , Heparin Lyase/chemistry , Heparin Lyase/metabolism , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Binding Sites
17.
J Biol Chem ; 287(44): 37154-64, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22936797

ABSTRACT

Islet amyloid, a pathologic feature of type 2 diabetes, contains the islet ß-cell peptide islet amyloid polypeptide (IAPP) as its unique amyloidogenic component. Islet amyloid also contains heparan sulfate proteoglycans (HSPGs) that may contribute to amyloid formation by binding IAPP via their heparan sulfate (HS) chains. We hypothesized that ß-cells produce HS that bind IAPP via regions of highly sulfated disaccharides. Unexpectedly, HS from the ß-cell line ß-TC3 contained fewer regions of highly sulfated disaccharides compared with control normal murine mammary gland (NMuMG) cells. The proportion of HS that bound IAPP was similar in both cell lines (∼65%). The sulfation pattern of IAPP-bound versus non-bound HS from ß-TC3 cells was similar. In contrast, IAPP-bound HS from NMuMG cells contained frequent highly sulfated regions, whereas the non-bound material demonstrated fewer sulfated regions. Fibril formation from IAPP was stimulated equally by IAPP-bound ß-TC3 HS, non-bound ß-TC3 HS, and non-bound NMuMG HS but was stimulated to a greater extent by the highly sulfated IAPP-bound NMuMG HS. Desulfation of HS decreased the ability of both ß-TC3 and NMuMG HS to stimulate IAPP maximal fibril formation, but desulfated HS from both cell types still accelerated fibril formation relative to IAPP alone. In summary, neither binding to nor acceleration of fibril formation from the amyloidogenic peptide IAPP is dependent on overall sulfation in HS synthesized by ß-TC3 cells. This information will be important in determining approaches to reduce HS-IAPP interactions and ultimately prevent islet amyloid formation and its toxic effects in type 2 diabetes.


Subject(s)
Amyloid/chemistry , Heparitin Sulfate/chemistry , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide/chemistry , Animals , Benzothiazoles , Carbohydrate Conformation , Cell Line , Chromatography, Gel , Culture Media, Conditioned , Fluorescent Dyes/chemistry , Heparin Lyase/chemistry , Heparitin Sulfate/metabolism , Humans , Immobilized Proteins/chemistry , Mice , Nitrous Acid/chemistry , Polysaccharide-Lyases/chemistry , Protein Binding , Protein Multimerization , Proteoglycans/chemistry , Proteoglycans/isolation & purification , Thiazoles/chemistry
18.
Biochem Biophys Res Commun ; 436(1): 85-9, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23707811

ABSTRACT

In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as therapeutics for the treatment of amyloid diseases.


Subject(s)
Amyloid/metabolism , Amyloidosis/metabolism , Glycosaminoglycans/chemistry , Heparin Lyase/chemistry , Peptides/pharmacology , Alcian Blue/chemistry , Alcian Blue/pharmacology , Benzothiazoles , Carbohydrates/chemistry , Glycosaminoglycans/metabolism , Heparin/chemistry , Humans , Peptides/chemistry , Protein Binding , Static Electricity , Thiazoles/pharmacology
19.
Appl Microbiol Biotechnol ; 97(7): 2907-16, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22588503

ABSTRACT

Heparinase I (HepI), which specifically cleaves heparin and heparan sulfate, is one of the most extensively studied glycosaminoglycan lyases. Low productivity of HepI has largely hindered its industrial and pharmaceutical applications. Loss of bacterial HepI enzyme activity through poor thermostability during its expression and purification process in production can be an important issue. In this study, using a thermostabilization strategy combining site-directed mutagenesis and calcium ion addition during its production markedly improved the yield of maltose-binding protein-fused HepI (MBP-HepI) from recombinant Escherichia coli. Substitution of Cys297 to serine in MBP-HepI offered a 30.6% increase in the recovered total enzyme activity due to a mutation-induced thermostabilizing effect. Furthermore, upon addition of Ca2+ as a stabilizer at optimized concentrations throughout its expression, extraction, and purification process, purified mutant MBP-HepI showed a specific activity of 56.3 IU/mg, 206% higher than that of the wild type obtained without Ca2+ addition, along with a 177% increase in the recovered total enzyme activity. The enzyme obtained through this novel approach also exhibited significantly enhanced thermostability, as indicated by both experimental data and the kinetic modeling. High-yield production of thermostable MBP-HepI using the present system will facilitate its applications in laboratory-scale heparin analysis as well as industrial-scale production of low molecular weight heparin as an improved anticoagulant substitute.


Subject(s)
Calcium/metabolism , Coenzymes/metabolism , Escherichia coli/genetics , Heparin Lyase/metabolism , Amino Acid Substitution , Cations, Divalent/metabolism , Heparin Lyase/chemistry , Heparin Lyase/genetics , Heparin Lyase/isolation & purification , Mutagenesis, Site-Directed , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Temperature
20.
Int J Biol Macromol ; 249: 125934, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37482160

ABSTRACT

Heparinase is the only mammalian endoglycosidase that breaks down the commonly used blood-anticoagulant heparin into therapeutically relevant low-molecular-weight-heparin. Importantly, heparinase has been considered a malignant disease diagnostic marker. Thus, it is essential to develop detection scheme for heparinase. However, optical methods for heparinase determination are limited. In the present work, we report a turn-on fluorescence sensor for detection of heparinase that utilizes heparin-templated aggregation of a tetra-cationic porphyrin derivative, TMPyP4+, as a sensing framework. Heparinase cleaves the glycosidic linkage between hexosamine and uronic acid in the structure of heparin to destroy its polyelectrolytic nature that originally causes the aggregation of TMPyP4+. Thus, heparinase leads to dissociation of TMPyP4+ aggregates and generates an optical signal. This system leads to a sensitive and selective response towards heparinase with a Limit of Detection (LOD) of 0.3 pmol/L. Further, the same system is demonstrated to sense a trace amount of Oversulfated Chondrootin Sulphate (OSCS) in heparin, which is a heparin adulterant, by utilizing the fact that OSCS serves as an inhibitor for heparinase activity, which leads to reverse modulation in the photo-physical features of the monomer/aggregate equilibrium of the TMPyP4+-heparin-heparinase system. The sensing mechanism has been thoroughly demonstrated by ground-state absorption, steady-state emission, and time-resolved emission measurements. The selectivity of the sensor was tested using lysozyme, α-amylase, pepsin, trypsin, lipase, and glucose oxidase in the heparinase selectivity study and the method is also validated using another method reported in the literature. The study provides a new approach for the development of optical methods for the detection of heparinase and oversulfated chondroitin sulfate, which is currently limited.


Subject(s)
Anticoagulants , Heparin , Animals , Heparin/chemistry , Heparin Lyase/chemistry , Anticoagulants/pharmacology , Heparin, Low-Molecular-Weight/chemistry , Chondroitin Sulfates/chemistry , Sulfates , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL