Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters

Publication year range
1.
J Inherit Metab Dis ; 47(4): 664-673, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38487984

ABSTRACT

Altered activity of specific enzymes in phenylalanine-tyrosine (phe-tyr) metabolism results in incomplete breakdown of various metabolite substrates in this pathway. Increased biofluid concentration and tissue accumulation of the phe-tyr pathway metabolite homogentisic acid (HGA) is central to pathophysiology in the inherited disorder alkaptonuria (AKU). Accumulation of metabolites upstream of HGA, including tyrosine, occurs in patients on nitisinone, a licenced drug for AKU and hereditary tyrosinaemia type 1, which inhibits the enzyme responsible for HGA production. The aim of this study was to investigate the phe-tyr metabolite content of key biofluids and tissues in AKU mice on and off nitisinone to gain new insights into the biodistribution of metabolites in these altered metabolic states. The data show for the first time that HGA is present in bile in AKU (mean [±SD] = 1003[±410] µmol/L; nitisinone-treated AKU mean [±SD] = 45[±23] µmol/L). Biliary tyrosine, 3(4-hydroxyphenyl)pyruvic acid (HPPA) and 3(4-hydroxyphenyl)lactic acid (HPLA) are also increased on nitisinone. Urine was confirmed as the dominant elimination route of HGA in untreated AKU, but with indication of biliary excretion. These data provide new insights into pathways of phe-tyr metabolite biodistribution and metabolism, showing for the first time that hepatobiliary excretion contributes to the total pool of metabolites in this pathway. Our data suggest that biliary elimination of organic acids and other metabolites may play an underappreciated role in disorders of metabolism. We propose that our finding of approximately 3.8 times greater urinary HGA excretion in AKU mice compared with patients is one reason for the lack of extensive tissue ochronosis in the AKU mouse model.


Subject(s)
Alkaptonuria , Cyclohexanones , Disease Models, Animal , Homogentisic Acid , Nitrobenzoates , Alkaptonuria/urine , Alkaptonuria/metabolism , Animals , Homogentisic Acid/urine , Homogentisic Acid/metabolism , Mice , Cyclohexanones/urine , Male , Tyrosine/metabolism , Tyrosine/urine , Liver/metabolism , Phenylalanine/metabolism
2.
Endocr Regul ; 57(1): 61-67, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36966367

ABSTRACT

Alkaptonuria (AKU, OMIM, No. 203500) is a rare, slow-progressing, irreversible, multisystemic disease resulting from a deficiency of the homogentisate 1,2-dioxygenase enzyme, which leads to the accumulation of homogentisic acid (HGA) and subsequent deposition as pigment in connective tissues called ochronosis. As a result, severe arthropathy of large joints and spondyloarthropathy with frequent fractures, ligament ruptures, and osteoporosis develops in AKU patients. Since 2020, the first-time treatment with nitisinone has become available in the European Union. Nitisinone significantly reduces HGA production and arrests ochronosis in AKU patients. However, blocking of the tyrosine metabolic pathway by the drug leads to tyrosine plasma and tissue concentrations increase. The nitisinone-induced hypertyrosinemia can lead to the development of corneal keratopathy, and once it develops, the treatment needs to be interrupted. A decrease in overall protein intake reduces the risk of the keratopathy during nitisinone-induced hypertyrosinemia in AKU patients. The low-protein diet is not only poorly tolerated by patients, but over longer periods, leads to a severe muscle loss and weight gain due to increased energy intake from carbohydrates and fats. Therefore, the development of novel nutritional approaches is required to prevent the adverse events due to nitisinone-induced hypertyrosinemia and the negative impact on skeletal muscle metabolism in AKU patients.


Subject(s)
Alkaptonuria , Ochronosis , Tyrosinemias , Humans , Alkaptonuria/drug therapy , Alkaptonuria/metabolism , Ochronosis/drug therapy , Tyrosine/therapeutic use , Homogentisic Acid/metabolism
3.
Molecules ; 28(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36985595

ABSTRACT

Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis, fractures, and tendon ruptures. To date, no medicine has been approved for the treatment of AKU. However, physiotherapy and strong painkillers are administered to help mitigate the condition. Recently, nitisinone, an FDA-approved drug for type 1 tyrosinemia, has been given to AKU patients in some countries and has shown encouraging results in reducing the disease progression. However, this drug is not the targeted treatment for AKU, and causes keratopathy. Therefore, the foremost aim of this study is the identification of potent and druggable inhibitors of AKU with no or minimal side effects by targeting 4-hydroxyphenylpyruvate dioxygenase. To achieve our goal, we have performed computational modelling using BioSolveIT suit. The library of ligands for molecular docking was acquired by fragment replacement of reference molecules by ReCore. Subsequently, the hits were screened on the basis of estimated affinities, and their pharmacokinetic properties were evaluated using SwissADME. Afterward, the interactions between target and ligands were investigated using Discovery Studio. Ultimately, compounds c and f were identified as potent inhibitors of 4-hydroxyphenylpyruvate dioxygenase.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Alkaptonuria , Ochronosis , Humans , Alkaptonuria/drug therapy , Alkaptonuria/genetics , Alkaptonuria/metabolism , Molecular Docking Simulation , Ochronosis/drug therapy , Homogentisic Acid/metabolism
4.
Appl Environ Microbiol ; 88(18): e0128922, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36073941

ABSTRACT

Shewanella oneidensis is the best understood model microorganism for the study of diverse cytochromes (cytos) c that support its unparallel respiratory versatility. Although RNA chaperone Hfq has been implicated in regulation of cyto c production, little is known about the biological pathways that it affects in this bacterium. In this study, from a spontaneous mutant that secretes pyomelanin and has a lowered cyto c content, we identified Hfq to be the regulator that critically associates with both phenotypes in S. oneidensis. We found that expression of the key genes in biosynthesis and degradation of heme is differentially affected by Hfq at under- and overproduced levels, and through modulating heme levels, Hfq influences the cyto c content. Although Hfq in excess results in overproduction of the enzymes responsible for both generation and removal of homogentisic acid (HGA), the precursor of pyomelanin, it is compromised activity of HmgA that leads to excretion and polymerization of HGA to form pyomelanin. We further show that Hfq mediates HmgA activity by lowering intracellular iron content because HmgA is an iron-dependent enzyme. Overall, our work highlights the significance of Hfq-mediated posttranscriptional regulation in the physiology of S. oneidensis, unraveling unexpected mechanisms by which Hfq affects cyto c biosynthesis and pyomelanin production. IMPORTANCE In bacteria, Hfq has been implicated in regulation of diverse biological processes posttranslationally. In S. oneidensis, Hfq affects the content of cytos c that serve as the basis of its respiratory versatility and potential application in bioenergy and bioremediation. In this study, we found that Hfq differentially regulates heme biosynthesis and degradation, leading to altered cyto c contents. Hfq in excess causes a synthetic effect on HmgA, an enzyme responsible for pyomelanin formation. Overall, the data presented manifest that the biological processes in a given bacterium regulated by Hfq are highly complex, amounting to required coordination among multiple physiological aspects to allow cells to respond to environmental changes promptly.


Subject(s)
HMGA Proteins , Shewanella , Cytochromes c/metabolism , HMGA Proteins/metabolism , Heme/metabolism , Homogentisic Acid/metabolism , Iron/metabolism , Melanins , RNA/metabolism , Shewanella/metabolism
5.
Arch Biochem Biophys ; 717: 109137, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35090868

ABSTRACT

Alkaptonuria (AKU) is an ultra-rare genetic disease caused by a deficient activity of the enzyme homogentisate 1,2-dioxygenase (HGD) leading to the accumulation of homogentisic acid (HGA) on connective tissues. Even though AKU is a multi-systemic disease, osteoarticular cartilage is the most affected system and the most damaged tissue by the disease. In chondrocytes, HGA causes oxidative stress dysfunctions, which induce a series of not fully characterized cellular responses. In this study, we used a human chondrocytic cell line as an AKU model to evaluate, for the first time, the effect of HGA on autophagy, the main homeostasis system in articular cartilage. Cells responded timely to HGA treatment with an increase in autophagy as a mechanism of protection. In a chronic state, HGA-induced oxidative stress decreased autophagy, and chondrocytes, unable to restore balance, activated the chondroptosis pathway. This decrease in autophagy also correlated with the accumulation of ochronotic pigment, a hallmark of AKU. Our data suggest new perspectives for understanding AKU and a mechanistic model that rationalizes the damaging role of HGA.


Subject(s)
Alkaptonuria/prevention & control , Autophagy/drug effects , Biomarkers/metabolism , Homogentisate 1,2-Dioxygenase/metabolism , Homogentisic Acid/metabolism , Alkaptonuria/metabolism , Apoptosis/drug effects , Cartilage, Articular/drug effects , Cell Line , Chondrocytes/cytology , Homogentisic Acid/pharmacology , Humans , Ochronosis/metabolism , Oxidative Stress/drug effects , Signal Transduction
6.
Rheumatol Int ; 42(12): 2277-2282, 2022 12.
Article in English | MEDLINE | ID: mdl-36053307

ABSTRACT

Alkaptonuria is a disease often forgotten because of its rarity. Its pathogenic mechanism is the deficiency of one of the enzymes of the tyrosine degradation pathway-homogentisate-1, 2-dioxygenase, which sequelae is accumulation and deposition of its metabolite homogentisic acid in connective tissues and urine. Alkaptonuria presents as a clinical triad-darkening urine upon prolonged exposure to air, pigmentation of connective tissues and debilitating arthropathy. We present a case report of a 67-year old patient with alkaptonuria who presented with the clinical triad, but was mistakenly diagnosed as having ankylosing spondylitis in the past. Currently there is no treatment for the disease hence the management strategy was focused on symptoms control with analgesics, physical therapy, dietary modification, vitamin C supplementation, and joint arthroplasty. Alkaptonuria's clinical features are extensively described in the literature and despite the fact that it is a rare disease, due to the similar radiographic changes with spondyloarthropathies, it should be included in the differential diagnosis in young patients presenting with severe joint involvement. Early recognition of the disease is necessary since its natural evolution is joint destruction leading to significant reduction in the quality of life. Alkaptonuria's articular features in the spine and peripheral tissues are well described using the classical imaging techniques. Musculoskeletal ultrasonography shows a characteristic set of findings in the soft tissues, including synovium, cartilage, tendons and entheses.


Subject(s)
Alkaptonuria , Cartilage Diseases , Dioxygenases , Joint Diseases , Ochronosis , Osteoarthritis , Spondylarthropathies , Aged , Alkaptonuria/complications , Alkaptonuria/diagnosis , Alkaptonuria/metabolism , Ascorbic Acid , Homogentisic Acid/metabolism , Humans , Ochronosis/complications , Ochronosis/diagnosis , Osteoarthritis/complications , Quality of Life , Spondylarthropathies/complications , Tyrosine
7.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35482661

ABSTRACT

Pyomelanin is a brown-black phenolic polymer and results from the oxidation of homogentisic acid (HGA) in the L-tyrosine pathway. As part of the research for natural and active ingredients issued from realistic bioprocesses, this work re-evaluates the HGA pigment and makes an updated inventory of its syntheses, microbial pathways, and properties, with tracks and recent advances for its large-scale production. The mechanism of the HGA polymerization is also well documented. In alkaptonuria, pyomelanin formation leads to connective tissue damage and arthritis, most probably due to the ROS issued from HGA oxidation. While UV radiation on human melanin may generate degradation products, pyomelanin is not photodegradable, is hyperthermostable, and has other properties better than L-Dopa melanin. This review aims to raise awareness about the potential of this pigment for various applications, not only for skin coloring and protection but also for other cells, materials, and as a promising (semi)conductor for bioelectronics and energy.


Subject(s)
Homogentisic Acid , Melanins , Homogentisic Acid/metabolism , Humans , Melanins/metabolism , Pigmentation , Tyrosine
8.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555443

ABSTRACT

Alkaptonuria (AKU) is an ultra-rare metabolic disease caused by the accumulation of homogentisic acid (HGA), an intermediate product of phenylalanine and tyrosine degradation. AKU patients carry variants within the gene coding for homogentisate-1,2-dioxygenase (HGD), which are responsible for reducing the enzyme catalytic activity and the consequent accumulation of HGA and formation of a dark pigment called the ochronotic pigment. In individuals with alkaptonuria, ochronotic pigmentation of connective tissues occurs, leading to inflammation, degeneration, and eventually osteoarthritis. The molecular mechanisms underlying the multisystemic development of the disease severity are still not fully understood and are mostly limited to the metabolic pathway segment involving HGA. In this view, untargeted metabolomics of biofluids in metabolic diseases allows the direct investigation of molecular species involved in pathways alterations and their interplay. Here, we present the untargeted metabolomics study of AKU through the nuclear magnetic resonance of urine from a cohort of Italian patients; the study aims to unravel molecular species and mechanisms underlying the AKU metabolic disorder. Dysregulation of metabolic pathways other than the HGD route and new potential biomarkers beyond homogentisate are suggested, contributing to a more comprehensive molecular signature definition for AKU and the development of future adjuvant treatment.


Subject(s)
Alkaptonuria , Dioxygenases , Humans , Alkaptonuria/genetics , Metabolomics , Homogentisic Acid/metabolism , Biomarkers , Magnetic Resonance Spectroscopy
9.
Hum Mol Genet ; 28(23): 3928-3939, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31600782

ABSTRACT

Alkaptonuria is an inherited disease caused by homogentisate 1,2-dioxygenase (HGD) deficiency. Circulating homogentisic acid (HGA) is elevated and deposits in connective tissues as ochronotic pigment. In this study, we aimed to define developmental and adult HGD tissue expression and determine the location and amount of gene activity required to lower circulating HGA and rescue the alkaptonuria phenotype. We generated an alkaptonuria mouse model using a knockout-first design for the disruption of the HGD gene. Hgd tm1a -/- mice showed elevated HGA and ochronosis in adulthood. LacZ staining driven by the endogenous HGD promoter was localised to only liver parenchymal cells and kidney proximal tubules in adulthood, commencing at E12.5 and E15.5 respectively. Following removal of the gene trap cassette to obtain a normal mouse with a floxed 6th HGD exon, a double transgenic was then created with Mx1-Cre which conditionally deleted HGD in liver in a dose dependent manner. 20% of HGD mRNA remaining in liver did not rescue the disease, suggesting that we need more than 20% of liver HGD to correct the disease in gene therapy. Kidney HGD activity which remained intact reduced urinary HGA, most likely by increased absorption, but did not reduce plasma HGA nor did it prevent ochronosis. In addition, downstream metabolites of exogenous 13C6-HGA, were detected in heterozygous plasma, revealing that hepatocytes take up and metabolise HGA. This novel alkaptonuria mouse model demonstrated the importance of targeting liver for therapeutic intervention, supported by our observation that hepatocytes take up and metabolise HGA.


Subject(s)
Alkaptonuria/enzymology , Homogentisate 1,2-Dioxygenase/genetics , Homogentisic Acid/metabolism , Liver/enzymology , Alkaptonuria/genetics , Alkaptonuria/metabolism , Animals , Disease Models, Animal , Gene Knockout Techniques , Homogentisate 1,2-Dioxygenase/metabolism , Male , Mice , Mice, Transgenic , Promoter Regions, Genetic
10.
J Inherit Metab Dis ; 44(3): 666-676, 2021 05.
Article in English | MEDLINE | ID: mdl-33452825

ABSTRACT

A large alkaptonuria (AKU) cohort was studied to better characterize the poorly understood spondyloarthropathy of rare disease AKU. Eighty-seven patients attended the National Alkaptonuria Centre (NAC) between 2007 and 2020. Seven only attended once. Fifty-seven attended more than once and received nitisinone 2 mg daily. Twenty-three attended at least twice without receiving nitisinone. Assessments included questionnaire analysis, 18F Positron emission tomography computerised tomography (PETCT), as well as photographs of ochronotic pigment in eyes and ears at baseline when 2 mg nitisinone was commenced and yearly thereafter. Blood and urine samples were collected for chemical measurement. The prevalence of ochronosis, as well as pain, PETCT and combined pain and PETCT scores, was greatly increased at 90.5%, 85.7%, 100%, and 100%, respectively. Joint pain scores were greatest in proximal joints in upper and lower limbs. PETCT joint scores were higher in proximal joints in upper limb but higher in distal joints in the lower limb. Spine pain scores were highest in lumbar, followed by cervical, thoracic, and cervical regions at 77.4%, 59.5%, 46.4%, and 25%, respectively. PETCT spine scores were highest in thoracic followed by lumbar, cervical, and sacroiliac regions at 74.4%, 70.7%, 64.6%, and 47.8% respectively; ochronosis associated closely with spondyloarthropathy scores (R = .65; P < .0001). Nitisinone reversed ochronosis significantly, with a similar pattern of decreased joint and spine disease. Spondyloarthropathy is a highly prevalent feature in this NAC cohort. Ochronosis appears to be associated with spondyloarthropathy. Nitisinone decreases ochronosis and had a similar nonsignificant effect pattern on spondyloarthropathy.


Subject(s)
Alkaptonuria/drug therapy , Cyclohexanones/administration & dosage , Homogentisic Acid/metabolism , Joints/pathology , Nitrobenzoates/administration & dosage , Ochronosis/drug therapy , Spine/pathology , Aged , Alkaptonuria/metabolism , Cohort Studies , Female , Humans , Joints/diagnostic imaging , Linear Models , Male , Middle Aged , Ochronosis/metabolism , Phenotype , Positron Emission Tomography Computed Tomography , Severity of Illness Index , Spine/diagnostic imaging , United Kingdom
11.
Int J Mol Sci ; 22(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572316

ABSTRACT

Pyomelanin mimics from homogentisic acid (HGA) and gentisic acid (GA) were biosynthesized by the oxidative enzyme T. versicolor laccase at physiological pH to obtain water soluble melanins. The pigments show brown-black color, broad band visible light absorption, a persistent paramagnetism and high antioxidant activity. The EPR approach shows that at least two different radical species are present in both cases, contributing to the paramagnetism of the samples. This achievement can also shed light on the composition of the ochronotic pigment in the Alkaptonuria disease. On the other hand, these soluble pyomelanin mimics, sharing physico-chemical properties with eumelanin, can represent a suitable alternative to replace the insoluble melanin pigment in biotechnological applications.


Subject(s)
Antioxidants/pharmacology , Gentisates/pharmacology , Homogentisic Acid/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/metabolism , Biotechnology/methods , Fungal Proteins/metabolism , Gentisates/chemistry , Gentisates/isolation & purification , Gentisates/metabolism , Homogentisic Acid/chemistry , Homogentisic Acid/isolation & purification , Homogentisic Acid/metabolism , Laccase/metabolism , Melanins/chemistry , Polyporaceae/enzymology
12.
Arch Biochem Biophys ; 690: 108416, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32502471

ABSTRACT

Alkaptonuria (AKU) is a rare metabolic disease correlated with the deficiency of homogentisate 1,2-dioxygenase and leading to an accumulation of the metabolite homogentisic acid (HGA) which can be subjected to oxidation and polymerization reactions. These events are considered a trigger for the induction of oxidative stress in AKU but, despite the large description of an altered redox status, the underlying pathogenetic processes are still unstudied. In the present study, we investigated the molecular mechanisms responsible for the oxidative damage present in an osteoblast-based cellular model of AKU. Bone, in fact, is largely affected in AKU patients: severe osteoclastic resorption, osteoporosis, even for pediatric cases, and an altered rate of remodeling biomarkers have been reported. In our AKU osteoblast cell model, we found a clear altered redox homeostasis, determined by elevated hydrogen peroxide (H2O2) levels and 4HNE protein adducts formation. These findings were correlated with increased NADPH oxidase (NOX) activity and altered mitochondrial respiration. In addition, we observed a decreased activity of superoxide dismutase (SOD) and reduced levels of thioredoxin (TRX) that parallel the decreased Nrf2-DNA binding. Overall, our results reveal that HGA is able to alter the cellular redox homeostasis by modulating the endogenous ROS production via NOX activation and mitochondrial dysfunctions and impair the cellular response mechanism. These findings can be useful for understanding the pathophysiology of AKU, not yet well studied in bones, but which is an important source of comorbidities that affect the life quality of the patients.


Subject(s)
Alkaptonuria/metabolism , Homeostasis/physiology , Cell Line , DNA-Binding Proteins/metabolism , Homogentisic Acid/metabolism , Humans , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , NADPH Oxidases/metabolism , NF-E2-Related Factor 2/metabolism , Osteoblasts/cytology , Oxidation-Reduction , Oxidative Stress/physiology , Signal Transduction , Superoxide Dismutase/metabolism , Thioredoxins/metabolism
13.
J Inherit Metab Dis ; 43(4): 737-747, 2020 07.
Article in English | MEDLINE | ID: mdl-31609457

ABSTRACT

The clinical effects of alkaptonuria (AKU) are delayed and ageing influences disease progression. Morbidity of AKU is secondary to high circulating homogentisic acid (HGA) and ochronosis. It is not known whether HGA is produced by or processed in the kidney in AKU. Data from AKU patients from four studies were merged to form a single AKU group. A control group of non-AKU subjects was generated by merging data from two non-AKU studies. Data were used to derive renal clearance and fractional excretion (FE) ratios for creatinine, HGA, phenylalanine (PHE) and tyrosine (TYR) using standard calculations, for comparison between the AKU and the control groups. There were 225 AKU patients in the AKU group and 52 in the non-AKU control group. Circulating HGA increased with age (P < 0.001), and was significantly associated with decreased HGA clearance (CLHGA ) (P < 0.001) and FEHGA (P < 0.001). CLHGA and FEHGA were increased beyond the theoretical maximum renal plasma flow, confirming renal production and emphasising the greater contribution of net tubular secretion than glomerular filtration to renal elimination of HGA. The kidneys are crucial to elimination of HGA. Elimination of HGA is impaired with age resulting in worsening disease over time. The kidney is an important site for production of HGA. Tubular secretion of HGA contributes more to elimination of HGA in AKU than glomerular filtration.


Subject(s)
Alkaptonuria/metabolism , Glomerular Filtration Rate , Homogentisic Acid/metabolism , Kidney/metabolism , Ochronosis/etiology , Adult , Alkaptonuria/physiopathology , Case-Control Studies , Creatinine/metabolism , Female , Humans , Linear Models , Male , Middle Aged , Ochronosis/physiopathology , Phenylalanine/metabolism , Sex Factors , Tyrosine/metabolism
15.
Angew Chem Int Ed Engl ; 59(29): 11937-11942, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32219972

ABSTRACT

Alkaptonuria (AKU) is a rare disease characterized by high levels of homogentisic acid (HGA); patients suffer from tissue ochronosis: dark brown pigmentation, especially of joint cartilage, leading to severe early osteoarthropathy. No molecular mechanism links elevated HGA to ochronosis; the pigment's chemical identity is still not known, nor how it induces joint cartilage degradation. Here we give key insight on HGA-derived pigment composition and collagen disruption in AKU cartilage. Synthetic pigment and pigmented human cartilage tissue both showed hydroquinone-resembling NMR signals. EPR spectroscopy showed that the synthetic pigment contains radicals. Moreover, we observed intrastrand disruption of collagen triple helix in pigmented AKU human cartilage, and in cartilage from patients with osteoarthritis. We propose that collagen degradation can occur via transient glycyl radicals, the formation of which is enhanced in AKU due to the redox environment generated by pigmentation.


Subject(s)
Alkaptonuria/metabolism , Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Pigmentation , Electron Spin Resonance Spectroscopy , Homogentisic Acid/metabolism , Humans , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Pigments, Biological/chemistry
16.
J Inherit Metab Dis ; 42(5): 776-792, 2019 09.
Article in English | MEDLINE | ID: mdl-31282009

ABSTRACT

Ochronosis is the process in alkaptonuria (AKU) that causes all the debilitating morbidity. The process involves selective deposition of homogentisic acid (HGA)-derived pigment in tissues altering the properties of these tissues, leading to their failure. Some tissues like cartilage are more easily affected by ochronosis while others such as the liver and brain are unaffected for reasons that are still not understood. In vitro and mouse models of ochronosis have confirmed the dose relationships between HGA and ochronosis and also their modulation by p-hydroxyphenylpyruvate dioxygenase inhibition. Ochronosis cannot be fully reversed and is a key factor in influencing treatment decisions. Earlier detection of ochronosis preferably by noninvasive means is desirable. A cause-effect relationship between HGA and ochronosis is discussed. The similarity in AKU and familial hypercholesterolaemia is explored and lessons learnt. More research is needed to more fully understand the crucial nature of ochronosis.


Subject(s)
Alkaptonuria/pathology , Chondrocytes/cytology , Homogentisic Acid/metabolism , Ochronosis/pathology , Alkaptonuria/metabolism , Animals , Cartilage/metabolism , Cartilage/pathology , Chondrocytes/metabolism , Humans , Mice , Oxidation-Reduction , Pigmentation
17.
Mol Genet Metab ; 125(1-2): 127-134, 2018 09.
Article in English | MEDLINE | ID: mdl-30055994

ABSTRACT

QUESTION: Does Nitisinone prevent the clinical progression of the Alkaptonuria? FINDINGS: In this observational study on 39 patients, 2 mg of daily nitisinone inhibited ochronosis and significantly slowed the progression of AKU over a three-year period. MEANING: Nitisinone is a beneficial therapy in Alkaptonuria. BACKGROUND: Nitisinone decreases homogentisic acid (HGA), but has not been shown to modify progression of Alkaptonuria (AKU). METHODS: Thirty-nine AKU patients attended the National AKU Centre (NAC) in Liverpool for assessments and treatment. Nitisinone was commenced at V1 or baseline. Thirty nine, 34 and 22 AKU patients completed 1, 2 and 3 years of monitoring respectively (V2, V3 and V4) in the VAR group. Seventeen patients also attended a pre-baseline visit (V0) in the VAR group. Within the 39 patients, a subgroup of the same ten patients attended V0, V1, V2, V3 and V4 visits constituting the SAME Group. Severity of AKU was assessed by calculation of the AKU Severity Score Index (AKUSSI) allowing comparison between the pre-nitisinone and the nitisinone treatment phases. RESULTS: The ALL (sum of clinical, joint and spine AKUSSI features) AKUSSI rate of change of scores/patient/month, in the SAME group, was significantly lower at two (0.32 ±â€¯0.19) and three (0.15 ±â€¯0.13) years post-nitisinone when compared to pre-nitisinone (0.65 ±â€¯0.15) (p < .01 for both comparisons). Similarly, the ALL AKUSSI rate of change of scores/patient/month, in the VAR group, was significantly lower at one (0.16 ±â€¯0.08) and three (0.19 ±â€¯0.06) years post-nitisinone when compared to pre-nitisinone (0.59 ±â€¯0.13) (p < .01 for both comparisons). Combined ear and ocular ochronosis rate of change of scores/patient/month was significantly lower at one, two and three year's post-nitisinone in both VAR and SAME groups compared with pre-nitisinone (p < .05). CONCLUSION: This is the first indication that a 2 mg dose of nitisinone slows down the clinical progression of AKU. Combined ocular and ear ochronosis progression was arrested by nitisinone.


Subject(s)
Alkaptonuria/drug therapy , Cyclohexanones/administration & dosage , Nitrobenzoates/administration & dosage , Ochronosis/drug therapy , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Alkaptonuria/epidemiology , Alkaptonuria/metabolism , Alkaptonuria/pathology , Disease Progression , Female , Homogentisic Acid/metabolism , Humans , Male , Middle Aged , Ochronosis/epidemiology , Ochronosis/metabolism , Ochronosis/pathology , United Kingdom
18.
Plant Physiol ; 172(3): 1506-1518, 2016 11.
Article in English | MEDLINE | ID: mdl-27660165

ABSTRACT

Soybean (Glycine max) is a major plant source of protein and oil and produces important secondary metabolites beneficial for human health. As a tool for gene function discovery and improvement of this important crop, a mutant population was generated using fast neutron irradiation. Visual screening of mutagenized seeds identified a mutant line, designated MO12, which produced brown seeds as opposed to the yellow seeds produced by the unmodified Williams 82 parental cultivar. Using forward genetic methods combined with comparative genome hybridization analysis, we were able to establish that deletion of the GmHGO1 gene is the genetic basis of the brown seeded phenotype exhibited by the MO12 mutant line. GmHGO1 encodes a homogentisate dioxygenase (HGO), which catalyzes the committed enzymatic step in homogentisate catabolism. This report describes to our knowledge the first functional characterization of a plant HGO gene, defects of which are linked to the human genetic disease alkaptonuria. We show that reduced homogentisate catabolism in a soybean HGO mutant is an effective strategy for enhancing the production of lipid-soluble antioxidants such as vitamin E, as well as tolerance to herbicides that target pathways associated with homogentisate metabolism. Furthermore, this work demonstrates the utility of fast neutron mutagenesis in identifying novel genes that contribute to soybean agronomic traits.


Subject(s)
Biofortification , Glycine max/enzymology , Homogentisate 1,2-Dioxygenase/metabolism , Plant Oils/metabolism , Seeds/enzymology , Vitamin E/metabolism , 4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Adaptation, Physiological/drug effects , Arabidopsis/genetics , Enzyme Inhibitors/toxicity , Gene Deletion , Genome, Plant , Herbicides/toxicity , Homogentisic Acid/metabolism , Isoenzymes/metabolism , Metabolic Networks and Pathways/drug effects , Mutation/genetics , Phenotype , Plant Cells/drug effects , Plant Cells/metabolism , Glycine max/drug effects , Glycine max/physiology
19.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1000-1008, 2017 May.
Article in English | MEDLINE | ID: mdl-28192171

ABSTRACT

BACKGROUND: Alkaptonuria (AKU) is an ultra-rare disease associated to the lack of an enzyme involved in tyrosine catabolism. This deficiency results in the accumulation of homogentisic acid (HGA) in the form of ochronotic pigment in joint cartilage, leading to a severe arthropathy. Secondary amyloidosis has been also unequivocally assessed as a comorbidity of AKU arthropathy. Composition of ochronotic pigment and how it is structurally related to amyloid is still unknown. METHODS: We exploited Synchrotron Radiation Infrared and X-Ray Fluorescence microscopies in combination with conventional bio-assays and analytical tools to characterize chemical composition and morphology of AKU cartilage. RESULTS: We evinced that AKU cartilage is characterized by proteoglycans depletion, increased Sodium levels, accumulation of lipids in the peri-lacunar regions and amyloid formation. We also highlighted an increase of aromatic compounds and oxygen-containing species, depletion in overall Magnesium content (although localized in the peri-lacunar region) and the presence of calcium carbonate fragments in proximity of cartilage lacunae. CONCLUSIONS: We highlighted common features between AKU and arthropathy, but also specific signatures of the disease, like presence of amyloids and peculiar calcifications. Our analyses provide a unified picture of AKU cartilage, shedding a new light on the disease and opening new perspectives. GENERAL SIGNIFICANCE: Ochronotic pigment is a hallmark of AKU and responsible of tissue degeneration. Conventional bio-assays have not yet clarified its composition and its structural relationship with amyloids. The present work proposes new strategies for filling the aforementioned gap that encompass the integration of new analytical approaches with standardized analyses.


Subject(s)
Alkaptonuria/pathology , Rare Diseases/metabolism , Rare Diseases/pathology , Alkaptonuria/metabolism , Amyloidosis/metabolism , Amyloidosis/pathology , Cartilage/metabolism , Cartilage/pathology , Fluorescence , Homogentisic Acid/metabolism , Humans , Lipids/physiology , Magnesium/metabolism , Microscopy/methods , Pigments, Biological/metabolism , Spectroscopy, Fourier Transform Infrared/methods , X-Rays
20.
J Inherit Metab Dis ; 39(2): 203-10, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26596578

ABSTRACT

Alkaptonuria (AKU) is a rare inherited metabolic disorder of tyrosine metabolism that results from a defect in an enzyme called homogentisate 1,2-dioxygenase. The result of this is that homogentisic acid (HGA) accumulates in the body. HGA is central to the pathophysiology of this disease and the consequences observed; these include spondyloarthropathy, rupture of ligaments/muscle/tendons, valvular heart disease including aortic stenosis and renal stones. While AKU is considered to be a chronic progressive disorder, it is clear from published case reports that fatal acute metabolic complications can also occur. These include oxidative haemolysis and methaemoglobinaemia. The exact mechanisms underlying the latter are not clear, but it is proposed that disordered metabolism within the red blood cell is responsible for favouring a pro-oxidant environment that leads to the life threatening complications observed. Herein the role of red blood cell in maintaining the redox state of the body is reviewed in the context of AKU. In addition previously reported therapeutic strategies are discussed, specifically with respect to why reported treatments had little therapeutic effect. The potential use of nitisinone for the management of patients suffering from the acute metabolic decompensation in AKU is proposed as an alternative strategy.


Subject(s)
Alkaptonuria/complications , Alkaptonuria/metabolism , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Acute Disease , Cyclohexanones/therapeutic use , Erythrocytes/drug effects , Erythrocytes/metabolism , Homogentisate 1,2-Dioxygenase/metabolism , Homogentisic Acid/metabolism , Humans , Metabolic Diseases/drug therapy , Nitrobenzoates/therapeutic use , Oxidation-Reduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL