Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Cell Physiol ; 327(4): C901-C912, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39129491

ABSTRACT

Pulmonary arterial hypertension (PAH) is a debilitating vascular disorder characterized by abnormal pulmonary artery smooth muscle cell (PASMC) proliferation and collagen synthesis, contributing to vascular remodeling and elevated pulmonary vascular resistance. This study investigated the critical role of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) in cell proliferation and collagen synthesis in PASMCs in PAH. Here we show that ATIC levels are significantly increased in the lungs of monocrotaline (MCT)-induced PAH rat model, hypoxia-induced PAH mouse model, and platelet-derived growth factor (PDGF)-stimulated PASMCs. Inhibition of ATIC attenuated PDGF-induced cell proliferation and collagen I synthesis in PASMCs. Conversely, overexpression or knockdown of ATIC causes a significant promotion or inhibition of Ras and ERK activation, cell proliferation, and collagen synthesis in PASMCs. Moreover, ATIC deficiency attenuated Ras activation in the lungs of hypoxia-induced PAH mice. Furthermore, Ras inhibition attenuates ATIC overexpression- and PDGF-induced collagen synthesis and PASMC proliferation. Notably, we identified that transcription factors MYC, early growth response protein 1 (EGR1), and specificity protein 1 (SP1) directly binds to promoters of Atic gene and regulate ATIC expression. These results provide the first evidence that ATIC promotes PASMC proliferation in pulmonary vascular remodeling through the Ras signaling pathway.NEW & NOTEWORTHY Our findings highlight the important role of ATIC in the PASMC proliferation of pulmonary vascular remodeling through its modulation of the Ras signaling pathway and its regulation by transcription factors MYC, EGR1, and SP1. ATIC's modulation of Ras signal pathway represents a novel mechanism contributing to PAH development.


Subject(s)
Cell Proliferation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Pulmonary Artery , Signal Transduction , Animals , Male , Mice , Rats , Cells, Cultured , Disease Models, Animal , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Hydroxymethyl and Formyl Transferases/metabolism , Hydroxymethyl and Formyl Transferases/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/enzymology , Mice, Inbred C57BL , Monocrotaline/toxicity , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Platelet-Derived Growth Factor/metabolism , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/drug effects , ras Proteins/metabolism , ras Proteins/genetics , Rats, Sprague-Dawley , Vascular Remodeling/drug effects
2.
Cancer Sci ; 115(10): 3218-3230, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39086034

ABSTRACT

Mitochondrial N-formylpeptides are released from damaged or dead cells to the extracellular spaces and cause inflammatory responses. The role of mitochondrial N-formylpeptides in aseptic systemic inflammatory response syndromes induced by trauma or cardiac surgery has been well investigated. However, there are no reports regarding the role of mitochondrial N-formylpeptides in cancer. In this study, we investigated the role of tumor cell-derived mitochondrial N-formylpeptides in anti-tumor immunity using knockout murine tumor cells of mitochondrial methionyl-tRNA formyltransferase (MTFMT), which catalyze N-formylation of mitochondrial DNA-encoded proteins. There was no apparent difference among the wild-type and MTFMT-knockout clones of E.G7-OVA cells with respect to morphology, mitochondrial dynamics, glycolysis and oxidative phosphorylation, oxygen consumption rate, or in vitro cell growth. In contrast, in vivo tumor growth of MTFMT-knockout cells was slower than that of wild-type cells. A reduced number of myeloid-derived suppressor cells and an increase of cytotoxic T-lymphocytes in the tumor tissues were observed in the MTFMT-knockout tumors. These results suggested that tumor cell-derived mitochondrial N-formylpeptides had a negative role in the host anti-tumor immunity through modification of the tumor microenvironment.


Subject(s)
Mitochondria , Tumor Microenvironment , Animals , Tumor Microenvironment/immunology , Mice , Mitochondria/metabolism , Cell Line, Tumor , Mice, Knockout , Hydroxymethyl and Formyl Transferases/metabolism , Hydroxymethyl and Formyl Transferases/genetics , Mice, Inbred C57BL , T-Lymphocytes, Cytotoxic/immunology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Peptides , Oxidative Phosphorylation , Cell Proliferation
3.
Microbiology (Reading) ; 170(2)2024 02.
Article in English | MEDLINE | ID: mdl-38421161

ABSTRACT

Two clinically important subspecies, Francisella tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B) are responsible for most tularaemia cases, but these isolates typically form a weak biofilm under in vitro conditions. Phase variation of the F. tularensis lipopolysaccharide (LPS) has been reported in these subspecies, but the role of variation is unclear as LPS is crucial for virulence. We previously demonstrated that a subpopulation of LPS variants can constitutively form a robust biofilm in vitro, but it is unclear whether virulence was affected. In this study, we show that biofilm-forming variants of both fully virulent F. tularensis subspecies were highly attenuated in the murine tularaemia model by multiple challenge routes. Genomic sequencing was performed on these strains, which revealed that all biofilm-forming variants contained a lesion within the wbtJ gene, a formyltransferase involved in O-antigen synthesis. A ΔwbtJ deletion mutant recapitulated the biofilm, O-antigen and virulence phenotypes observed in natural variants and could be rescued through complementation with a functional wbtJ gene. Since the spontaneously derived biofilm-forming isolates in this study were a subpopulation of natural variants, reversion events to the wbtJ gene were detected that eliminated the phenotypes associated with biofilm variants and restored virulence. These results demonstrate a role for WbtJ in biofilm formation, LPS variation and virulence of F. tularensis.


Subject(s)
Francisella tularensis , Francisella , Hydroxymethyl and Formyl Transferases , Tularemia , Animals , Mice , Francisella tularensis/genetics , O Antigens/genetics , Lipopolysaccharides , Hydroxymethyl and Formyl Transferases/genetics , Phase Variation , Mutation
4.
J Cell Biochem ; 124(9): 1324-1345, 2023 09.
Article in English | MEDLINE | ID: mdl-37475541

ABSTRACT

Upper tract urothelial carcinoma (UTUC), including renal, pelvic, and ureteral carcinoma, has a high incidence rate in Taiwan, which is different from that in Western countries. Therefore, it is imperative to elucidate the mechanisms underlying UTUC growth and metastasis. To explore the function of miR-145-5p in UTUC, we transfected the BFTC909 cell line with miR-145-5p mimics and analyzed the differences in protein levels by performing two-dimensional polyacrylamide gel electrophoresis. Real-time polymerase chain reaction and Western blot analysis were used to analyze 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inositol monophosphate cyclohydrolase (ATIC) messenger RNA and protein levels. A dual-luciferase assay was performed to identify the target of miR-145-5p in ATIC. The effects of miR-145-5p and ATIC expression by cell transfection on cell proliferation, migration, and invasion were also assessed. miR-145-5p downregulated ATIC protein expression. High ATIC expression is associated with tumor stage, metastasis, recurrence, and a poor prognosis in patients with UTUC. Cell function assays revealed that ATIC knockdown inhibited the proliferation, migration, and invasive abilities of UTUC cells. In contrast, miR-145-5p affected the proliferation, migration, and invasive abilities of UTUC cells by directly targeting the 3'-untranslated regions of ATIC. Furthermore, we used RNA sequencing and Ingenuity Pathway Analysis to identify possible downstream genes regulated by ATIC and found that miR-145-5p regulated the protein levels of fibronectin 1, Slug, cyclin A2, cyclin B1, P57, and interferon-induced transmembrane 1 via ATIC. ATIC may be a valuable predictor of prognosis and a potential therapeutic target for UTUC.


Subject(s)
Carcinoma, Transitional Cell , Hydroxymethyl and Formyl Transferases , MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/genetics , Carcinoma, Transitional Cell/genetics , Cell Line, Tumor , Urinary Bladder Neoplasms/genetics , Hydroxymethyl and Formyl Transferases/genetics , Cell Proliferation/genetics , Ribonucleotides , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
5.
Proc Natl Acad Sci U S A ; 116(51): 25583-25590, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31776258

ABSTRACT

Methylotrophy, the ability of microorganisms to grow on reduced one-carbon substrates such as methane or methanol, is a feature of various bacterial species. The prevailing oxidation pathway depends on tetrahydromethanopterin (H4MPT) and methylofuran (MYFR), an analog of methanofuran from methanogenic archaea. Formyltransferase/hydrolase complex (Fhc) generates formate from formyl-H4MPT in two consecutive reactions where MYFR acts as a carrier of one-carbon units. Recently, we chemically characterized MYFR from the model methylotroph Methylorubrum extorquens and identified an unusually long polyglutamate side chain of up to 24 glutamates. Here, we report on the crystal structure of Fhc to investigate the function of the polyglutamate side chain in MYFR and the relatedness of the enzyme complex with the orthologous enzymes in archaea. We identified MYFR as a prosthetic group that is tightly, but noncovalently, bound to Fhc. Surprisingly, the structure of Fhc together with MYFR revealed that the polyglutamate side chain of MYFR is branched and contains glutamates with amide bonds at both their α- and γ-carboxyl groups. This negatively charged and branched polyglutamate side chain interacts with a cluster of conserved positively charged residues of Fhc, allowing for strong interactions. The MYFR binding site is located equidistantly from the active site of the formyltransferase (FhcD) and metallo-hydrolase (FhcA). The polyglutamate serves therefore an additional function as a swinging linker to shuttle the one-carbon carrying amine between the two active sites, thereby likely increasing overall catalysis while decreasing the need for high intracellular MYFR concentrations.


Subject(s)
Bacterial Proteins , Furans , Hydroxymethyl and Formyl Transferases , Methane , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coenzymes/chemistry , Coenzymes/metabolism , Crystallography , Formates/chemistry , Formates/metabolism , Furans/chemistry , Furans/metabolism , Hydroxymethyl and Formyl Transferases/chemistry , Hydroxymethyl and Formyl Transferases/genetics , Hydroxymethyl and Formyl Transferases/metabolism , Methane/chemistry , Methane/metabolism , Methanol/chemistry , Methanol/metabolism , Methylobacterium extorquens/enzymology , Methylobacterium extorquens/genetics , Polyglutamic Acid/chemistry , Polyglutamic Acid/metabolism
6.
J Biol Chem ; 295(28): 9551-9566, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32439803

ABSTRACT

The purinosome is a dynamic metabolic complex composed of enzymes responsible for de novo purine biosynthesis, whose formation has been associated with elevated purine demand. However, the physiological conditions that govern purinosome formation in cells remain unknown. Here, we report that purinosome formation is up-regulated in cells in response to a low-oxygen microenvironment (hypoxia). We demonstrate that increased purinosome assembly in hypoxic human cells requires the activation of hypoxia inducible factor 1 (HIF-1) and not HIF-2. Hypoxia-driven purinosome assembly was inhibited in cells lacking 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), a single enzyme in de novo purine biosynthesis, and in cells treated with a small molecule inhibitor of ATIC homodimerization. However, despite the increase in purinosome assembly in hypoxia, we observed no associated increase in de novo purine biosynthesis in cells. Our results indicate that this was likely due to a reduction in mitochondrial one-carbon metabolism, resulting in reduced mitochondrion-derived one-carbon units needed for de novo purine biosynthesis. The findings of our study further clarify and deepen our understanding of purinosome formation by revealing that this process does not solely depend on cellular purine demand.


Subject(s)
Hydroxymethyl and Formyl Transferases/metabolism , Hypoxia-Inducible Factor 1/metabolism , Multienzyme Complexes/metabolism , Nucleotide Deaminases/metabolism , Purines/biosynthesis , Cell Hypoxia , HeLa Cells , Humans , Hydroxymethyl and Formyl Transferases/genetics , Hypoxia-Inducible Factor 1/genetics , Multienzyme Complexes/genetics , Nucleotide Deaminases/genetics
7.
Int J Mol Sci ; 22(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34830359

ABSTRACT

Intracellular trafficking pathways control residency and bioactivity of integral membrane proteins at the cell surface. Upon internalisation, surface cargo proteins can be delivered back to the plasma membrane via endosomal recycling pathways. Recycling is thought to be controlled at the metabolic and transcriptional level, but such mechanisms are not fully understood. In yeast, recycling of surface proteins can be triggered by cargo deubiquitination and a series of molecular factors have been implicated in this trafficking. In this study, we follow up on the observation that many subunits of the Rpd3 lysine deacetylase complex are required for recycling. We validate ten Rpd3-complex subunits in recycling using two distinct assays and developed tools to quantify both. Fluorescently labelled Rpd3 localises to the nucleus and complements recycling defects, which we hypothesised were mediated by modulated expression of Rpd3 target gene(s). Bioinformatics implicated 32 candidates that function downstream of Rpd3, which were over-expressed and assessed for capacity to suppress recycling defects of rpd3∆ cells. This effort yielded three hits: Sit4, Dit1 and Ldb7, which were validated with a lipid dye recycling assay. Additionally, the essential phosphatidylinositol-4-kinase Pik1 was shown to have a role in recycling. We propose recycling is governed by Rpd3 at the transcriptional level via multiple downstream target genes.


Subject(s)
Histone Deacetylases/genetics , Hydroxymethyl and Formyl Transferases/genetics , Protein Phosphatase 2/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , 1-Phosphatidylinositol 4-Kinase/genetics , Cell Membrane/genetics , Chromosomal Proteins, Non-Histone/genetics , Endosomes/genetics , Gene Expression Regulation, Fungal/genetics , Multiprotein Complexes/genetics , Protein Interaction Maps/genetics , Saccharomyces cerevisiae/growth & development
8.
Int J Mol Sci ; 22(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672312

ABSTRACT

The problematic opportunistic pathogen Pseudomonas aeruginosa secretes a siderophore, pyoverdine. Pyoverdine scavenges iron needed by the bacteria for growth and for pathogenicity in a range of different infection models. PvdF, a hydroxyornithine transformylase enzyme, is essential for pyoverdine synthesis, catalysing synthesis of formylhydroxyornithine (fOHOrn) that forms part of the pyoverdine molecule and provides iron-chelating hydroxamate ligands. Using a mass spectrometry assay, we confirm that purified PvdF catalyses synthesis of fOHOrn from hydroxyornithine and formyltetrahydrofolate substrates. Site directed mutagenesis was carried out to investigate amino acid residues predicted to be required for enzymatic activity. Enzyme variants were assayed for activity in vitro and also in vivo, through measuring their ability to restore pyoverdine production to a pvdF mutant strain. Variants at two putative catalytic residues N168 and H170 greatly reduced enzymatic activity in vivo though did not abolish activity in vitro. Change of a third residue D229 abolished activity both in vivo and in vitro. A change predicted to block entry of N10-formyltetrahydrofolate (fTHF) to the active site also abolished activity both in vitro and in vivo. A co-purification assay showed that PvdF binds to an enzyme PvdA that catalyses synthesis of hydroxyornithine, with this interaction likely to increase the efficiency of fOHOrn synthesis. Our findings advance understanding of how P. aeruginosa synthesises pyoverdine, a key factor in host-pathogen interactions.


Subject(s)
Bacterial Proteins/metabolism , Hydroxymethyl and Formyl Transferases/metabolism , Mixed Function Oxygenases/metabolism , Siderophores/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Catalytic Domain , Hydroxymethyl and Formyl Transferases/genetics , Hydroxymethyl and Formyl Transferases/isolation & purification , Mixed Function Oxygenases/genetics , Mutagenesis, Site-Directed , Oligopeptides/biosynthesis , Protein Interaction Maps , Protein Stability , Pseudomonas aeruginosa/metabolism
9.
J Am Chem Soc ; 142(46): 19754-19762, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33147013

ABSTRACT

The congested nature of quaternary carbons hinders their preparation, most notably when stereocontrol is required. Here we report a biocatalytic method for the creation of quaternary carbon centers with broad substrate scope, leading to different compound classes bearing this structural feature. The key step comprises the aldol addition of 3,3-disubstituted 2-oxoacids to aldehydes catalyzed by metal dependent 3-methyl-2-oxobutanoate hydroxymethyltransferase from E. coli (KPHMT) and variants thereof. The 3,3,3-trisubstituted 2-oxoacids thus produced were converted into 2-oxolactones and 3-hydroxy acids and directly to ulosonic acid derivatives, all bearing gem-dialkyl, gem-cycloalkyl, and spirocyclic quaternary centers. In addition, some of these reactions use a single enantiomer from racemic nucleophiles to afford stereopure quaternary carbons. The notable substrate tolerance and stereocontrol of these enzymes are indicative of their potential for the synthesis of structurally intricate molecules.


Subject(s)
Aldehydes/metabolism , Escherichia coli Proteins/metabolism , Hydroxymethyl and Formyl Transferases/metabolism , Keto Acids/metabolism , Aldehydes/chemistry , Binding Sites , Biocatalysis , Catalytic Domain , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Hydroxymethyl and Formyl Transferases/chemistry , Hydroxymethyl and Formyl Transferases/genetics , Keto Acids/chemistry , Mutagenesis, Site-Directed , Stereoisomerism , Substrate Specificity
10.
J Inherit Metab Dis ; 43(6): 1254-1264, 2020 11.
Article in English | MEDLINE | ID: mdl-32557644

ABSTRACT

5-Amino-4-imidazolecarboxamide-ribosiduria (AICA)-ribosiduria is an exceedingly rare autosomal recessive condition resulting from the disruption of the bifunctional purine biosynthesis protein PURH (ATIC), which catalyzes the last two steps of de novo purine synthesis. It is characterized biochemically by the accumulation of AICA-riboside in urine. AICA-ribosiduria had been reported in only one individual, 15 years ago. In this article, we report three novel cases of AICA-ribosiduria from two independent families, with two novel pathogenic variants in ATIC. We also provide a clinical update on the first patient. Based on the phenotypic features shared by these four patients, we define AICA-ribosiduria as the syndromic association of severe-to-profound global neurodevelopmental impairment, severe visual impairment due to chorioretinal atrophy, ante-postnatal growth impairment, and severe scoliosis. Dysmorphic features were observed in all four cases, especially neonatal/infancy coarse facies with upturned nose. Early-onset epilepsy is frequent and can be pharmacoresistant. Less frequently observed features are aortic coarctation, chronic hepatic cytolysis, minor genital malformations, and nephrocalcinosis. Alteration of the transformylase activity of ATIC might result in a more severe impairment than the alteration of the cyclohydrolase activity. Data from literature points toward a cytotoxic mechanism of the accumulated AICA-riboside.


Subject(s)
Congenital Abnormalities/genetics , Epilepsy/genetics , Hydroxymethyl and Formyl Transferases/deficiency , Intellectual Disability/genetics , Multienzyme Complexes/genetics , Nucleotide Deaminases/deficiency , Aminoimidazole Carboxamide/metabolism , Child , Child, Preschool , Female , Humans , Hydroxymethyl and Formyl Transferases/genetics , Hydroxymethyl and Formyl Transferases/metabolism , Infant , Infant, Newborn , Male , Multienzyme Complexes/metabolism , Mutation , Nucleotide Deaminases/genetics , Nucleotide Deaminases/metabolism , Phenotype , Ribonucleosides/metabolism
11.
J Biol Chem ; 293(39): 15021-15032, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30087118

ABSTRACT

N-Formylation of the Met-tRNAMet by the nuclearly encoded mitochondrial methionyl-tRNA formyltransferase (MTFMT) has been found to be a key determinant of protein synthesis initiation in mitochondria. In humans, mutations in the MTFMT gene result in Leigh syndrome, a progressive and severe neurometabolic disorder. However, the absolute requirement of formylation of Met-tRNAMet for protein synthesis in mammalian mitochondria is still debated. Here, we generated a Mtfmt-KO mouse fibroblast cell line and demonstrated that N-formylation of the first methionine via fMet-tRNAMet by MTFMT is not an absolute requirement for initiation of protein synthesis. However, it differentially affected the efficiency of synthesis of mtDNA-coded polypeptides. Lack of methionine N-formylation did not compromise the stability of these individual subunits but had a marked effect on the assembly and stability of the OXPHOS complexes I and IV and on their supercomplexes. In summary, N-formylation is not essential for mitochondrial protein synthesis but is critical for efficient synthesis of several mitochondrially encoded peptides and for OXPHOS complex stability and assembly into supercomplexes.


Subject(s)
Hydroxymethyl and Formyl Transferases/genetics , Methionine/genetics , Mitochondria/genetics , Protein Biosynthesis/genetics , Animals , DNA, Mitochondrial/genetics , Fibroblasts/metabolism , Humans , Mice , Mice, Knockout , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/genetics , Mutation , Oxidative Phosphorylation , RNA, Transfer, Amino Acyl/genetics
12.
J Biol Chem ; 293(13): 4845-4859, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29414769

ABSTRACT

The enzyme AICAR-transformylase/IMP cyclohydrolase (ATIC) catalyzes the last two steps of purine de novo synthesis. It metabolizes 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), which is an AMP analogue, leading to activation of AMP-activated kinase (AMPK). We investigated whether the AICAR-ATIC pathway plays a role in the high glucose (HG)-mediated DNA damage response and AICAR-mediated AMPK activation, explaining the detrimental effects of glucose on neuronal damage and shortening of the lifespan. HG up-regulated the expression and activity of the Caenorhabditis elegans homologue of ATIC, C55F2.1 (atic-1), and increased the levels of reactive oxygen species and methylglyoxal-derived advanced glycation end products. Overexpression of atic-1 decreased the lifespan and head motility and increased neuronal damage under both standard and HG conditions. Inhibition of atic-1 expression, by RNAi, under HG was associated with increased lifespan and head motility and reduced neuronal damage, reactive oxygen species, and methylglyoxal-derived advanced glycation end product accumulation. This effect was independent of an effect on DNA damage or antioxidant defense pathways, such as superoxide dismutase (sod-3) or glyoxalase-1 (glod-4), but was dependent on AMPK and accumulation of AICAR. Through AMPK, AICAR treatment also reduced the negative effects of HG. The mitochondrial inhibitor rotenone abolished the AICAR/AMPK-induced amelioration of HG effects, pointing to mitochondria as a prime target of the glucotoxic effects in C. elegans We conclude that atic-1 is involved in glucotoxic effects under HG conditions, either by blocked atic-1 expression or via AICAR and AMPK induction.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Glucose/metabolism , Hydroxymethyl and Formyl Transferases/metabolism , Multienzyme Complexes/metabolism , Nucleotide Deaminases/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Hydroxymethyl and Formyl Transferases/genetics , Multienzyme Complexes/genetics , Neurons/metabolism , Nucleotide Deaminases/genetics , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
13.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 254-263, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29042184

ABSTRACT

Aminoimidazolecarboxamide ribonucleotide formyl transferase (AICARFT): Inosine monophosphate cyclohydrolase (IMPCH, collectively called ATIC) is a bifunctional enzyme that catalyses the penultimate and final steps in the purine de novo biosynthesis pathway. The bifunctional protein is dimeric and each monomer contains two different active sites both of which are capable of binding nucleotide substrates, this means to a potential total of four distinct binding events might be observed. Within this work we used a combination of site-directed and truncation mutants of ATIC to independently investigate the binding at these two sites using calorimetry. A single S10W mutation is sufficient to block the IMPCH active site allowing investigation of the effects of mutation on ligand binding in the AICARFT active site. The majority of nucleotide ligands bind selectively at one of the two active sites with the exception of xanthosine monophosphate, XMP, which, in addition to binding in both AICARFT and IMPCH active sites, shows evidence for cooperative binding with communication between symmetrically-related active sites in the two IMPCH domains. The AICARFT site is capable of independently binding both nucleotide and folate substrates with high affinity however no evidence for positive cooperativity in binding could be detected using the model ligands employed in this study.


Subject(s)
Hydroxymethyl and Formyl Transferases/chemistry , Models, Molecular , Multienzyme Complexes/chemistry , Nucleotide Deaminases/chemistry , Nucleotides/chemistry , Catalytic Domain , Humans , Hydroxymethyl and Formyl Transferases/genetics , Hydroxymethyl and Formyl Transferases/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Nucleotide Deaminases/genetics , Nucleotide Deaminases/metabolism , Nucleotides/genetics , Nucleotides/metabolism , Protein Binding , Substrate Specificity/physiology
14.
Mol Biol Rep ; 45(6): 2707-2716, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30377949

ABSTRACT

De novo synthesis of purines has been suggested to be an important factor for the pathogenesis of uropathogenic E. coli (UPEC). We analyzed the role of the redundant purine biosynthesis genes purN and purT, responsible for the third step in the purine biosynthesis, during UPEC infection. Growth experiments in M9 (minimal media), MOPS (rich media), filtered urine, and human serum with E. coli UTI89 and ΔpurN, ΔpurT, and ΔpurN/T mutants revealed that UPEC relies on de novo purine synthesis for growth in minimal medium. Mutants in individual genes as well as the double mutant grew equally well as the wild type in urine, rich media, and serum. However, during competition for growth in urine, the wild type UTI89 strain significantly outcompeted the purine auxotrophic ΔpurN/T mutant from late exponential growth phase. Inactivation of purN and/or purT significantly affected UPEC invasion of human bladder cells, but not the intracellular survival. Cytotoxicity levels to bladder cells were also diminished when both purN and purT were deleted, while single gene mutants did not differ from the wild type. When infecting human macrophages, no differences were observed between UTI89 and mutants in uptake, survival or cytotoxicity. Finally, the lack of the pur-gene(s), whether analysed as single or double gene knock-out, did not affect recovery rates after in vivo infection in a mouse model of UTI. These findings suggest that de novo synthesis of purines might be required only when UPEC is fully deprived of nucleotides and when grown in competition with other microorganisms in urine.


Subject(s)
Escherichia coli Proteins/genetics , Hydroxymethyl and Formyl Transferases/genetics , Purines/biosynthesis , Uropathogenic Escherichia coli/genetics , Animals , Escherichia coli/metabolism , Escherichia coli Infections/genetics , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Female , Humans , Hydroxymethyl and Formyl Transferases/metabolism , Mice , Mice, Inbred C3H , Primary Cell Culture , Purines/metabolism , Urinary Bladder , Urinary Tract Infections/genetics , Urinary Tract Infections/metabolism , Urine/microbiology , Uropathogenic Escherichia coli/metabolism , Virulence , Virulence Factors
15.
J Struct Biol ; 200(3): 267-278, 2017 12.
Article in English | MEDLINE | ID: mdl-28263875

ABSTRACT

N-formylated sugars are found on the lipopolysaccharides of various pathogenic Gram negative bacteria including Campylobacter jejuni 81116, Francisella tularensis, Providencia alcalifaciens O30, and Providencia alcalifaciens O40. The last step in the biosynthetic pathways for these unusual sugars is catalyzed by N-formyltransferases that utilize N10-formyltetrahydrofolate as the carbon source. The substrates are dTDP-linked amino sugars with the functional groups installed at either the C-3' or C-4' positions of the pyranosyl rings. Here we describe a structural and enzymological investigation of the putative N-formyltransferase, FdtF, from Salmonella enterica O60. In keeping with its proposed role in the organism, the kinetic data reveal that the enzyme is more active with dTDP-3-amino-3,6-dideoxy-d-galactose than with dTDP-3-amino-3,6-dideoxy-d-glucose. The structural data demonstrate that the enzyme contains, in addition to the canonical N-formyltransferase fold, an ankyrin repeat moiety that houses a second dTDP-sugar binding pocket. This is only the second time an ankyrin repeat has been shown to be involved in small molecule binding. The research described herein represents the first structural analysis of a sugar N-formyltransferase that specifically functions on dTDP-3-amino-3,6-dideoxy-d-galactose in vivo and thus adds to our understanding of these intriguing enzymes.


Subject(s)
Bacterial Proteins/chemistry , Hydroxymethyl and Formyl Transferases/chemistry , Hydroxymethyl and Formyl Transferases/metabolism , Salmonella enterica/enzymology , Amino Sugars/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Glucosamine/analogs & derivatives , Glucosamine/metabolism , Hydroxymethyl and Formyl Transferases/genetics , Kinetics , Models, Molecular , Protein Conformation
16.
Neurogenetics ; 18(2): 97-103, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28058511

ABSTRACT

Mitochondrial protein synthesis is initiated by formylated tRNA-methionine, which requires the activity of MTFMT, a methionyl-tRNA formyltransferase. Mutations in MTFMT have been associated with Leigh syndrome, early-onset mitochondrial leukoencephalopathy, microcephaly, ataxia, and cardiomyopathy. We identified compound heterozygous MTFMT mutations in a patient with a mild neurological phenotype and late-onset progressive visual impairment. MRI studies documented a progressive and selective involvement of the retrochiasmatic visual pathway. MTFMT was undetectable by immunoblot analysis of patient fibroblasts, resulting in specific defects in mitochondrial protein synthesis and assembly of the oxidative phosphorylation complexes. This report expands the clinical and MRI phenotypes associated with MTFMT mutations, illustrating the complexity of genotype-phenotype relationships in mitochondrial translation disorders.


Subject(s)
Cognitive Dysfunction/genetics , Hydroxymethyl and Formyl Transferases/genetics , Mitochondrial Diseases/genetics , Vision Disorders/genetics , Cognitive Dysfunction/complications , DNA Mutational Analysis , Female , Humans , Mitochondrial Diseases/complications , Phenotype , Visual Pathways/metabolism , Visual Pathways/pathology , Young Adult
17.
Clin Genet ; 91(5): 748-755, 2017 May.
Article in English | MEDLINE | ID: mdl-27659940

ABSTRACT

Congenital heart disease (CHD) is one of most prevalent birth defects in the world. However, the underlying molecular mechanism(s) have not been fully understood. Here we report that increased CHD susceptibility is associated with genetic polymorphisms for de novo nucleotide biosynthesis in northern Chinese population, which has been reported with lower plasma folate levels. Nine tagSNPs of four genes (GART, ATIC, MTHFD1 and SHMT1) in de novo nucleotide biosynthesis were sequenced in 802 sporadic CHD patients and 1093 controls from two Han Chinese populations, located in north China (Shandong) and South China (Shanghai), respectively. Six SNPs were found to be significantly associated with CHDs or septation defects only in the Shandong population dataset, but none displayed significant association with any CHDs in the Shanghai population dataset as well as in the combined dataset. We also showed that the minor A allele of rs7279549 in GART reduced transcriptional activity and displayed lower affinity for unknown transcription factor(s), demonstrating the allele is a functional risk factor for CHD in Shandong population. Our study indicates that dysregulation of de novo nucleotide biosynthesis pathway may conditionally contribute to CHD pathogenesis in northern Chinese.


Subject(s)
Carbon-Nitrogen Ligases/genetics , Glycine Hydroxymethyltransferase/genetics , Heart Defects, Congenital/genetics , Hydroxymethyl and Formyl Transferases/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Minor Histocompatibility Antigens/genetics , Multienzyme Complexes/genetics , Nucleotide Deaminases/genetics , Phosphoribosylglycinamide Formyltransferase/genetics , Polymorphism, Single Nucleotide , Alleles , Asian People/genetics , Case-Control Studies , Genetic Predisposition to Disease , Humans , Nucleotides/biosynthesis , Nucleotides/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Haematologica ; 102(9): 1605-1616, 2017 09.
Article in English | MEDLINE | ID: mdl-28659337

ABSTRACT

Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma is characterized by 2p23/ALK aberrations, including the classic t(2;5)(p23;q35)/NPM1-ALK rearrangement present in ~80% of cases and several variant t(2p23/ALK) occurring in the remaining cases. The ALK fusion partners play a key role in the constitutive activation of the chimeric protein and its subcellular localization. Using various molecular technologies, we have characterized ALK fusions in eight recently diagnosed anaplastic large cell lymphoma cases with cytoplasmic-only ALK expression. The identified partner genes included EEF1G (one case), RNF213/ALO17 (one case), ATIC (four cases) and TPM3 (two cases). Notably, all cases showed copy number gain of the rearranged ALK gene, which is never observed in NPM1-ALK-positive lymphomas. We hypothesized that this could be due to lower expression levels and/or lower oncogenic potential of the variant ALK fusions. Indeed, all partner genes, except EEF1G, showed lower expression in normal and malignant T cells, in comparison with NPM1 In addition, we investigated the transformation potential of endogenous Npm1-Alk and Atic-Alk fusions generated by clustered regularly interspaced short palindromic repeats/Cas9 genome editing in Ba/F3 cells. We found that Npm1-Alk has a stronger transformation potential than Atic-Alk, and we observed a subclonal gain of Atic-Alk after a longer culture period, which was not observed for Npm1-Alk Taken together, our data illustrate that lymphomas driven by the variant ATIC-ALK fusion (and likely by RNF213-ALK and TPM3-ALK), but not the classic NPM1-ALK, require an increased dosage of the ALK hybrid gene to compensate for the relatively low and insufficient expression and signaling properties of the chimeric gene.


Subject(s)
Adenosine Triphosphatases/genetics , Gene Rearrangement , Hydroxymethyl and Formyl Transferases/genetics , Lymphoma, Large-Cell, Anaplastic/genetics , Multienzyme Complexes/genetics , Nucleotide Deaminases/genetics , Oncogene Proteins, Fusion/genetics , Receptor Protein-Tyrosine Kinases/genetics , Translocation, Genetic , Tropomyosin/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Aged , Anaplastic Lymphoma Kinase , Child, Preschool , Female , Humans , Lymphoma, Large-Cell, Anaplastic/pathology , Male , Middle Aged , Nucleophosmin
19.
Cell Commun Signal ; 15(1): 52, 2017 Dec 16.
Article in English | MEDLINE | ID: mdl-29246230

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the cancer types with poor prognosis. To effectively treat HCC, new molecular targets and therapeutic approaches must be identified. 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate (IMP) cyclohydrolase (ATIC), a bifunctional protein enzyme, catalyzes the last two steps of the de novo purine biosynthetic pathway. Whether ATIC contributes to cancer development remains unclear. METHODS: ATIC mRNA levels in different types of human HCC samples or normal tissues were determined from Gene Expression across Normal and Tumor tissue (GENT) database. The expression level of ATIC in human HCC samples or cell lines were examined by RT-PCR and western blot. Overall survival and disease-free survival of HCC patients in the ATIC low and ATIC high groups were determined by Kaplan-Meier analysis. Effects of ATIC knockdown by lentivirus infection were evaluated on cell-proliferation, cell-apoptosis, colony formation and migration. The mechanisms involved in HCC cells growth, apoptosis and migration were analyzed by western blot and Compound C (C-C) rescue assays. RESULTS: Here, we first demonstrated that expression of ATIC is aberrantly up-regulated in HCC tissues and high level of ATIC is correlated with poor survival in HCC patients. Knockdown of ATIC expression resulted in a dramatic decrease in proliferation, colony formation and migration of HCC cells. We also identified ATIC as a novel regulator of adenosine monophosphate-activated protein kinase (AMPK) and its downstream signaling mammalian target of rapamycin (mTOR). ATIC suppresses AMPK activation, thus activates mTOR-S6 K1-S6 signaling and supports growth and motility activity of HCC cells. CONCLUSION: Taken together, our results indicate that ATIC acts as an oncogenic gene that promotes survival, proliferation and migration by targeting AMPK-mTOR-S6 K1 signaling.


Subject(s)
Adenylate Kinase/metabolism , Carcinoma, Hepatocellular/pathology , Hydroxymethyl and Formyl Transferases/metabolism , Liver Neoplasms/pathology , Multienzyme Complexes/metabolism , Nucleotide Deaminases/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Disease-Free Survival , Enzyme Activation , Gene Knockdown Techniques , Humans , Hydroxymethyl and Formyl Transferases/deficiency , Hydroxymethyl and Formyl Transferases/genetics , Molecular Targeted Therapy , Multienzyme Complexes/deficiency , Multienzyme Complexes/genetics , Nucleotide Deaminases/deficiency , Nucleotide Deaminases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
20.
J Pediatr Hematol Oncol ; 39(5): e270-e274, 2017 07.
Article in English | MEDLINE | ID: mdl-28267080

ABSTRACT

Accumulating evidence indicates that polymorphisms in folate pathway genes play a role in response to methotrexate (MTX) treatment in various diseases. This study explored the influence of these genetic polymorphisms on treatment outcome in pediatric osteosarcoma. Blood and tissue samples from 48 osteosarcoma patients were obtained, and the following polymorphisms were analyzed; SLC19A1 80G>A, DHFR 829C>T, MTHFR 677C>T, MTHFR 1298A>C, and ATIC 347C>G. We evaluated associations between these candidate gene polymorphisms and treatment outcome, including histologic response and event-free and overall survival, of patients treated with high-dose MTX. Patients with ATIC 347C>G exhibited a good histologic response to chemotherapy (odds ratio, 0.13; 95% confidence interval, 0.017-0.978; P=0.048). However, none of these single nucleotide polymorphisms we examined affected event-free survival or overall survival rates of the patients. Even though the role of single nucleotide polymorphisms of ATIC in chemotherapy-induced tumor necrosis has not been investigated yet, the ATIC 347C>G polymorphism may influence the levels of adenosine after MTX treatment, which may affect the histologic response of osteosarcoma. This relationship warrants validation in a larger, prospective cohort study.


Subject(s)
Hydroxymethyl and Formyl Transferases/genetics , Multienzyme Complexes/genetics , Nucleotide Deaminases/genetics , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Polymorphism, Single Nucleotide , Adenosine/blood , Adolescent , Antineoplastic Agents/therapeutic use , Child , Child, Preschool , Disease-Free Survival , Female , Humans , Male , Methotrexate/therapeutic use , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Osteosarcoma/mortality , Reduced Folate Carrier Protein/genetics , Survival Rate , Tetrahydrofolate Dehydrogenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL