Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 979
Filter
Add more filters

Publication year range
1.
Mol Ther ; 32(2): 384-394, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38087779

ABSTRACT

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.


Subject(s)
HIV-1 , Hematopoietic Stem Cell Transplantation , Humans , Mice , Animals , HIV-1/physiology , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Thioguanine/metabolism , Thioguanine/pharmacology , RNA, Small Interfering/genetics
2.
Mol Med ; 30(1): 3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172668

ABSTRACT

BACKGROUND: Lesch-Nyhan disease (LND) is a severe neurological disorder caused by the genetic deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGprt), an enzyme involved in the salvage synthesis of purines. To compensate this deficiency, there is an acceleration of the de novo purine biosynthetic pathway. Most studies have failed to find any consistent abnormalities of purine nucleotides in cultured cells obtained from the patients. Recently, it has been shown that 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP), an intermediate of the de novo pathway, accumulates in LND fibroblasts maintained with RPMI containing physiological levels (25 nM) of folic acid (FA), which strongly differs from FA levels of regular cell culture media (2200 nM). However, RPMI and other standard media contain non-physiological levels of many nutrients, having a great impact in cell metabolism that does not precisely recapitulate the in vivo behavior of cells. METHODS: We prepared a new culture medium containing physiological levels of all nutrients, including vitamins (Plasmax-PV), to study the potential alterations of LND fibroblasts that may have been masked by the usage of non-physiological media. We quantified ZMP accumulation under different culture conditions and evaluated the activity of two known ZMP-target proteins (AMPK and ADSL), the mRNA expression of the folate carrier SLC19A1, possible mitochondrial alterations and functional consequences in LND fibroblasts. RESULTS: LND fibroblasts maintained with Plasmax-PV show metabolic adaptations such a higher glycolytic capacity, increased expression of the folate carrier SCL19A1, and functional alterations such a decreased mitochondrial potential and reduced cell migration compared to controls. These alterations can be reverted with high levels of folic acid, suggesting that folic acid supplements might be a potential treatment for LND. CONCLUSIONS: A complete physiological cell culture medium reveals new alterations in Lesch-Nyhan disease. This work emphasizes the importance of using physiological cell culture conditions when studying a metabolic disorder.


Subject(s)
Lesch-Nyhan Syndrome , Humans , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/metabolism , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Cells, Cultured , Fibroblasts/metabolism , Folic Acid
3.
PLoS Pathog ; 18(9): e1010832, 2022 09.
Article in English | MEDLINE | ID: mdl-36121863

ABSTRACT

There is an outstanding need for broadly acting antiviral drugs to combat emerging viral diseases. Here, we report that thiopurines inhibit the replication of the betacoronaviruses HCoV-OC43 and SARS-CoV-2. 6-Thioguanine (6-TG) disrupted early stages of infection, limiting accumulation of full-length viral genomes, subgenomic RNAs and structural proteins. In ectopic expression models, we observed that 6-TG increased the electrophoretic mobility of Spike from diverse betacoronaviruses, matching the effects of enzymatic removal of N-linked oligosaccharides from Spike in vitro. SARS-CoV-2 virus-like particles (VLPs) harvested from 6-TG-treated cells were deficient in Spike. 6-TG treatment had a similar effect on production of lentiviruses pseudotyped with SARS-CoV-2 Spike, yielding pseudoviruses deficient in Spike and unable to infect ACE2-expressing cells. Together, these findings from complementary ectopic expression and infection models strongly indicate that defective Spike trafficking and processing is an outcome of 6-TG treatment. Using biochemical and genetic approaches we demonstrated that 6-TG is a pro-drug that must be converted to the nucleotide form by hypoxanthine phosphoribosyltransferase 1 (HPRT1) to achieve antiviral activity. This nucleotide form has been shown to inhibit small GTPases Rac1, RhoA, and CDC42; however, we observed that selective chemical inhibitors of these GTPases had no effect on Spike processing or accumulation. By contrast, the broad GTPase agonist ML099 countered the effects of 6-TG, suggesting that the antiviral activity of 6-TG requires the targeting of an unknown GTPase. Overall, these findings suggest that small GTPases are promising targets for host-targeted antivirals.


Subject(s)
COVID-19 , Monomeric GTP-Binding Proteins , Prodrugs , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Hypoxanthine Phosphoribosyltransferase/metabolism , Monomeric GTP-Binding Proteins/metabolism , Nucleotides/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Thioguanine , Virion/metabolism
4.
Yi Chuan ; 46(5): 408-420, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763775

ABSTRACT

Lesch-Nyhan syndrome (LNS) is a congenital defect disease that results in defective purine metabolism. It is caused by pathogenic variants of the HPRT gene. Its clinical symptoms mainly include high uric acid levels, gout, and kidney stones and damage. The mechanism of LNS has not been fully elucidated, and no cure exists. Animal models have always played an important role in exploring causative mechanisms and new therapies. This study combined CRISPR/Cas9 and microinjection to knock out the HPRT gene to create an LNS rabbit model. A sgRNA targeting exon 3 of HPRT gene was designed. Subsequently, Cas9 mRNA and sgRNA were injected into rabbit zygotes, and injected embryos were transferred to the uterus. The genotype and phenotype of rabbits were analyzed after birth. Four infant rabbits (named R1, R2, R3 and R4), which showed varying levels of gene modification, were born. The gene-editing efficiency was 100%. No wild-type sequences at the target HPRT gene were detected in R4 rabbit. Next, 6-thioguanine drug testing confirmed that HPRT enzymatic activity was deficient in R4 infant rabbit. HE staining revealed kidney abnormalities in all infant rabbits. Overall, an sgRNA capable of knocking out the HPRT gene in rabbits was successfully designed, and HPRT gene-modified rabbits were successfully constructed by using CRISPR/Cas9 technology and microinjection. This study provides a new nonrodent animal model for studying LNS syndrome.


Subject(s)
CRISPR-Cas Systems , Disease Models, Animal , Hypoxanthine Phosphoribosyltransferase , Lesch-Nyhan Syndrome , Animals , Rabbits , Lesch-Nyhan Syndrome/genetics , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Female , Gene Editing , RNA, Guide, CRISPR-Cas Systems/genetics , Male , Phenotype
5.
NMR Biomed ; 36(5): e4888, 2023 05.
Article in English | MEDLINE | ID: mdl-36468685

ABSTRACT

Favipiravir (brand name Avigan), a widely known anti-influenza prodrug, is metabolized by endogenous enzymes of host cells to generate the active form, which exerts inhibition of viral RNA-dependent RNA polymerase activity; first, favipiravir is converted to its phosphoribosylated form, favipiravir-ribofuranosyl-5'-monophosphate (favipiravir-RMP), by hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Because this phosphoribosylation reaction is the rate-determining step in the generation of the active metabolite, quantitative and real-time monitoring of the HGPRT-catalyzed reaction is essential to understanding the pharmacokinetics of favipiravir. However, assay methods enabling such monitoring have not been established. 19 F- or 31 P-based nuclear magnetic resonance (NMR) are powerful techniques for observation of intermolecular interactions, chemical reactions, and metabolism of molecules of interest, given that NMR signals of the heteronuclei sensitively reflect changes in the chemical environment of these moieties. Here, we demonstrated direct, sensitive, target-selective, nondestructive, and real-time observation of HGPRT-catalyzed conversion of favipiravir to favipiravir-RMP by performing time-lapse 19 F-NMR monitoring of the fluorine atom of favipiravir. In addition, we showed that 31 P-NMR can be used for real-time observation of the identical reaction by monitoring phosphorus atoms of the phosphoribosyl group of favipiravir-RMP and of the pyrophosphate product of that reaction. Furthermore, we demonstrated that NMR approaches permit the determination of general parameters of enzymatic activity such as Vmax and Km . This method not only can be widely employed in enzyme assays, but also may be of use in the screening and development of new favipiravir-analog antiviral prodrugs that can be phosphoribosylated more efficiently by HGPRT, which would increase the intracellular concentration of the drug's active form. The techniques demonstrated in this study would allow more detailed investigation of the pharmacokinetics of fluorinated drugs, and might significantly contribute to opening new avenues for widespread pharmaceutical studies.


Subject(s)
Prodrugs , Hypoxanthine Phosphoribosyltransferase/chemistry , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Time-Lapse Imaging , Amides , Magnetic Resonance Spectroscopy , Catalysis
6.
Arch Biochem Biophys ; 737: 109550, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36796662

ABSTRACT

Approaches to identify novel druggable targets for treating neglected diseases include computational studies that predict possible interactions of drugs and their molecular targets. Hypoxanthine phosphoribosyltransferase (HPRT) plays a central role in the purine salvage pathway. This enzyme is essential for the survival of the protozoan parasite T. cruzi, the causal agent of Chagas disease, and other parasites related to neglected diseases. Here we found dissimilar functional behaviours between TcHPRT and the human homologue, HsHPRT, in the presence of substrate analogues that can lie in differences in their oligomeric assemblies and structural features. To shed light on this issue, we carried out a comparative structural analysis between both enzymes. Our results show that HsHPRT is considerably more resistant to controlled proteolysis than TcHPRT. Moreover, we observed a variation in the length of two key loops depending on the structural arrangement of each protein (groups D1T1 and D1T1'). Such variations might be involved in inter-subunit communication or influencing the oligomeric state. Besides, to understand the molecular basis that govern D1T1 and D1T1' folding groups, we explored the distribution of charges on the interaction surfaces of TcHPRT and HsHPRT, respectively. To know whether the rigidity degree bears effect on the active site, we studied the flexibility of both proteins. The analysis performed here illuminates the underlying reasons and significance behind each protein's preference for one or the other quaternary arrangement that can be exploited for therapeutic approaches.


Subject(s)
Anti-Infective Agents , Trypanosoma cruzi , Humans , Trypanosoma cruzi/metabolism , Hypoxanthine Phosphoribosyltransferase/chemistry , Hypoxanthine Phosphoribosyltransferase/metabolism , Hypoxanthine Phosphoribosyltransferase/pharmacology , Antiparasitic Agents/pharmacology , Neglected Diseases , Anti-Infective Agents/pharmacology
7.
Org Biomol Chem ; 21(12): 2556-2561, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36880328

ABSTRACT

Fairy chemicals (FCs), 2-azahypoxanthine (AHX), imidazole-4-carboxamide (ICA), and 2-aza-8-oxohypoxanthine (AOH), are molecules with many diverse functions in plants. The defined biosynthetic pathway for FCs is a novel purine metabolism in which they are biosynthesized from 5-aminoimidazole-4-carboxamide. Here, we show that one of the purine salvage enzymes, hypoxanthine-guanine phosphoribosyltransferase (HGPRT), recognizes AHX and AOH as substrates. Two novel compounds, AOH ribonucleotide and its ribonucleoside which are the derivatives of AOH, were enzymatically synthesized. The structures were determined by mass spectrometry, 1D and 2D NMR spectroscopy, and X-ray single-crystal diffraction analysis. This report demonstrates the function of HGPRT and the existence of novel purine metabolism associated with the biosynthesis of FCs in rice.


Subject(s)
Hypoxanthine Phosphoribosyltransferase , Oryza , Hypoxanthine Phosphoribosyltransferase/metabolism , Biosynthetic Pathways , Plants/metabolism
8.
J Nat Prod ; 86(4): 710-718, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36802627

ABSTRACT

2-Azahypoxanthine was isolated from the fairy ring-forming fungus Lepista sordida as a fairy ring-inducing compound. 2-Azahypoxanthine has an unprecedented 1,2,3-triazine moiety, and its biosynthetic pathway is unknown. The biosynthetic genes for 2-azahypoxanthine formation in L. sordida were predicted by a differential gene expression analysis using MiSeq. The results revealed that several genes in the purine and histidine metabolic pathways and the arginine biosynthetic pathway are involved in the biosynthesis of 2-azahypoxanthine. Furthermore, nitric oxide (NO) was produced by recombinant NO synthase 5 (rNOS5), suggesting that NOS5 can be the enzyme involved in the formation of 1,2,3-triazine. The gene encoding hypoxanthine-guanine phosphoribosyltransferase (HGPRT), one of the major phosphoribosyltransferases of purine metabolism, increased when 2-azahypoxanthine content was the highest. Therefore, we hypothesized that HGPRT might catalyze a reversible reaction between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. We proved the endogenous existence of 2-azahypoxanthine-ribonucleotide in L. sordida mycelia by LC-MS/MS for the first time. Furthermore, it was shown that recombinant HGPRT catalyzed reversible interconversion between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. These findings demonstrate that HGPRT can be involved in the biosynthesis of 2-azahypoxanthine via 2-azahypoxanthine-ribonucleotide generated by NOS5.


Subject(s)
Agaricales , Hypoxanthine Phosphoribosyltransferase , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Chromatography, Liquid , Transcriptome , Tandem Mass Spectrometry , Agaricales/metabolism , Hypoxanthines/metabolism , Ribonucleotides/metabolism
9.
Cell Mol Life Sci ; 79(6): 341, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35660973

ABSTRACT

In Lesch-Nyhan disease (LND), deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase (HGprt) leads to a characteristic neurobehavioral phenotype dominated by dystonia, cognitive deficits and incapacitating self-injurious behavior. It has been known for decades that LND is associated with dysfunction of midbrain dopamine neurons, without overt structural brain abnormalities. Emerging post mortem and in vitro evidence supports the hypothesis that the dopaminergic dysfunction in LND is of developmental origin, but specific pathogenic mechanisms have not been revealed. In the current study, HGprt deficiency causes specific neurodevelopmental abnormalities in mice during embryogenesis, particularly affecting proliferation and migration of developing midbrain dopamine (mDA) neurons. In mutant embryos at E14.5, proliferation was increased, accompanied by a decrease in cell cycle exit and the distribution and orientation of dividing cells suggested a premature deviation from their migratory route. An abnormally structured radial glia-like scaffold supporting this mDA neuronal migration might lie at the basis of these abnormalities. Consequently, these abnormalities were associated with an increase in area occupied by TH+ cells and an abnormal mDA subpopulation organization at E18.5. Finally, dopaminergic innervation was disorganized in prefrontal and decreased in HGprt deficient primary motor and somatosensory cortices. These data provide direct in vivo evidence for a neurodevelopmental nature of the brain disorder in LND. Future studies should not only focus the specific molecular mechanisms underlying the reported neurodevelopmental abnormalities, but also on optimal timing of therapeutic interventions to rescue the DA neuron defects, which may also be relevant for other neurodevelopmental disorders.


Subject(s)
Lesch-Nyhan Syndrome , Animals , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/metabolism , Mesencephalon/metabolism , Mice
10.
Proc Natl Acad Sci U S A ; 117(22): 12071-12079, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32430324

ABSTRACT

Lesch-Nyhan disease (LND), caused by a deficient salvage purine pathway, is characterized by severe neurological manifestations and uric acid overproduction. However, uric acid is not responsible for brain dysfunction, and it has been suggested that purine nucleotide depletion, or accumulation of other toxic purine intermediates, could be more relevant. Here we show that purine alterations in LND fibroblasts depend on the level of folic acid in the culture media. Thus, physiological levels of folic acid induce accumulation of 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP), an intermediary of de novo purine biosynthetic pathway, and depletion of ATP. Additionally, Z-nucleotide derivatives (AICAr, AICA) are detected at high levels in the urine of patients with LND and its variants (hypoxanthine-guanine phosphoribosyltransferase [HGprt]-related neurological dysfunction and HGprt-related hyperuricemia), and the ratio of AICAr/AICA is significantly increased in patients with neurological problems (LND and HGprt-related neurological dysfunction). Moreover, AICAr is present in the cerebrospinal fluid of patients with LND, but not in control individuals. We hypothesize that purine alterations detected in LND fibroblasts may also occur in the brain of patients with LND.


Subject(s)
Folic Acid/analysis , Lesch-Nyhan Syndrome/etiology , Purines/metabolism , Adenosine Triphosphate/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/metabolism , Cell Culture Techniques , Culture Media, Conditioned/chemistry , Fibroblasts/metabolism , Humans , Hypoxanthine Phosphoribosyltransferase/metabolism , Lesch-Nyhan Syndrome/metabolism , Ribonucleotides/metabolism
11.
Zygote ; 31(2): 129-139, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36622104

ABSTRACT

Adult male and female Murrah buffalo fibroblast cells were used as donors for the production of embryos using handmade cloning. Both donor cells and reconstructed embryos were treated with 50 nM trichostatin-A (TSA) and 7.5 nM 5-aza-2'-deoxycytidine (5-aza-dC). The blastocyst rate of both treated male (40.1% ± 2.05) and female (37.0% ± 0.83) embryos was significantly lower than in untreated control males (49.7% ± 3.80) and females (47.2% ± 2.44) but their apoptotic index was lower (male, control: 5.90 ± 0.48; treated: 4.96 ± 0.31): (female, control: 8.11 ± 0.67; treated: 6.65 ± 0.43) and epigenetic status in terms of global acetylation and methylation of histone was significantly improved. The expression level of hypoxanthine-guanine phosphoribosyltransferase (HPRT) was higher (P < 0.05) and that of PGK, G6PD, OCT 4, IFN-tau and CASPASE3 was significantly lower (P < 0.05) in treated male blastocyst than control and the expression levels of DNMT1, IGF1R and BCL-XL were not significantly different between the two groups. In the female embryos, the relative mRNA abundance of OCT4 was significantly higher (P < 0.05), and that of XIST and CASPASE3 was significantly lower (P < 0.05) in the epigenetic modifier-treated group compared with that of the control group, whereas the expression levels of HPRT, PGK, G6PD, DNMT1, IFN-tau, IGF1R and BCL-XL were not significantly different between the two groups. In both embryos, a similar effect of treatment was observed on genes related to growth and development, but the effect on the expression of X-linked genes varied. These results indicate that not all X-linked genes respond to TSA and 5-aza-dC treatment in the same manner.


Subject(s)
Buffaloes , Epigenesis, Genetic , Animals , Female , Male , Buffaloes/genetics , Buffaloes/metabolism , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Hypoxanthine Phosphoribosyltransferase/pharmacology , Blastocyst/metabolism , Cloning, Organism/methods , Azacitidine/pharmacology , Embryonic Development/genetics , Nuclear Transfer Techniques
12.
J Am Soc Nephrol ; 33(2): 326-341, 2022 02.
Article in English | MEDLINE | ID: mdl-34799437

ABSTRACT

BACKGROUND: Hereditary renal hypouricemia type 1 (RHUC1) is caused by URAT1/SLC22A12 dysfunction, resulting in urolithiasis and exercise-induced AKI (EIAKI). However, because there is no useful experimental RHUC1 animal model, the precise pathophysiologic mechanisms underlying EIAKI have yet to be elucidated. We established a high HPRT activity Urat1-Uox double knockout (DKO) mouse as a novel RHUC1 animal model for investigating the cause of EIAKI and the potential therapeutic effect of xanthine oxidoreductase inhibitors (XOIs). METHODS: The novel Urat1-Uox DKO mice were used in a forced swimming test as loading exercise to explore the onset mechanism of EIAKI and evaluate related purine metabolism and renal injury parameters. RESULTS: Urat1-Uox DKO mice had uricosuric effects and elevated levels of plasma creatinine and BUN as renal injury markers, and decreased creatinine clearance observed in a forced swimming test. In addition, Urat1-Uox DKO mice had increased NLRP3 inflammasome activity and downregulated levels of Na+-K+-ATPase protein in the kidney, as Western blot analysis showed. Finally, we demonstrated that topiroxostat and allopurinol, XOIs, improved renal injury and functional parameters of EIAKI. CONCLUSIONS: Urat1-Uox DKO mice are a useful experimental animal model for human RHUC1. The pathogenic mechanism of EIAKI was found to be due to increased levels of IL-1ß via NLRP3 inflammasome signaling and Na+-K+-ATPase dysfunction associated with excessive urinary urate excretion. In addition, XOIs appear to be a promising therapeutic agent for the treatment of EIAKI.


Subject(s)
Acute Kidney Injury/drug therapy , Hypoxanthine Phosphoribosyltransferase/metabolism , Organic Anion Transporters/deficiency , Urate Oxidase/deficiency , Xanthine Dehydrogenase/antagonists & inhibitors , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Allopurinol/pharmacology , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Hypoxanthine Phosphoribosyltransferase/genetics , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nitriles/pharmacology , Organic Anion Transporters/genetics , Physical Exertion , Pyridines/pharmacology , Renal Tubular Transport, Inborn Errors/drug therapy , Renal Tubular Transport, Inborn Errors/etiology , Renal Tubular Transport, Inborn Errors/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Urate Oxidase/genetics , Urinary Calculi/drug therapy , Urinary Calculi/etiology , Urinary Calculi/metabolism
13.
Biochemistry ; 61(19): 2088-2105, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36193631

ABSTRACT

Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi, affects over 8 million people worldwide. Current antiparasitic treatments for Chagas disease are ineffective in treating advanced, chronic stages of the disease, and are noted for their toxicity. Like most parasitic protozoa, T. cruzi is unable to synthesize purines de novo, and relies on the salvage of preformed purines from the host. Hypoxanthine-guanine phosphoribosyltransferases (HGPRTs) are enzymes that are critical for the salvage of preformed purines, catalyzing the formation of inosine monophosphate (IMP) and guanosine monophosphate (GMP) from the nucleobases hypoxanthine and guanine, respectively. Due to the central role of HGPRTs in purine salvage, these enzymes are promising targets for the development of new treatment methods for Chagas disease. In this study, we characterized two gene products in the T. cruzi CL Brener strain that encodes enzymes with functionally identical HGPRT activities in vitro: TcA (TcCLB.509693.70) and TcC (TcCLB.506457.30). The TcC isozyme was kinetically characterized to reveal mechanistic details on catalysis, including identification of the rate-limiting step(s) of catalysis. Furthermore, we identified and characterized inhibitors of T. cruzi HGPRTs originally developed as transition-state analogue inhibitors (TSAIs) of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT), where the most potent compound bound to T. cruzi HGPRT with low nanomolar affinity. Our results validated the repurposing of TSAIs to serve as selective inhibitors for orthologous molecular targets, where primary and secondary structures as well as putatively common chemical mechanisms are conserved.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Antiparasitic Agents , Guanine/metabolism , Guanosine Monophosphate , Humans , Hypoxanthine Phosphoribosyltransferase/chemistry , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Inosine Monophosphate , Isoenzymes , Purines/metabolism , Purines/pharmacology
14.
Clin Chem ; 68(10): 1323-1335, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36093578

ABSTRACT

BACKGROUND: Gene expression in circulating tumor cells (CTCs) can be used as a predictive liquid biopsy test in metastatic castration-resistant prostate cancer (mCRPC). We developed a novel 6-plex reverse transcription droplet digital PCR (RT-ddPCR) assay for the absolute quantification of 4 prostate cancer biomarkers, a reference gene, and a synthetic DNA external control (DNA-EC) in CTCs isolated from mCRPC patients. METHODS: A novel 6-plex RT-ddPCR assay was developed for the simultaneous absolute quantification of AR-FL, AR-V7, PSA, and PSMA, HPRT (used as a reference gene), and a synthetic DNA-EC that was included for quality control. The assay was optimized and analytically validated using DNA synthetic standards for each transcript as positive controls. Epithelial cellular adhesion molecule (EpCAM)-positive CTC fractions isolated from 90 mCRPC patients and 11 healthy male donors were analyzed, and results were directly compared with reverse transcription quantitative PCR (RT-qPCR) for all markers in all samples. RESULTS: Linear dynamic range, limit of detection, limit of quantification, intra- and interassay precision, and analytical specificity were determined for each marker. Application of the assay in EpCAM-positive CTC showed positivity for AR-FL (71/90; 78.9%), AR-V7 (28/90; 31.1%), PSA (41/90; 45.6%), PSMA (38/90; 42.2%), and HPRT (90/90; 100%); DNA-EC concentration was constant across all samples. Direct comparison with RT-qPCR for the same markers in the same samples revealed RT-ddPCR to have superior diagnostic sensitivity. CONCLUSIONS: Our 6-plex RT-ddPCR assay was highly sensitive, specific, and reproducible, and enabled simultaneous and absolute quantification of 5 gene transcripts in minute amounts of CTC-derived cDNA. Application of this assay in clinical samples gave diagnostic sensitivity and specificity comparable to, or better than, RT-qPCR.


Subject(s)
Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA, Complementary , Epithelial Cell Adhesion Molecule/genetics , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Male , Neoplastic Cells, Circulating/pathology , Polymerase Chain Reaction , Prostate/metabolism , Prostate/pathology , Prostate-Specific Antigen/genetics , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Isoforms , Receptors, Androgen/genetics , Reverse Transcription
15.
J Neurogenet ; 36(2-3): 81-87, 2022.
Article in English | MEDLINE | ID: mdl-36226509

ABSTRACT

Lesch-Nyhan disease (LND) is a neurodevelopmental disorder caused by variants in the HPRT1 gene, which encodes the enzyme hypoxanthine-guanine phosphoribosyl transferase (HGprt). HGprt deficiency provokes numerous metabolic changes which vary among different cell types, making it unclear which changes are most relevant for abnormal neural development. To begin to elucidate the consequences of HGprt deficiency for developing human neurons, neural stem cells (NSCs) were prepared from 6 induced pluripotent stem cell (iPSC) lines from individuals with LND and compared to 6 normal healthy controls. For all 12 lines, gene expression profiles were determined by RNA-seq and protein expression profiles were determined by shotgun proteomics. The LND lines revealed significant changes in expression of multiple genes and proteins. There was little overlap in findings between iPSCs and NSCs, confirming the impact of HGprt deficiency depends on cell type. For NSCs, gene expression studies pointed towards abnormalities in WNT signaling, which is known to play a role in neural development. Protein expression studies pointed to abnormalities in the mitochondrial F0F1 ATPase, which plays a role in maintaining cellular energy. These studies point to some mechanisms that may be responsible for abnormal neural development in LND.


Subject(s)
Lesch-Nyhan Syndrome , Neural Stem Cells , Humans , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/metabolism , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Guanine/metabolism , Adenosine Triphosphatases , Hypoxanthines
16.
Exp Cell Res ; 403(1): 112567, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33812866

ABSTRACT

We chose to evaluate Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) as a possible biomarker for prostate cancer due to its involvement in nucleotide synthesis and cell cycle progression. We utilized two prostate cancer cell lines (PC3 and DU145) along with patient tissue and knockdowns to evaluate overall HPRT expression. The surface localization of HPRT was determined utilizing flow cytometry, confocal microscopy, and scanning electron microscopy followed by ADCC to evaluate targeting potential. We found significant upregulation of HPRT within malignant samples with approximately 47% of patients had elevated levels of HPRT compared to normal controls. We also observed a significant association between HPRT and the plasma membrane of DU145 cells (p = 0.0004), but found no presence on PC3 cells (p = 0.14). This was confirmed with scanning electron microscopy and confocal microscopy. ADCC experiments were performed to determine whether HPRT could be used as a target antigen for selective cell-mediated killing. We found that DU145 cells treated with HPRT antibodies had a significantly higher incidence of cell death than both isotype treated samples and PC3 cells treated with the same concentrations of HPRT antibody. Finally, we determined that p53 had a significant impact on HPRT expression both internally and on the surface of cancer cells. These results suggest HPRT as a possible biomarker target for the treatment of patients with prostate cancer.


Subject(s)
Cell Division/physiology , Cytotoxicity, Immunologic/immunology , Hypoxanthine Phosphoribosyltransferase/metabolism , Prostatic Neoplasms/metabolism , Cell Line , Cell Membrane/metabolism , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/immunology , Male , Prostatic Neoplasms/immunology , Tumor Suppressor Protein p53/metabolism
17.
Exp Cell Res ; 399(1): 112424, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33340493

ABSTRACT

Increasing effort has been put into finding novel molecular pathways to improve the efficiency of EGFR inhibitors against head and neck squamous cell cancer (HNSCC). In this study, we performed data mining and bioinformatically analysed RNA-Seq data downloaded from TCGA and confirmed that higher expression of HPRT in HNSCC tissue was related to poor prognosis of patients. Then, we conducted in vitro and in vivo loss- and gain-of-function experiments to demonstrate the role of HPRT in HNSCC cell lines. Overexpression of HPRT increased the gene expression of epithelial mesenchymal transition markers via direct interaction with STAT3. Knocking down HPRT significantly decreased tumour growth and enhanced the anticancer effect of EGFR inhibitors against HNSCC xenografts. In conclusion, HPRT is a binding partner of STAT3 that promotes EMT and proliferation. Our findings support HPRT as a promising prognostic indicator and potential therapeutic target for HNSCC.


Subject(s)
Head and Neck Neoplasms/pathology , Hypoxanthine Phosphoribosyltransferase/physiology , STAT3 Transcription Factor/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Protein Binding , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Tumor Cells, Cultured
18.
J Cell Biochem ; 122(11): 1701-1714, 2021 11.
Article in English | MEDLINE | ID: mdl-34346095

ABSTRACT

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is the key regulatory enzyme of the purine salvage pathway present in the members of trypanosomatids. The parasite solely depends on this pathway for the synthesis of nucleotides due to the absence of the de novo pathway. This study intends to identify putative inhibitors towards Trypanosoma cruzi HGPRT (TcHGPRT). Initial virtual screening was performed with substructures of phosphoribosyl pyrophosphate (PRPP), an original substrate of HGPRT. Twenty compounds that had greater binding energy than the substrate was treated as hits and was further screened and narrowed down through induced fit docking which resulted in top five compounds which was distinguished into two groups based on the ligand occupancy within the PRPP binding site of TcHGPRT. Group-I compounds (PubChem CID 130316561 and 134978234) are analogous to PRPP structure with greater occupancy, were preferred over Group-II compounds which had lesser occupancy than the substrate. However, one compound (22404820) among Group II was chosen for further analysis considering its significant electrostatic interactions. Molecular docking studies revealed the requirement of an electronegative moiety like phosphate group to be present in the ligand due to the presence of metal ions in the substrate binding site. The three chosen compounds along with PRPP were subjected to molecular dynamics analysis, which indicated a strong presence of electrostatic interaction. Considering the dynamic stability of interactions as well as pharmacological properties of ligands based on absorption, distribution, metabolism, excretion prediction, Group-I compounds were selected as lead compounds and were subjected to molecular electrostatic potential analysis to determine the charge distribution of the compound. The overall analysis thus suggests both 130316561 and 134978234 can be used as TcHGPRT inhibitors. Furthermore, these computational results emphasize the requirement of phosphorylated ligands which are essential in mediating electrostatic interactions and to compete with the binding affinity of the original substrate.


Subject(s)
Enzyme Inhibitors/pharmacology , Hypoxanthine Phosphoribosyltransferase/antagonists & inhibitors , Hypoxanthine Phosphoribosyltransferase/chemistry , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi/enzymology , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Humans , Hypoxanthine Phosphoribosyltransferase/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Static Electricity
19.
Genomics ; 112(1): 304-311, 2020 01.
Article in English | MEDLINE | ID: mdl-30818063

ABSTRACT

Genetic changes in Hypoxanthine guanine phosphoribosyltransferace (HPRT1) gene can alter the expression of the dopamine neurotransmitter leads to abnormal neuron function, a disease called Lesch-Nyhan syndrome (LNS). Although different studies were conducted on LNS, information on codon usage bias (CUB) of HPRT1 gene is limited. The present study examines the genetic determinants of CUB in HPRT1 gene using twelve mammalian species. In the coding sequence of HPRT1 genes, A/T ending codons was most frequently used. A higher ENC value was observed indicating lower HPRT1 gene expression in the selected mammalian species. Correlation analysis indicates that compositional constraints under mutation pressure can involve in CUB of HPRT1 genes among the selected mammalian species. Relative synonymous codon usage (RSCU) value revealed that the codons such as ACT, AGG, ATT and AGC were over-represented in each of the mammalian species. Result from the analysis of the RSCU indicates that compositional constraint is a key driver for the variation in codon usage. Ratio of nonsynonymous (dN) and synonymous (dS) substitution further suggested that purifying selection occurs among the HPRT1 gene of studied mammals to maintain its protein function under the process of evolution. Our findings report an insight into the codon usage patterns of HPRT1 gene and will be useful for LNS management.


Subject(s)
Codon Usage , Hypoxanthine Phosphoribosyltransferase/genetics , Amino Acid Sequence , Animals , Base Composition , Cattle , Codon , DNA/chemistry , Gene Expression , Humans , Hypoxanthine Phosphoribosyltransferase/chemistry , Hypoxanthine Phosphoribosyltransferase/metabolism , Mammals/genetics , Phylogeny , Rats , Selection, Genetic , Sequence Alignment
20.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805743

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a lethal age-related lung disease whose pathogenesis involves an aberrant response of alveolar epithelial cells (AEC). Activated epithelial cells secrete mediators that participate in the activation of fibroblasts and the excessive deposition of extracellular matrix proteins. Previous studies indicate that matrix metalloproteinase 14 (MMP14) is increased in the lung epithelium in patients with IPF, however, the role of this membrane-type matrix metalloproteinase has not been elucidated. In this study, the role of Mmp14 was explored in experimental lung fibrosis induced with bleomycin in a conditional mouse model of lung epithelial MMP14-specific genetic deletion. Our results show that epithelial Mmp14 deficiency in mice increases the severity and extension of fibrotic injury and affects the resolution of the lesions. Gain-and loss-of-function experiments with human epithelial cell line A549 demonstrated that cells with a deficiency of MMP14 exhibited increased senescence-associated markers. Moreover, conditioned medium from these cells increased fibroblast expression of fibrotic molecules. These findings suggest a new anti-fibrotic mechanism of MMP14 associated with anti-senescent activity, and consequently, its absence results in impaired lung repair. Increased MMP14 in IPF may represent an anti-fibrotic mechanism that is overwhelmed by the strong profibrotic microenvironment that characterizes this disease.


Subject(s)
Epithelial Cells/pathology , Idiopathic Pulmonary Fibrosis/genetics , Matrix Metalloproteinase 14/genetics , Pulmonary Alveoli/metabolism , A549 Cells , Actins/genetics , Actins/metabolism , Animals , Bleomycin/administration & dosage , Cellular Senescence/genetics , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Gene Expression Regulation , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Matrix Metalloproteinase 14/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL