Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 464
Filter
Add more filters

Publication year range
1.
J Immunol ; 211(4): 527-538, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37449905

ABSTRACT

IgE-mediated mast cell activation is a driving force in allergic disease in need of novel interventions. Statins, long used to lower serum cholesterol, have been shown in multiple large-cohort studies to reduce asthma severity. We previously found that statins inhibit IgE-induced mast cell function, but these effects varied widely among mouse strains and human donors, likely due to the upregulation of the statin target, 3-hydroxy-3-methylgutaryl-CoA reductase. Statin inhibition of mast cell function appeared to be mediated not by cholesterol reduction but by suppressing protein isoprenylation events that use cholesterol pathway intermediates. Therefore, we sought to circumvent statin resistance by targeting isoprenylation. Using genetic depletion of the isoprenylation enzymes farnesyltransferase and geranylgeranyl transferase 1 or their substrate K-Ras, we show a significant reduction in FcεRI-mediated degranulation and cytokine production. Furthermore, similar effects were observed with pharmacological inhibition with the dual farnesyltransferase and geranylgeranyl transferase 1 inhibitor FGTI-2734. Our data indicate that both transferases must be inhibited to reduce mast cell function and that K-Ras is a critical isoprenylation target. Importantly, FGTI-2734 was effective in vivo, suppressing mast cell-dependent anaphylaxis, allergic pulmonary inflammation, and airway hyperresponsiveness. Collectively, these findings suggest that K-Ras is among the isoprenylation substrates critical for FcεRI-induced mast cell function and reveal isoprenylation as a new means of targeting allergic disease.


Subject(s)
Anaphylaxis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mice , Humans , Animals , Receptors, IgE/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Farnesyltranstransferase/metabolism , Mast Cells/metabolism , Anaphylaxis/metabolism , Signal Transduction , Cell Degranulation , Immunoglobulin E/metabolism , Inflammation/metabolism , Cholesterol/metabolism , Prenylation
2.
J Biol Chem ; 299(5): 104681, 2023 05.
Article in English | MEDLINE | ID: mdl-37030504

ABSTRACT

We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca2+ transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Myocardium/enzymology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Machine Learning
3.
Toxicol Mech Methods ; 34(2): 130-147, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37771097

ABSTRACT

An increased risk of new-onset diabetes mellitus has been recently reported for statin therapy, and experimental studies have shown reduced glucose-stimulated insulin secretion (GSIS) and mitochondrial dysfunction in beta cells with effects differing among agents. Organic anion transporting polypeptide (OATP) 2B1 contributes to hepatic uptake of rosuvastatin, atorvastatin and pravastatin, three known substrates. Since OATP2B1 is present in beta cells of the human pancreas, we investigated if OATP2B1 facilitates the local accumulation of statins in a rat beta cell model INS-1 832/13 (INS-1) thereby amplifying statin-induced toxicity. OATP2B1 overexpression in INS-1 cells via adenoviral transduction showed 2.5-, 1.8- and 1.4-fold higher cellular retention of rosuvastatin, atorvastatin and pravastatin, respectively, relative to LacZ control, while absolute intracellular concentration was about twice as high for the lipophilic atorvastatin compared to the more hydrophilic rosuvastatin and pravastatin. After 24 h statin treatment at high concentrations, OATP2B1 enhanced statin toxicity involving activation of intrinsic apoptosis (caspase 3/7 activation) and mitochondrial dysfunction (NADH dehydrogenase activity) following rosuvastatin and atorvastatin, which was partly reversed by isoprenoids. OATP2B1 had no effect on statin-induced reduction in GSIS, mitochondrial electron transport chain complex expression or caspase 9 activation. We confirmed a dose-dependent reduction in insulin secretion by rosuvastatin and atorvastatin in native INS-1 with a modest change in cellular ATP. Collectively, our results indicate a role of OATP2B1, which is abundant in human beta cells, in statin accumulation and statin-induced toxicity but not insulin secretion of rosuvastatin and atorvastatin in INS-1 cells.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mitochondrial Diseases , Humans , Rats , Animals , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Atorvastatin/toxicity , Rosuvastatin Calcium/toxicity , Pravastatin , Mitochondrial Diseases/chemically induced
4.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R281-R292, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36572553

