Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.056
Filter
Add more filters

Publication year range
1.
Cell ; 187(13): 3357-3372.e19, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38866018

ABSTRACT

Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.


Subject(s)
Archaea , Hydrogen , Hydrogenase , Phylogeny , Archaea/genetics , Archaea/enzymology , Archaeal Proteins/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Genome, Archaeal , Hydrogen/metabolism , Hydrogenase/metabolism , Hydrogenase/genetics , Hydrogenase/chemistry , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/chemistry , Models, Molecular , Protein Structure, Tertiary
2.
Cell ; 173(7): 1636-1649.e16, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29754813

ABSTRACT

Hydrogen gas-evolving membrane-bound hydrogenase (MBH) and quinone-reducing complex I are homologous respiratory complexes with a common ancestor, but a structural basis for their evolutionary relationship is lacking. Here, we report the cryo-EM structure of a 14-subunit MBH from the hyperthermophile Pyrococcus furiosus. MBH contains a membrane-anchored hydrogenase module that is highly similar structurally to the quinone-binding Q-module of complex I while its membrane-embedded ion-translocation module can be divided into a H+- and a Na+-translocating unit. The H+-translocating unit is rotated 180° in-membrane with respect to its counterpart in complex I, leading to distinctive architectures for the two respiratory systems despite their largely conserved proton-pumping mechanisms. The Na+-translocating unit, absent in complex I, resembles that found in the Mrp H+/Na+ antiporter and enables hydrogen gas evolution by MBH to establish a Na+ gradient for ATP synthesis near 100°C. MBH also provides insights into Mrp structure and evolution of MBH-based respiratory enzymes.


Subject(s)
Archaeal Proteins/metabolism , Hydrogenase/metabolism , Pyrococcus furiosus/metabolism , Amino Acid Sequence , Archaeal Proteins/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Cell Membrane/chemistry , Cell Membrane/metabolism , Cryoelectron Microscopy , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Evolution, Molecular , Hydrogen/metabolism , Hydrogenase/chemistry , Hydrogenase/genetics , Mutagenesis , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Sodium/chemistry , Sodium/metabolism , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism
3.
Nature ; 615(7952): 541-547, 2023 03.
Article in English | MEDLINE | ID: mdl-36890228

ABSTRACT

Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe-4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.


Subject(s)
Atmosphere , Hydrogen , Hydrogenase , Mycobacterium smegmatis , Cryoelectron Microscopy , Hydrogen/chemistry , Hydrogen/metabolism , Hydrogenase/chemistry , Hydrogenase/metabolism , Hydrogenase/ultrastructure , Oxidation-Reduction , Oxygen , Vitamin K 2/metabolism , Atmosphere/chemistry , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/metabolism , Hydrogenation
4.
Nature ; 607(7920): 823-830, 2022 07.
Article in English | MEDLINE | ID: mdl-35859174

ABSTRACT

Filamentous enzymes have been found in all domains of life, but the advantage of filamentation is often elusive1. Some anaerobic, autotrophic bacteria have an unusual filamentous enzyme for CO2 fixation-hydrogen-dependent CO2 reductase (HDCR)2,3-which directly converts H2 and CO2 into formic acid. HDCR reduces CO2 with a higher activity than any other known biological or chemical catalyst4,5, and it has therefore gained considerable interest in two areas of global relevance: hydrogen storage and combating climate change by capturing atmospheric CO2. However, the mechanistic basis of the high catalytic turnover rate of HDCR has remained unknown. Here we use cryo-electron microscopy to reveal the structure of a short HDCR filament from the acetogenic bacterium Thermoanaerobacter kivui. The minimum repeating unit is a hexamer that consists of a formate dehydrogenase (FdhF) and two hydrogenases (HydA2) bound around a central core of hydrogenase Fe-S subunits, one HycB3 and two HycB4. These small bacterial polyferredoxin-like proteins oligomerize through their C-terminal helices to form the backbone of the filament. By combining structure-directed mutagenesis with enzymatic analysis, we show that filamentation and rapid electron transfer through the filament enhance the activity of HDCR. To investigate the structure of HDCR in situ, we imaged T. kivui cells with cryo-electron tomography and found that HDCR filaments bundle into large ring-shaped superstructures attached to the plasma membrane. This supramolecular organization may further enhance the stability and connectivity of HDCR to form a specialized metabolic subcompartment within the cell.


Subject(s)
Carbon Dioxide , Cell Membrane , Hydrogen , Hydrogenase , Nanowires , Carbon Dioxide/metabolism , Cell Membrane/enzymology , Cryoelectron Microscopy , Enzyme Stability , Hydrogen/metabolism , Hydrogenase/chemistry , Hydrogenase/genetics , Hydrogenase/metabolism , Hydrogenase/ultrastructure , Mutation , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Thermoanaerobacter/cytology , Thermoanaerobacter/enzymology
5.
Annu Rev Biochem ; 81: 429-50, 2012.
Article in English | MEDLINE | ID: mdl-22482905

ABSTRACT

[FeFe]-hydrogenses and molybdenum (Mo)-nitrogenase are evolutionarily unrelated enzymes with unique complex iron-sulfur cofactors at their active sites. The H cluster of [FeFe]-hydrogenases and the FeMo cofactor of Mo-nitrogenase require specific maturation machinery for their proper synthesis and insertion into the structural enzymes. Recent insights reveal striking similarities in the biosynthetic pathways of these complex cofactors. For both systems, simple iron-sulfur cluster precursors are modified on assembly scaffolds by the activity of radical S-adenosylmethionine (SAM) enzymes. Radical SAM enzymes are responsible for the synthesis and insertion of the unique nonprotein ligands presumed to be key structural determinants for their respective catalytic activities. Maturation culminates in the transfer of the intact cluster assemblies to a cofactor-less structural protein recipient. Required roles for nucleotide binding and hydrolysis have been implicated in both systems, but the specific role for these requirements remain unclear. In this review, we highlight the progress on [FeFe]-hydrogenase H cluster and nitrogenase FeMo-cofactor assembly in the context of these emerging paradigms.


Subject(s)
Bacteria/metabolism , Coenzymes/metabolism , Iron-Sulfur Proteins/metabolism , Iron/metabolism , Sulfur/metabolism , Bacteria/enzymology , Branchial Region/enzymology , Branchial Region/metabolism , Coenzymes/chemistry , Hydrogenase/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/chemistry , Molybdoferredoxin/chemistry , Molybdoferredoxin/metabolism , S-Adenosylmethionine/metabolism
6.
Trends Biochem Sci ; 48(8): 659-661, 2023 08.
Article in English | MEDLINE | ID: mdl-37246022

ABSTRACT

Despite its extreme scarcity, atmospheric H2 serves as an energy source for some prokaryotes. Recently, Grinter, Kropp, et al. reported the structural, biochemical, electrochemical, and spectroscopic elucidation of an underlying H2 catalyst, a [NiFe]-hydrogenase, which, owing to its extremely high affinity, facilitates the extraction of energy from ambient air.


Subject(s)
Hydrogen , Hydrogenase , Hydrogen/chemistry , Hydrogenase/metabolism , Oxidation-Reduction
7.
Proc Natl Acad Sci U S A ; 121(34): e2400267121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39136990

ABSTRACT

The fusion of hydrogenases and photosynthetic reaction centers (RCs) has proven to be a promising strategy for the production of sustainable biofuels. Type I (iron-sulfur-containing) RCs, acting as photosensitizers, are capable of promoting electrons to a redox state that can be exploited by hydrogenases for the reduction of protons to dihydrogen (H2). While both [FeFe] and [NiFe] hydrogenases have been used successfully, they tend to be limited due to either O2 sensitivity, binding specificity, or H2 production rates. In this study, we fuse a peripheral (stromal) subunit of Photosystem I (PS I), PsaE, to an O2-tolerant [FeFe] hydrogenase from Clostridium beijerinckii using a flexible [GGS]4 linker group (CbHydA1-PsaE). We demonstrate that the CbHydA1 chimera can be synthetically activated in vitro to show bidirectional activity and that it can be quantitatively bound to a PS I variant lacking the PsaE subunit. When illuminated in an anaerobic environment, the nanoconstruct generates H2 at a rate of 84.9 ± 3.1 µmol H2 mgchl-1 h-1. Further, when prepared and illuminated in the presence of O2, the nanoconstruct retains the ability to generate H2, though at a diminished rate of 2.2 ± 0.5 µmol H2 mgchl-1 h-1. This demonstrates not only that PsaE is a promising scaffold for PS I-based nanoconstructs, but the use of an O2-tolerant [FeFe] hydrogenase opens the possibility for an in vivo H2 generating system that can function in the presence of O2.


Subject(s)
Hydrogen , Hydrogenase , Light , Oxygen , Photosystem I Protein Complex , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/chemistry , Hydrogenase/metabolism , Hydrogenase/chemistry , Hydrogen/metabolism , Oxygen/metabolism , Oxygen/chemistry , Clostridium beijerinckii/metabolism , Clostridium beijerinckii/genetics , Oxidation-Reduction , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Photosynthesis
8.
Proc Natl Acad Sci U S A ; 121(29): e2404958121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985767

ABSTRACT

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 µmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.


Subject(s)
Graphite , Hydrogen , Shewanella , Hydrogen/metabolism , Shewanella/metabolism , Shewanella/genetics , Graphite/metabolism , Hydrogenase/metabolism , Hydrogenase/genetics , Electron Transport , Bioreactors , Synthetic Biology/methods , Electrodes , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Periplasm/metabolism , Bioelectric Energy Sources/microbiology
9.
Annu Rev Biochem ; 79: 507-36, 2010.
Article in English | MEDLINE | ID: mdl-20235826

ABSTRACT

Most methanogenic archaea reduce CO(2) with H(2) to CH(4). For the activation of H(2), they use different [NiFe]-hydrogenases, namely energy-converting [NiFe]-hydrogenases, heterodisulfide reductase-associated [NiFe]-hydrogenase or methanophenazine-reducing [NiFe]-hydrogenase, and F(420)-reducing [NiFe]-hydrogenase. The energy-converting [NiFe]-hydrogenases are phylogenetically related to complex I of the respiratory chain. Under conditions of nickel limitation, some methanogens synthesize a nickel-independent [Fe]-hydrogenase (instead of F(420)-reducing [NiFe]-hydrogenase) and by that reduce their nickel requirement. The [Fe]-hydrogenase harbors a unique iron-guanylylpyridinol cofactor (FeGP cofactor), in which a low-spin iron is ligated by two CO, one C(O)CH(2)-, one S-CH(2)-, and a sp(2)-hybridized pyridinol nitrogen. Ligation of the iron is thus similar to that of the low-spin iron in the binuclear active-site metal center of [NiFe]- and [FeFe]-hydrogenases. Putative genes for the synthesis of the FeGP cofactor have been identified. The formation of methane from 4 H(2) and CO(2) catalyzed by methanogenic archaea is being discussed as an efficient means to store H(2).


Subject(s)
Archaea/enzymology , Hydrogen/metabolism , Hydrogenase/metabolism , Nickel , Archaea/metabolism , Hydrogenase/chemistry , Hydrogenase/genetics
10.
J Biol Chem ; 300(6): 107292, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636659

ABSTRACT

[FeFe]-hydrogenases catalyze the reversible oxidation of H2 from electrons and protons at an organometallic active site cofactor named the H-cluster. In addition to the H-cluster, most [FeFe]-hydrogenases possess accessory FeS cluster (F-cluster) relays that function in mediating electron transfer with catalysis. There is significant variation in the structural properties of F-cluster relays among the [FeFe]-hydrogenases; however, it is unknown how this variation relates to the electronic and thermodynamic properties, and thus the electron transfer properties, of enzymes. Clostridium pasteurianum [FeFe]-hydrogenase II (CpII) exhibits a large catalytic bias for H2 oxidation (compared to H2 production), making it a notable system for examining if F-cluster properties contribute to the overall function and efficiency of the enzyme. By applying a combination of multifrequency and potentiometric electron paramagnetic resonance, we resolved two electron paramagnetic resonance signals with distinct power- and temperature-dependent properties at g = 2.058 1.931 1.891 (F2.058) and g = 2.061 1.920 1.887 (F2.061), with assigned midpoint potentials of -140 ± 18 mV and -406 ± 12 mV versus normal hydrogen electrode, respectively. Spectral analysis revealed features consistent with spin-spin coupling between the two [4Fe-4S] F-clusters, and possible functional models are discussed that account for the contribution of coupling to the electron transfer landscape. The results signify the interplay of electronic coupling and free energy properties and parameters of the FeS clusters to the electron transfer mechanism through the relay and provide new insight as to how relays functionally complement the catalytic directionality of active sites to achieve highly efficient catalysis.


Subject(s)
Clostridium , Hydrogen , Hydrogenase , Iron-Sulfur Proteins , Oxidation-Reduction , Hydrogenase/metabolism , Hydrogenase/chemistry , Clostridium/enzymology , Hydrogen/metabolism , Hydrogen/chemistry , Electron Transport , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/chemistry , Catalysis , Electron Spin Resonance Spectroscopy , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
11.
Acc Chem Res ; 57(14): 1941-1950, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38937148

ABSTRACT

ConspectusNature's prototypical hydrogen-forming catalysts─hydrogenases─have attracted much attention because they catalyze hydrogen evolution at near zero overpotential and ambient conditions. Beyond any possible applications in the energy sphere, the hydrogenases feature complicated active sites, which implies novel biosynthetic pathways. In terms of the variety of cofactors, the [FeFe]-hydrogenase is among the most complex.For more than a decade, we have worked on the biosynthesis of the active site of [FeFe] hydrogenases. This site, the H-cluster, is a six-iron ensemble consisting of a [4Fe-4S]H cluster linked to a [2Fe]H cluster that is coordinated to CO, cyanide, and a unique organic azadithiolate ligand. Many years ago, three enzymes, namely, HydG, HydE, and HydF, were shown to be required for the biosynthesis and the in vitro maturation of [FeFe] hydrogenases. The structures of the maturases were determined crystallographically, but still little progress was made on the biosynthetic pathway. As described in this Account, the elucidation of the biosynthetic pathway began in earnest with the identification of a molecular iron-cysteinate complex produced within HydG.In this Account, we present our most recent progress toward the molecular mechanism of [2Fe]H biosynthesis using a collaborative approach involving cell-free biosynthesis, isotope and element-sensitive spectroscopies, as well as inorganic synthesis of purported biosynthetic intermediates. Our study starts from the radical SAM enzyme HydG that lyses tyrosine into CO and cyanide and forms an Fe(CO)2(CN)-containing species. Crystallographic identification of a unique auxiliary 5Fe-4S cluster in HydG leads to a proposed catalytic cycle in which a free cysteine-chelated "dangler" Fe serves as the platform for the stepwise formation of a [4Fe-4S][Fe(CO)(CN)(cysteinate)] intermediate, which releases the [Fe(CO)2(CN)(cysteinate)] product, Complex B. Since Complex B is unstable, we applied synthetic organometallic chemistry to make an analogue, syn-B, and showed that it fully replaces HydG in the in vitro maturation of the H-cluster. Syn-B serves as the substrate for the next radical SAM enzyme HydE, where the low-spin Fe(II) center is activated by 5'-dAdo• to form an adenosylated Fe(I) intermediate. We propose that this Fe(I) species strips the carbon backbone and dimerizes in HydE to form a [Fe2(SH)2(CO)4(CN)2]2- product. This mechanistic scenario is supported by the use of a synthetic version of this dimer complex, syn-dimer, which allows for the formation of active hydrogenase with only the HydF maturase. Further application of this semisynthesis strategy shows that an [Fe2(SCH2NH2)2(CO)4(CN)2]2- complex can activate the apo hydrogenase, marking it as the last biosynthetic intermediate en route to the H-cluster. This combined enzymatic and semisynthetic approach greatly accelerates our understanding of H-cluster biosynthesis. We anticipate additional mechanistic details regarding H-cluster biosynthesis to be gleaned, and this methodology may be further applied in the study of other complex metallocofactors.


Subject(s)
Hydrogenase , Iron-Sulfur Proteins , Catalytic Domain , Hydrogen/chemistry , Hydrogen/metabolism , Hydrogenase/metabolism , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism
12.
Nat Chem Biol ; 19(4): 498-506, 2023 04.
Article in English | MEDLINE | ID: mdl-36702959

ABSTRACT

[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.


Subject(s)
Cupriavidus necator , Hydrogenase , Catalytic Domain , Hydrogenase/chemistry , Hydrogenase/metabolism , Cupriavidus necator/chemistry , Cupriavidus necator/metabolism , Oxidation-Reduction , Nickel
13.
J Am Chem Soc ; 146(26): 18019-18031, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888987

ABSTRACT

The membrane-bound hydrogenase (Mbh) from Pyrococcus furiosus is an archaeal member of the Complex I superfamily. It catalyzes the reduction of protons to H2 gas powered by a [NiFe] active site and transduces the free energy into proton pumping and Na+/H+ exchange across the membrane. Despite recent structural advances, the mechanistic principles of H2 catalysis and ion transport in Mbh remain elusive. Here, we probe how the redox chemistry drives the reduction of the proton to H2 and how the catalysis couples to conformational dynamics in the membrane domain of Mbh. By combining large-scale quantum chemical density functional theory (DFT) and correlated ab initio wave function methods with atomistic molecular dynamics simulations, we show that the proton transfer reactions required for the catalysis are gated by electric field effects that direct the protons by water-mediated reactions from Glu21L toward the [NiFe] site, or alternatively along the nearby His75L pathway that also becomes energetically feasible in certain reaction steps. These local proton-coupled electron transfer (PCET) reactions induce conformational changes around the active site that provide a key coupling element via conserved loop structures to the ion transport activity. We find that H2 forms in a heterolytic proton reduction step, with spin crossovers tuning the energetics along key reaction steps. On a general level, our work showcases the role of electric fields in enzyme catalysis and how these effects are employed by the [NiFe] active site of Mbh to drive PCET reactions and ion transport.


Subject(s)
Hydrogen , Hydrogenase , Molecular Dynamics Simulation , Pyrococcus furiosus , Hydrogenase/chemistry , Hydrogenase/metabolism , Hydrogen/chemistry , Hydrogen/metabolism , Pyrococcus furiosus/enzymology , Protons , Density Functional Theory , Catalytic Domain , Oxidation-Reduction
14.
J Am Chem Soc ; 146(2): 1455-1466, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38166210

ABSTRACT

The enzyme FeFe-hydrogenase catalyzes H2 evolution and oxidation at an active site that consists of a [4Fe-4S] cluster bridged to a [Fe2(CO)3(CN)2(azadithiolate)] subsite. Previous investigations of its mechanism were mostly conducted on a few "prototypical" FeFe-hydrogenases, such as that from Chlamydomonas reinhardtii(Cr HydA1), but atypical hydrogenases have recently been characterized in an effort to explore the diversity of this class of enzymes. We aim at understanding why prototypical hydrogenases are active in either direction of the reaction in response to a small deviation from equilibrium, whereas the homologous enzyme from Thermoanaerobacter mathranii (Tam HydS) shows activity only under conditions of very high driving force, a behavior that was referred to as "irreversible catalysis". We follow up on previous spectroscopic studies and recent developments in the kinetic modeling of bidirectional reactions to investigate and compare the catalytic cycles of Cr HydA1 and Tam HydS under conditions of direct electron transfer with an electrode. We compare the hypothetical catalytic cycles described in the literature, and we show that the observed changes in catalytic activity as a function of potential, pH, and H2 concentration can be explained with the assumption that the same catalytic mechanism applies. This helps us identify which variations in properties of the catalytic intermediates give rise to the distinct "reversible" or "irreversible" catalytic behaviors.


Subject(s)
Chlamydomonas reinhardtii , Hydrogenase , Iron-Sulfur Proteins , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Oxidation-Reduction , Electron Transport , Spectrum Analysis , Hydrogen/chemistry
15.
J Am Chem Soc ; 146(25): 16971-16976, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38747098

ABSTRACT

Hydrogenases catalyze hydrogen/proton interconversion that is normally electrochemically reversible (having minimal overpotential requirement), a special property otherwise almost exclusive to platinum metals. The mechanism of [NiFe]-hydrogenases includes a long-range proton-coupled electron-transfer process involving a specific Ni-coordinated cysteine and the carboxylate of a nearby glutamate. A variant in which this cysteine has been exchanged for selenocysteine displays two distinct changes in electrocatalytic properties, as determined by protein film voltammetry. First, proton reduction, even in the presence of H2 (a strong product inhibitor), is greatly enhanced relative to H2 oxidation: this result parallels a characteristic of natural [NiFeSe]-hydrogenases which are superior H2 production catalysts. Second, an inflection (an S-shaped "twist" in the trace) appears around the formal potential, the small overpotentials introduced in each direction (oxidation and reduction) signaling a departure from electrocatalytic reversibility. Concerted proton-electron transfer offers a lower energy pathway compared to stepwise transfers. Given the much lower proton affinity of Se compared to that of S, the inflection provides compelling evidence that concerted proton-electron transfer is important in determining why [NiFe]-hydrogenases are reversible electrocatalysts.


Subject(s)
Cysteine , Hydrogen , Hydrogenase , Protons , Selenocysteine , Hydrogenase/metabolism , Hydrogenase/chemistry , Hydrogen/chemistry , Hydrogen/metabolism , Electron Transport , Cysteine/chemistry , Cysteine/metabolism , Ligands , Selenocysteine/chemistry , Selenocysteine/metabolism , Catalysis , Electrochemical Techniques , Oxidation-Reduction
16.
J Am Chem Soc ; 146(23): 15771-15778, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38819401

ABSTRACT

The active site cofactor of [FeFe]-hydrogenases consists of a cubane [4Fe-4S]-cluster and a unique [2Fe-2S]-cluster, harboring unusual CO- and CN--ligands. The biosynthesis of the [2Fe-2S]-cluster requires three dedicated maturation enzymes called HydG, HydE and HydF. HydG and HydE are both involved in synthesizing a [2Fe-2S]-precursor, still lacking parts of the azadithiolate (adt) moiety that bridge the two iron atoms. This [2Fe-2S]-precursor is then finalized within the scaffold protein HydF, which binds and transfers the [2Fe-2S]-precursor to the hydrogenase. However, its exact binding mode within HydF is still elusive. Herein, we identified the binding location of the [2Fe-2S]-precursor by altering size and charge of a highly conserved protein pocket via site directed mutagenesis (SDM). Moreover, we identified two serine residues that are essential for binding and assembling the [2Fe-2S]-precursor. By combining SDM and molecular docking simulations, we provide a new model on how the [2Fe-2S]-cluster is bound to HydF and demonstrate the important role of one highly conserved aspartate residue, presumably during the bioassembly of the adt moiety.


Subject(s)
Hydrogenase , Iron-Sulfur Proteins , Hydrogenase/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Binding Sites , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Iron/chemistry , Iron/metabolism , Models, Molecular
17.
J Chem Inf Model ; 64(10): 4193-4203, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38728115

ABSTRACT

[NiFe] hydrogenases can act as efficient catalysts for hydrogen oxidation and biofuel production. However, some [NiFe] hydrogenases are inhibited by gas molecules present in the environment, such as O2 and CO. One strategy to engineer [NiFe] hydrogenases and achieve O2- and CO-tolerant enzymes is by introducing point mutations to block the access of inhibitors to the catalytic site. In this work, we characterized the unbinding pathways of CO in the complex with the wild-type and 10 different mutants of [NiFe] hydrogenase from Desulfovibrio fructosovorans using τ-random accelerated molecular dynamics (τRAMD) to enhance the sampling of unbinding events. The ranking provided by the relative residence times computed with τRAMD is in agreement with experiments. Extensive data analysis of the simulations revealed that from the two bottlenecks proposed in previous studies for the transit of gas molecules (residues 74 and 122 and residues 74 and 476), only one of them (residues 74 and 122) effectively modulates diffusion and residence times for CO. We also computed pathway probabilities for the unbinding of CO, O2, and H2 from the wild-type [NiFe] hydrogenase, and we observed that while the most probable pathways are the same, the secondary pathways are different. We propose that introducing mutations to block the most probable paths, in combination with mutations to open the main secondary path used by H2, can be a feasible strategy to achieve CO and O2 resistance in the [NiFe] hydrogenase from Desulfovibrio fructosovorans.


Subject(s)
Hydrogenase , Molecular Dynamics Simulation , Hydrogenase/metabolism , Hydrogenase/chemistry , Hydrogenase/antagonists & inhibitors , Carbon Monoxide/metabolism , Desulfovibrio/enzymology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Mutation , Oxygen/metabolism , Protein Conformation
18.
Chem Rev ; 122(14): 12427-12474, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35640056

ABSTRACT

Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.


Subject(s)
Amines , Hydrogenase , Amines/chemistry , Catalysis , Hydrogen/chemistry , Hydrogenase/chemistry , Ligands
19.
Chem Rev ; 122(14): 11900-11973, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35849738

ABSTRACT

Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.


Subject(s)
Hydrogenase , Aldehyde Oxidoreductases , Carbon Dioxide/chemistry , Formate Dehydrogenases/metabolism , Hydrogenase/chemistry , Multienzyme Complexes , Nitrogenase/metabolism , Oxidation-Reduction
20.
Phys Chem Chem Phys ; 26(28): 19105-19116, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38957092

ABSTRACT

[FeFe]-hydrogenase is nature's most efficient proton reducing and H2-oxidizing enzyme. However, biotechnological applications are hampered by the O2 sensitivity of this metalloenzyme, and the mechanism of aerobic deactivation is not well understood. Here, we explore the oxygen sensitivity of four mimics of the organometallic active site cofactor of [FeFe]-hydrogenase, [Fe2(adt)(CO)6-x(CN)x]x- and [Fe2(pdt)(CO)6-x(CN)x]x- (x = 1, 2) as well as the corresponding cofactor variants of the enzyme by means of infrared, Mössbauer, and NMR spectroscopy. Additionally, we describe a straightforward synthetic recipe for the active site precursor complex Fe2(adt)(CO)6. Our data indicate that the aminodithiolate (adt) complex, which is the synthetic precursor of the natural active site cofactor, is most oxygen sensitive. This observation highlights the significance of proton transfer in aerobic deactivation, and supported by DFT calculations facilitates an identification of the responsible reactive oxygen species (ROS). Moreover, we show that the ligand environment of the iron ions critically influences the reactivity with O2 and ROS like superoxide and H2O2 as the oxygen sensitivity increases with the exchange of ligands from CO to CN-. The trends in aerobic deactivation observed for the model complexes are in line with the respective enzyme variants. Based on experimental and computational data, a model for the initial reaction of [FeFe]-hydrogenase with O2 is developed. Our study underscores the relevance of model systems in understanding biocatalysis and validates their potential as important tools for elucidating the chemistry of oxygen-induced deactivation of [FeFe]-hydrogenase.


Subject(s)
Catalytic Domain , Hydrogenase , Iron-Sulfur Proteins , Oxygen , Hydrogenase/chemistry , Hydrogenase/metabolism , Oxygen/chemistry , Oxygen/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Density Functional Theory
SELECTION OF CITATIONS
SEARCH DETAIL