ABSTRACT

The regulation of cholesterol metabolism in fish is still unclear. Statins play important roles in promoting cholesterol metabolism development in mammals. However, studies on the role of statins in cholesterol metabolism in fish are currently limited. The present study evaluated the effects of statins on cholesterol metabolism in fish. Nile tilapia (Oreochromis niloticus) were fed on control diets supplemented with three atorvastatin levels (0, 12, and 24 mg/kg diet, ATV0, ATV12, and ATV24, respectively) for 4 wk. Intriguingly, the results showed that both atorvastatin treatments increased hepatic cholesterol and triglyceride contents mainly through inhibiting bile acid synthesis and efflux, and compensatorily enhancing cholesterol synthesis in fish liver (P < 0.05). Moreover, atorvastatin treatment significantly inhibited hepatic very-low-density lipoprotein (VLDL) assembly and thus decreased serum VLDL content (P < 0.05). However, fish treated with atorvastatin significantly reduced cholesterol and triglycerides contents in adipose tissue (P < 0.05). Further molecular analysis showed that atorvastatin treatment promoted cholesterol synthesis and lipogenesis pathways, but inhibited lipid catabolism and low-density lipoprotein (LDL) uptake in the adipose tissue of fish (P < 0.05). In general, atorvastatin induced the remodeling of lipid distribution between liver and adipose tissues through blocking VLDL efflux from the liver to adipose tissue of fish. Our results provide a novel regulatory pattern of cholesterol metabolism response caused by atorvastatin in fish, which is distinct from mammals: cholesterol inhibition by atorvastatin activates hepatic cholesterol synthesis and inhibits its efflux to maintain cholesterol homeostasis, consequently reduces cholesterol storage in fish adipose tissue.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Animals , Atorvastatin/pharmacology , Atorvastatin/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Lipoproteins/metabolism , Lipoproteins/pharmacology , Cholesterol , Liver/metabolism , Triglycerides , Lipoproteins, VLDL , Adipose Tissue/metabolism , Lipid Metabolism , Mammals/metabolism
5.
Drug Metab Dispos ; 51(10): 1381-1390, 2023 10.
Article in English | MEDLINE | ID: mdl-37429727

ABSTRACT

Inclusion of plasma (or plasma proteins) in human hepatocyte uptake studies narrows, but does not close, the gap in in vitro to in vivo extrapolation (IVIVE) of organic anion transporting polypeptide (OATP)-mediated hepatic clearance (CLh) of statins. We have previously shown that this "apparent" protein-mediated uptake effect (PMUE) of statins by OATP1B1-expressing cells, in the presence of 5% human serum albumin (HSA), is mostly an artifact caused by residual statin-HSA complex remaining in the uptake assay. We determined if the same was true with plated human hepatocytes (PHH) and if this artifact can be reduced using suspended human hepatocytes (SHH) and the oil-spin method. We quantified the uptake of a cocktail of five statins by PHH and SHH in the absence and presence of 5% HSA. After terminating the uptake assay, the amount of residual HSA was quantified by quantitative targeted proteomics. For both PHH and SHH, except for atorvastatin and cerivastatin, the increase in total, active, and passive uptake of the statins, in the presence of 5% HSA, was explained by the estimated residual stain-HSA complex. In addition, the increase in active statin uptake by SHH, where present, was marginal (<50%), much smaller than that observed with PHH. Such a marginal increase cannot bridge the gap in IVIVE of CLh of statins. These data disprove the prevailing hypotheses for the in vitro PMUE. A true PMUE should be evaluated using the uptake data corrected for the residual drug-protein complex. SIGNIFICANCE STATEMENT: We show that the apparent protein-mediated uptake (PMUE) of statins by human hepatocytes is largely confounded by residual statin when plated or suspended human hepatocytes are used. Therefore, mechanisms other than PMUE need to be explored to explain the underprediction of the in vivo human hepatic clearance of statins by human hepatocyte uptake assays.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Organic Anion Transporters , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hepatocytes/metabolism , Liver/metabolism , Biological Transport , Organic Anion Transporters/metabolism , Serum Albumin, Human/metabolism
6.
Biotechnol Bioeng ; 120(9): 2685-2699, 2023 09.
Article in English | MEDLINE | ID: mdl-37060550

ABSTRACT

Extracellular vesicles (EVs) are a new therapeutic modality with the promise to treat many diseases through their ability to deliver diverse molecular cargo. As with other emerging modalities transitioning into the industrialization phase, all aspects of the manufacturing process are rich with opportunities to enhance the ability to deliver these medicines to patients. With the goal of improving cell culture EV productivity, we have utilized high throughput siRNA screens to identify the underlying genetic pathways that regulate EV productivity to inform rational host cell line engineering and media development approaches. The screens identified multiple metabolic pathways of potential interest; one of which was validated and shown to be a ready implementable, cost-effective strategy to increase EV titers. We show that both EV volumetric and specific productivity from HEK293 and CHO-S were increased in a dose and cell line-dependent manner up to ninefold when cholesterol synthesis was inhibited by the inclusion of statins in the cell culture media. In addition, we show in response to statin treatment, elevation of EV markers in mesenchymal stem cell (MSC) cell culture media suggesting this approach can also be applicable to MSC EVs. Furthermore, we show that the EVs produced from statin-treated HEK293 cultures are effectively loaded by both endogenous and exogenous loading methods and have equivalent in vitro or in vivo potency relative to EVs from untreated cultures.


Subject(s)
Extracellular Vesicles , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , HEK293 Cells , Extracellular Vesicles/metabolism , Cell Culture Techniques , Cholesterol/metabolism
7.
Int J Mol Sci ; 24(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36982489

ABSTRACT

Epsilon toxin (ETX), produced by type B and D strains of Clostridium perfringens, can cause fatal enterotoxaemia in ruminant animals, particularly sheep, cattle, and goats. Previous studies show that the cytotoxicity of ETX is dependent on the integrity of lipid rafts, the maintenance of which is ensured by cholesterol. Zaragozic acid (ZA) is a statin drug that reduces the synthesis of squalene, which is responsible for cholesterol synthesis. In this study, ZA significantly reduced the toxicity of ETX in Madin-Darby canine kidney (MDCK) cells. We show that ZA does not affect the binding of ETX to MDCK cells, but propidium iodide staining (PI) and Western blotting confirmed that ZA significantly disrupts the ability of ETX to form pores or oligomers in MDCK cells. Additionally, ZA decreased the phosphatidylserine exposure on the plasma membrane and increased the Ca2+ influx of the cells. Results of density gradient centrifugation suggest that ZA decreased the number of lipid rafts in MDCK membranes, which probably contributed to the attenuation of pore-formation. Moreover, ZA protected mice against ETX in vivo. All mice pre-treated with ZA for 48 h before exposure to an absolute lethal dose of ETX (6400 ng/kg) survived. In summary, these findings provide an innovative method to prevent ETX intoxication. Considering many pore-forming toxins require lipid rafts, we tested and found ZA also inhibited the toxicity of other toxins such as Clostridium perfringens Net B and ß-toxin (CPB) and Staphylococcus aureus α-hemolysin (Hla). We expect ZA can thus be developed as a broad-spectrum medicine for the treatment of multiple toxins. In addition, other statins, such as lovastatin (LO), also reduced the toxicity of ETX. These findings indicate that statin medicines are potential candidates for preventing and treating multiple toxin-induced diseases.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Animals , Dogs , Mice , Sheep , Cattle , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Madin Darby Canine Kidney Cells , Cell Membrane/metabolism , Clostridium perfringens/metabolism
8.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298172

ABSTRACT

Statins have been shown to cause diverse male reproductive function impairment, and in some cases, orchialgia. Therefore, the current study investigated the possible mechanisms through which statins may alter male reproductive parameters. Thirty adult male Wistar rats (200-250 g) were divided into three groups. The animals were orally administered rosuvastatin (50 mg/kg), simvastatin (50 mg/kg), or 0.5% carboxy methyl cellulose (control), for a 30-day period. Spermatozoa were retrieved from the caudal epididymis for sperm analysis. The testis was used for all biochemical assays and immunofluorescent localization of biomarkers of interest. Rosuvastatin-treated animals presented with a significant decrease in sperm concentration when compared to both the control and simvastatin groups (p < 0.005). While no significant difference was observed between the simvastatin and the control group. The Sertoli cells, Leydig cells and whole testicular tissue homogenate expressed transcripts of solute carrier organic anion transporters (SLCO1B1 and SLCO1B3). There was a significant decrease in the testicular protein expression of the luteinizing hormone receptor, follicle stimulating hormone receptor, and transient receptor potential vanilloid 1 in the rosuvastatin and simvastatin-treated animals compared to the control. The expression of SLCO1B1, SLCO1B2, and SLCO1B3 in the different spermatogenic cells portray that un-bio transformed statin can be transported into the testicular microenvironment, which can subsequently alter the regulation of the gonadal hormone receptors, dysregulate pain-inflammatory biomarkers, and consequently impair sperm concentration.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Rats , Animals , Male , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Rosuvastatin Calcium/pharmacology , Rats, Wistar , Semen , Testis/metabolism , Spermatozoa/metabolism , Follicle Stimulating Hormone/metabolism , Simvastatin/pharmacology , Simvastatin/metabolism , Gonadal Hormones/metabolism , Testosterone/metabolism
9.
Hum Mol Genet ; 29(2): 189-201, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31628463

ABSTRACT

Metabolites are small intermediate products of cellular metabolism perturbed in a variety of complex disorders. Identifying genetic markers associated with metabolite concentrations could delineate disease-related metabolic pathways in humans. We tested genetic variants for associations with 136 metabolites in 1954 Chinese from Singapore. At a conservative genome-wide threshold (3.7 × 10-10), we detected 1899 variant-metabolite associations at 16 genetic loci. Three loci (ABCA7, A4GALT, GSTM2) represented novel associations with metabolites, with the strongest association observed between ABCA7 and d18:1/24:1 dihexosylceramide. Among 13 replicated loci, we identified six new variants independent of previously reported metabolite or lipid signals. We observed variant-metabolite associations at two loci (ABCA7, CHCHD2) that have been linked to neurodegenerative diseases. At SGPP1 and SPTLC3 loci, genetic variants showed preferential selectivity for sphingolipids with d16 (rather than d18) sphingosine backbone, including sphingosine-1-phosphate (S1P). Our results provide new genetic associations for metabolites and highlight the role of metabolites as intermediate modulators in disease metabolic pathways.


Subject(s)
Alzheimer Disease/genetics , Asian People/genetics , Glycosphingolipids/metabolism , Parkinson Disease/genetics , Sphingolipids/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Alzheimer Disease/metabolism , Carnitine/analogs & derivatives , Carnitine/metabolism , China , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Glycosphingolipids/genetics , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Lysophospholipids/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Parkinson Disease/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Serine/metabolism , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/chemistry , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Tandem Mass Spectrometry , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Drug Metab Dispos ; 50(9): 1132-1141, 2022 09.
Article in English | MEDLINE | ID: mdl-35351775

ABSTRACT

Plasma proteins or human serum albumin (HSA) have been reported to increase the in vitro intrinsic uptake clearance (CLint,uptake) of drugs by hepatocytes or organic anion transporting polypeptide (OATP)-transfected cell lines. This so-called protein-mediated uptake effect (PMUE) is thought to be due to an interaction between the drug-protein complex and the cell membrane causing an increase in the unbound drug concentration at the cell surface, resulting in an increase in the apparent CLint,uptake of the drug. To determine if the PMUE on OATP-mediated drug uptake is an artifact or a real phenomenon, we determined the effect of 1%, 2%, and 5% HSA on OATP1B1-mediated [human embryonic kidney (HEK)293 transfected cells] and passive CLint,uptake (mock HEK293 cells) on a cocktail of five statins. In addition, we determined the non-specific binding (NSB) of the statin-HSA complex to the cells/labware. The increase in uptake of atorvastatin, fluvastatin, and rosuvastatin in the presence of HSA was completely explained by the extent of NSB of the statin-HSA complex, indicating that the PMUE for these statins is an artifact. In contrast, this was not the case for OATP1B1-mediated uptake of pitavastatin and passive uptake of cerivastatin, suggesting that the PMUE is a real phenomenon for these drugs. Additionally, the PMUE on OATP1B1-mediated uptake of pitavastatin was confirmed by a decrease in its unbound IC50 in the presence of 5% HSA versus Hank's balanced salt solution buffer (HBSS). These data question the utility of routinely including plasma proteins or HSA in uptake experiments and the previous findings on PMUE on OATP-mediated drug uptake. SIGNIFICANCE STATEMENT: Here we report, for the first time, that the protein-mediated uptake effect (PMUE) on organic anion transporting polypeptide (OATP)-transported drugs could be an artifact of the non-specific binding (NSB) of the drug-albumin complex to cells/labware. Future experiments on PMUE must take into consideration such NSB. In addition, mechanisms other than PMUE need to be explored to explain the underprediction of in vivo OATP-mediated hepatic drug clearance from in vitro uptake studies.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Organic Anion Transporters , Artifacts , Blood Proteins/metabolism , Drug Interactions , HEK293 Cells , Hepatocytes/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Liver/metabolism , Organic Anion Transporters/metabolism , Peptides/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
11.
Drug Metab Dispos ; 50(7): 942-956, 2022 07.
Article in English | MEDLINE | ID: mdl-35504656

ABSTRACT

Our laboratory has shown that activation of transforming growth factor- ß (TGF- ß )/activin receptor-like kinase 1 (ALK1) signaling can increase protein expression and transport activity of organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier (BBB). These results are relevant to treatment of ischemic stroke because Oatp transport substrates such as 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (i.e., statins) improve functional neurologic outcomes in patients. Advancement of our work requires determination if TGF- ß /ALK1 signaling alters Oatp1a4 functional expression differently across brain regions and if such disparities affect central nervous system (CNS) statin disposition. Therefore, we studied regulation of Oatp1a4 by the TGF- ß /ALK1 pathway, in vivo, in rat brain microvessels isolated from cerebral cortex, hippocampus, and cerebellum using the ALK1 agonist bone morphogenetic protein-9 (BMP-9) and the ALK1 inhibitor 4-[6-[4-(1-piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]quinoline dihydrochloride 193189. We showed that Oatp1a4 protein expression and brain distribution of three currently marketed statin drugs (i.e., atorvastatin, pravastatin, and rosuvastatin) were increased in cortex relative to hippocampus and cerebellum. Additionally, BMP-9 treatment enhanced Oatp-mediated statin transport in cortical tissue but not in hippocampus or cerebellum. Although brain drug delivery is also dependent upon efflux transporters, such as P-glycoprotein and/or Breast Cancer Resistance Protein, our data showed that administration of BMP-9 did not alter the relative contribution of these transporters to CNS disposition of statins. Overall, this study provides evidence for differential regulation of Oatp1a4 by TGF- ß /ALK1 signaling across brain regions, knowledge that is critical for development of therapeutic strategies to target Oatps at the BBB for CNS drug delivery. SIGNIFICANCE STATEMENT: Organic anion transporting polypeptides (Oatps) represent transporter targets for brain drug delivery. We have shown that Oatp1a4 statin uptake is higher in cortex versus hippocampus and cerebellum. Additionally, we report that the transforming growth factor- ß /activin receptor-like kinase 1 agonist bone morphogenetic protein-9 increases Oatp1a4 functional expression, but not efflux transporters P-glycoprotein and Breast Cancer Resistance Protein, in cortical brain microvessels. Overall, this study provides critical data that will advance treatment for neurological diseases where drug development has been challenging.


Subject(s)
Enzyme Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplasms , Organic Anion Transporters , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Activin Receptors/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Coenzyme A/metabolism , Growth Differentiation Factor 2/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Organic Anion Transporters/metabolism , Oxidoreductases/metabolism , Rats , Transforming Growth Factor beta/metabolism , Transforming Growth Factors/metabolism
12.
J Cardiovasc Pharmacol ; 80(5): 732-738, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35856902

ABSTRACT

ABSTRACT: Doxorubicin is a widely used anticancer drug in clinical practice, and its myocardial toxicity is the main concern in oncotherapy. Statins are commonly used as hypolipidemic drugs. Recent studies have also focused on the effects of statins on autophagy. Autophagy is a process in which cells consume their own cytoplasm or organelles after stimulation and finally degrade the phagosome in the lysosome. Transcription factor EB (TFEB) is the main factor regulating lysosomal gene transcription and function. We found that atorvastatin (ATO) increased TFEB protein levels and the ratio of lysosomal-associated membrane protein 2/LC3B in the myocardial tissue of mice with doxorubicin-induced cardiomyopathy (DIC). Therefore, we speculated that ATO may improve cardiac function in mice with DIC by increasing the expression of TFEB to enhance lysosomal function and autophagy. This study explored the role of TFEB in DIC and the possible mechanism of ATO in improving DIC and used statins to prevent and treat DIC; various dilated cardiomyopathy and heart failure diseases provide more experimental evidence. All relevant data are within the article and its supporting information files.


Subject(s)
Cardiomyopathies , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mice , Animals , Atorvastatin/pharmacology , Atorvastatin/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Lysosomes/genetics , Lysosomes/metabolism , Autophagy , Cardiomyopathies/chemically induced , Cardiomyopathies/prevention & control , Cardiomyopathies/metabolism , Doxorubicin
13.
Analyst ; 147(23): 5372-5385, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36285592

ABSTRACT

Cardiovascular diseases are still among the leading causes of mortality and morbidity worldwide. The build-up of fatty plaques in the arteries, leading to atherosclerosis, is the most common cause of cardiovascular diseases. The central player in atherosclerotic plaque formation is the foam cell. Foam cells are formed when monocytes infiltrate from the blood stream into the sub-endothelial space, differentiating into macrophages. With the subsequent uptake and storage of lipoprotein, especially low-density lipoprotein (LDL), they change their phenotype to lipid laden cells. Lowering circulating LDL levels, or initiating cholesterol efflux/reverse cholesterol transport in foam cells, is one of the current clinical therapies. Prescription of the pleiotropic drugs, statins, is the most successful therapy for the treatment and prevention of atherosclerosis. In this study, we used a foam cell model from the macrophage cell line, RAW 246.7, and applied the label-free Fourier Transform Infrared Spectroscopy (FTIR) method, i.e. synchrotron-based microFTIR spectroscopy, to study the lipid efflux process initiated by statins in a dose and time dependent manner. We used glass coverslips as substrates for IR analysis. The optical images (visible and fluorescent light) clearly identify the localization and lipid distribution within the foam cells, and the associated changes before and after culturing them with atorvastatin at concentrations of 0.6, 6 and 60 µg mL-1, for a culture duration between 24 to 72 hours. MicroFTIR spectroscopic spectra uniquely displayed the reduction of lipid content, with higher lipid efflux observed at higher doses of, and longer incubation time with, atorvastatin. Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) analysis demonstrated defined cluster separation at both lipid (3000-2800 cm-1) and fingerprint (1800-1350 cm-1) regions, with more profound discrimination for the atorvastatin dose treatment than time treatment. The data indicate that combining synchrotron-based microFTIR spectroscopy and using glass substrates for foam cells can offer an alternative tool in atherosclerosis investigation at a molecular level, and through cell morphology.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Plaque, Atherosclerotic , Humans , Foam Cells/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Atorvastatin/pharmacology , Atorvastatin/metabolism , Atorvastatin/therapeutic use , Cholesterol/metabolism , Atherosclerosis/drug therapy
14.
Acta Pharmacol Sin ; 43(11): 2905-2916, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35459869

ABSTRACT

Anterior gradient 2 (AGR2), a protein disulfide isomerase (PDI), is a multifunctional protein under physiological and pathological conditions. In this study we investigated the roles of AGR2 in regulating cholesterol biogenesis, lipid-lowering efficiency of lovastatin as well as in protection against hypercholesterolemia/statin-induced liver injury. We showed that AGR2 knockout significantly decreased hepatic and serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in mice with whole-body or hepatocyte-specific Agr2-null mutant, compared with the levels in their wild-type littermates fed a normal chow diet (NCD) or high-fat diet (HFD). In contrast, mice with AGR2 overexpression (Agr2/Tg) exhibited an increased cholesterol level. Mechanistic studies revealed that AGR2 affected cholesterol biogenesis via activation of AKT/sterol regulatory element-binding protein-2 (SREBP2), to some extent, in a PDI motif-dependent manner. Moreover, elevated AGR2 led to a significant decrease in the lipid-lowering efficacy of lovastatin (10 mg· kg-1· d-1, ip, for 2 weeks) in mice with hypercholesterolemia (hyperCho), which was validated by results obtained from clinical samples in statin-treated patients. We showed that lovastatin had limited effect on AGR2 expression, but AGR2 was inducible in Agr2/Tg mice fed a HFD. Further investigations demonstrated that drug-induced liver toxicity and inflammatory reactions were alleviated in hypercholesterolemic Agr2/Tg mice, suggesting the dual functions of AGR2 in lipid management and hyperCho/statin-induced liver injury. Importantly, the AGR2-reduced lipid-lowering efficacy of lovastatin was attenuated, at least partially, by co-administration of a sulfhydryl-reactive compound allicin (20 mg· kg-1· d-1, ip, for 2 weeks). These results demonstrate a novel role of AGR2 in cholesterol metabolism, drug resistance and liver protection, suggesting AGR2 as a potential predictor for selection of lipid-lowering drugs in clinic.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Mice , Animals , Lovastatin/pharmacology , Lovastatin/therapeutic use , Lovastatin/metabolism , Hypercholesterolemia/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Cholesterol, LDL , Liver/metabolism
15.
Drug Chem Toxicol ; 45(5): 2276-2284, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34039170

ABSTRACT

Resveratrol is well known for its antioxidant potential and ability to preserve mitochondrial function, reported attenuating ischemia-reperfusion (IR) injury in the heart. The present study investigates resveratrol on IR injury in rat hearts treated with statin for 14 days. Male Wistar rats were used in this study, and statin-induced cardiac metabolic alterations were monitored after the administration of simvastatin (80 mg/kg). IR was instigated by the Langendroff perfusion system and measured the physiological and biochemical changes. The basal level changes in ECG, ANP, and BNP expression and CoenzymeQ10 level were altered in statin-treated animals compared to the normal rat heart. The animals treated with statin demonstrated higher IR injury (measured via low rate pressure product (88.4%), increased histological alterations, prominent mitochondrial dysfunction (NQR: IR-72%, Stat IR-67%; SQR: IR-71%, Stat IR-74%; COX: IR-58%, Stat IR-52%) than the normal rat heart underwent similar protocols. Administration of heart with resveratrol recovered the IR associated hemodynamic indices in normal heart subjected to IR but failed to impart a similar effect in the statin-treated heart. Our results demonstrated that resveratrol failed to reverse the IR-associated cardiac injury and functional abnormalities in statin-treated rat hearts subjected to IR but effective in IR challenged normal heart.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Myocardial Reperfusion Injury , Animals , Heart , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Rats , Rats, Wistar , Resveratrol/pharmacology
16.
Int J Mol Sci ; 23(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36293254

ABSTRACT

Nanotechnology has been developed to deliver cargos effectively to the vascular system. Nanomedicine is a novel and effective approach for targeted vascular disease treatment including atherosclerosis, coronary artery disease, strokes, peripheral arterial disease, and cancer. It has been well known for some time that vascular disease patients have a higher cancer risk than the general population. During atherogenesis, the endothelial cells are activated to increase the expression of adhesion molecules such as Intercellular Adhesion Molecule 1 (ICAM-1), Vascular cell adhesion protein 1 (VCAM-1), E-selectin, and P-selectin. This biological activation of endothelial cells gives a targetability clue for nanoparticle strategies. Nanoparticle formation has a passive targeting pathway due to the increased adhesion molecule expression on the cell surface as well as increased cell activation. In addition, the VCAM-1-targeting peptide has been widely used to target the inflamed endothelial cells. Biomimetic nanoparticles using platelet and leukocyte membrane fragment strategies have been promising techniques for targeted vascular disease treatment. Cyclodextrin, a natural oligosaccharide with a hydrophobic cavity, increase the solubility of cholesterol crystals at the atherosclerotic plaque site and has been used to deliver the hydrophobic drug statin as a therapeutic in a targeted manner. In summary, nanoparticles decorated with various targeting molecules will be an effective and promising strategy for targeted vascular disease treatment.


Subject(s)
Cyclodextrins , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Vascular Diseases , Humans , Intercellular Adhesion Molecule-1/metabolism , E-Selectin/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , P-Selectin/metabolism , Endothelial Cells/metabolism , Nanomedicine , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Cell Adhesion Molecules/metabolism , Vascular Diseases/metabolism , Oligosaccharides/metabolism , Cyclodextrins/metabolism , Cholesterol/metabolism , Endothelium, Vascular/metabolism
17.
J Appl Biomed ; 20(4): 130-140, 2022 12.
Article in English | MEDLINE | ID: mdl-36708718

ABSTRACT

Statins are primary drugs in the treatment of hyperlipidemias. This group of drugs is known for its beneficial pleiotropic effects (e.g., reduction of inflammatory state). However, a growing body of evidence suggests its diabetogenic properties. The culpable mechanism is not completely understood and might be related to the damage to pancreatic beta cells. Therefore, we conceived an in vitro study to explore the impact of atorvastatin on pancreatic islet beta cells line (1.1.E7). We evaluated the influence on viability, insulin, low-density lipoprotein (LDL) receptor, and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression. A significant drop in mRNA for proinsulin and insulin expression was noted. Concurrently, a rise in LDL receptor at the protein level in cells exposed to atorvastatin was noted. Further experiments have shown that exenatide - belonging to glucagon-like peptide 1 (GLP-1) analogs that are used in a treatment of diabetes and known for its weight reducing properties - can alleviate the observed alterations. In this case, the mechanism of action of exenatide was dependent on a protein kinase A pathway. In conclusion, our results support the hypothesis that statin may have diabetogenic properties, which according to our study is related to reduced insulin expression. The concomitant use of GLP-1 receptor agonist seemed to successfully revert insulin expression.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Insulin-Secreting Cells , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/pharmacology , Exenatide/pharmacology , Exenatide/metabolism , Insulin Secretion , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/pharmacology , Atorvastatin/pharmacology , Atorvastatin/metabolism , Insulin/metabolism , Receptors, LDL/metabolism
18.
Am J Pathol ; 190(10): 2000-2012, 2020 10.
Article in English | MEDLINE | ID: mdl-32745461

ABSTRACT

Regulatory T cells (Tregs) are non-redundant mediators of immune tolerance that are critical to prevent autoimmune disease and promote an anti-inflammatory tissue environment. Many individuals experience chronic diseases and physiologic changes associated with aging requiring long-term medication. Unfortunately, adverse effects accompany every pharmacologic intervention and may affect overall outcomes. We focus on medications typically prescribed during the treatment of prevalent chronic diseases and disorders, including cardiovascular disease, autoimmune disease, and menopausal symptoms, that affect >200 million individuals in the United States. Increasing studies continue to report that treatment of patients with estrogen, metformin, statins, vitamin D, and tumor necrosis factor blockers are unintentionally modulating the Treg compartment. Effects of these medications likely comprise direct and/or indirect interaction with Tregs via other immune and parenchymal populations. Differing and sometimes opposing effects on the Treg compartment have been observed using the same medication. The length of treatment, dosing regimen and stage of disease, patient age, ethnicity, and sex may account for such findings and determine the specific signaling pathways affected by the medication. Enhancing the Treg compartment can skew the patient's immune system toward an anti-inflammatory phenotype and therefore could provide unanticipated benefit. Currently, multiple medicines prescribed to large numbers of patients influence the Treg compartment; however, how such effects affect their disease outcome and long-term health remains unclear.


Subject(s)
Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Immunologic Factors/metabolism , T-Lymphocytes, Regulatory/immunology , Anti-Inflammatory Agents/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Immune Tolerance/drug effects , Immune Tolerance/immunology , Immunologic Factors/pharmacology , T-Lymphocytes, Regulatory/drug effects , Vitamin D/metabolism
19.
Drug Metab Dispos ; 49(8): 658-667, 2021 08.
Article in English | MEDLINE | ID: mdl-34045219

ABSTRACT

This study aimed to comprehensively investigate the in vitro metabolism of statins. The metabolism of clinically relevant concentrations of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin, and their metabolites were investigated using human liver microsomes (HLMs), human intestine microsomes (HIMs), liver cytosol, and recombinant cytochrome P450 enzymes. We also determined the inhibitory effects of statin acids on their pharmacological target, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. In HLMs, statin lactones were metabolized to a much higher extent than their acid forms. Atorvastatin lactone and simvastatin (lactone) showed extensive metabolism [intrinsic clearance (CLint) values of 3700 and 7400 µl/min per milligram], whereas the metabolism of the lactones of 2-hydroxyatorvastatin, 4-hydroxyatorvastatin, and pitavastatin was slower (CLint 20-840 µl/min per milligram). The acids had CLint values in the range <0.1-80 µl/min per milligram. In HIMs, only atorvastatin lactone and simvastatin (lactone) exhibited notable metabolism, with CLint values corresponding to 20% of those observed in HLMs. CYP3A4/5 and CYP2C9 were the main statin-metabolizing enzymes. The majority of the acids inhibited HMG-CoA reductase, with 50% inhibitory concentrations of 4-20 nM. The present comparison of the metabolism and pharmacodynamics of the various statins using identical methods provides a strong basis for further application, e.g., comparative systems pharmacology modeling. SIGNIFICANCE STATEMENT: The present comparison of the in vitro metabolic and pharmacodynamic properties of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin and their metabolites using unified methodology provides a strong basis for further application. Together with in vitro drug transporter and clinical data, the present findings are applicable for use in comparative systems pharmacology modeling to predict the pharmacokinetics and pharmacological effects of statins at different dosages.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Intestines/metabolism , Liver/metabolism , Microsomes/physiology , Biotransformation , Cytochrome P-450 Enzyme System/metabolism , Cytosol/metabolism , Drug Design/methods , Drug Development/methods , Hepatobiliary Elimination , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/classification , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Inhibitory Concentration 50 , Metabolic Clearance Rate/drug effects , Network Pharmacology
20.
J Surg Res ; 260: 436-447, 2021 04.
Article in English | MEDLINE | ID: mdl-33272595

ABSTRACT

BACKGROUND: Esophageal adenocarcinoma (EAC) is a lethal malignancy with poor prognosis. Pharmacologic inhibitors of inflammation, such as statins, have been shown to decrease the risk of development and progression of esophageal cancer, but the mechanism of this protection is unclear. The objective of this study was to elucidate the effect of statins on toll-like receptor 4-mediated-proliferation of human EAC cells and identify the mechanism responsible for these observed effects. METHODS: Human EAC cells (OE33 and FLO1) were treated with simvastatin or atorvastatin for increasing doses and time periods. Toll-like receptor 4 (TLR4) expression was assessed. Cells were pretreated with statin followed by lipopolysaccharide (LPS). Cell proliferation and expression of signaling proteins were evaluated. FLO1 cells were injected into the flank of nude mice. Mice received intraperitoneal injections of simvastatin, atorvastatin, or control solution and tumor volume was measured. RESULTS: OE33 and FLO1 cells demonstrated decreased TLR4 expression after treatment with simvastatin or atorvastatin for 8 h (P < 0.05). LPS increased proliferation, whereas pretreatment with statin abolished this response (P < 0.05). Statins decreased expression and activation of LPS-induced signaling proteins, including MyD88, TRAF6, Akt, and NF-κB (P < 0.05). Mice receiving daily statin injections demonstrated smaller tumors than control mice (P < 0.001 at day 33). CONCLUSIONS: Treatment of EAC cells with simvastatin or atorvastatin decreases TLR4-mediated proliferation and in vivo tumor growth. Decreased TLR4 expression and subsequent reduction in MyD88-dependent signaling could be a mechanism by which statins act to reduce tumor growth rates.


Subject(s)
Adenocarcinoma/drug therapy , Biomarkers, Tumor/antagonists & inhibitors , Cell Proliferation/drug effects , Esophageal Neoplasms/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , Tumor Burden/drug effects , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Atorvastatin/metabolism , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Line, Tumor , Cell Proliferation/physiology , Disease Progression , Dose-Response Relationship, Drug , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipopolysaccharides/pharmacology , Mice , Mice, Nude , Myeloid Differentiation Factor 88/metabolism , Random Allocation , Signal Transduction/drug effects , Simvastatin/metabolism , Simvastatin/pharmacology , Simvastatin/therapeutic use , Toll-Like Receptor 4/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL