Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters

Publication year range
1.
Anal Chem ; 93(3): 1826-1833, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33370087

ABSTRACT

Collection of nasopharyngeal samples using swabs followed by the transfer of the virus into a solution and an RNA extraction step to perform reverse transcription polymerase chain reaction (PCR) is the primary method currently used for the diagnosis of COVID-19. However, the need for several reagents and steps and the high cost of PCR hinder its worldwide implementation to contain the outbreak. Here, we report a cotton-tipped electrochemical immunosensor for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus antigen. Unlike the reported approaches, we integrated the sample collection and detection tools into a single platform by coating screen-printed electrodes with absorbing cotton padding. The immunosensor was fabricated by immobilizing the virus nucleocapsid (N) protein on carbon nanofiber-modified screen-printed electrodes which were functionalized by diazonium electrografting. The detection of the virus antigen was achieved via swabbing followed by competitive assay using a fixed amount of N protein antibody in the solution. A square wave voltammetric technique was used for the detection. The limit of detection for our electrochemical biosensor was 0.8 pg/mL for SARS-CoV-2, indicating very good sensitivity for the sensor. The biosensor did not show significant cross-reactivity with other virus antigens such as influenza A and HCoV, indicating high selectivity of the method. Moreover, the biosensor was successfully applied for the detection of the virus antigen in spiked nasal samples showing excellent recovery percentages. Thus, our electrochemical immunosensor is a promising diagnostic tool for the direct rapid detection of the COVID-19 virus that requires no sample transfer or pretreatment.


Subject(s)
COVID-19/diagnosis , Cotton Fiber , Electrochemical Techniques/methods , Immunoassay/methods , SARS-CoV-2/isolation & purification , Antibodies, Viral/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Carbon/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Electrochemical Techniques/instrumentation , Electrodes , Gossypium/chemistry , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunoassay/instrumentation , Limit of Detection , Nanofibers/chemistry , Phosphoproteins/chemistry , Phosphoproteins/immunology , SARS-CoV-2/immunology
2.
Protein Expr Purif ; 177: 105764, 2021 01.
Article in English | MEDLINE | ID: mdl-32971296

ABSTRACT

Immobilizing antibodies on the nitrocellulose membrane is an important step to increase the sensitivity of the Lateral Flow Test strip for detecting pathogenic antigen. In our research, the fusion protein between nitrocellulose-binding anchor protein 3-Helix - a protein that has a strong affinity to nitrocellulose membrane and protein A - a protein that can bind to the Fc tail of IgG antibody was generated. This fusion protein was expected to help IgG antibodies to be more strongly binding and oriented immobilized onto the nitrocellulose membrane. The recombinant vector pET22b-proA and pET22b-proA-3-Helix coded for protein A and protein A-3-Helix were cloned. These proteins were overexpressed in BL21 and purified by immobilized metal affinity chromatography with purity above 90%. The purified protein was used to evaluate the orientation binding on nitrocellulose membranes by lateral flow challenge. Results showed that protein A-3-Helix binding to nitrocellulose membrane was better than that of protein A. The former protein increased antibody binding and stereochemical immobilizing onto nitrocellulose membrane compared to its protein A counterpart. In summary, we have succeeded in cloning, purifying, and characterizing a dual-head recombinant protein A and protein A-3-Helix. The results show the potential application of protein A-3-Helix in the immobilizing antibody on the test strip.


Subject(s)
Chromatography, Affinity/methods , Collodion/chemistry , Immobilized Proteins/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Staphylococcal Protein A/chemistry , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Immobilized Proteins/genetics , Immobilized Proteins/immunology , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Staphylococcal Protein A/genetics , Staphylococcal Protein A/immunology
3.
Anal Bioanal Chem ; 413(22): 5619-5632, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33983466

ABSTRACT

In the face of the COVID-19 pandemic, the need for rapid serological tests that allow multiplexing emerged, as antibody seropositivity can instruct about individual immunity after an infection with SARS-CoV-2 or after vaccination. As many commercial antibody tests are either time-consuming or tend to produce false negative or false positive results when only one antigen is considered, we developed an automated, flow-based chemiluminescence microarray immunoassay (CL-MIA) that allows for the detection of IgG antibodies to SARS-CoV-2 receptor-binding domain (RBD), spike protein (S1 fragment), and nucleocapsid protein (N) in human serum and plasma in less than 8 min. The CoVRapid CL-MIA was tested with a set of 65 SARS-CoV-2 serology positive or negative samples, resulting in 100% diagnostic specificity and 100% diagnostic sensitivity, thus even outcompeting commercial tests run on the same sample set. Additionally, the prospect of future quantitative assessments (i.e., quantifying the level of antibodies) was demonstrated. Due to the fully automated process, the test can easily be operated in hospitals, medical practices, or vaccination centers, offering a valuable tool for COVID-19 serosurveillance. Graphical abstract.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Immunoassay/methods , Immunoglobulin G/blood , SARS-CoV-2/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Automation, Laboratory , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immune Sera , Immunoassay/instrumentation , Lab-On-A-Chip Devices , Luminescent Measurements , Phosphoproteins/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time Factors
4.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946798

ABSTRACT

G-protein-coupled receptors (GPCRs), especially chemokine receptors, are ideal targets for monoclonal antibody drugs. Considering the special multi-pass transmembrane structure of GPCR, it is often a laborious job to obtain antibody information about off-targets and epitopes on antigens. To accelerate the process, a rapid and simple method needs to be developed. The split-ubiquitin-based yeast two hybrid system (YTH) was used as a blue script for a new method. By fusing with transmembrane peptides, scFv antibodies were designed to be anchored on the cytomembrane, where the GPCR was co-displayed as well. The coupled split-ubiquitin system transformed the scFv-GPCR interaction signal into the expression of reporter genes. By optimizing the topological structure of scFv fusion protein and key elements, including signal peptides, transmembrane peptides, and flexible linkers, a system named Antigen-Antibody Co-Display (AACD) was established, which rapidly detected the interactions between antibodies and their target GPCRs, CXCR4 and CXCR5, while also determining the off-target antibodies and antibody-associated epitopes. The AACD system can rapidly determine the association between GPCRs and their candidate antibodies and shorten the research period for off-target detection and epitope identification. This system should improve the process of GPCR antibody development and provide a new strategy for GPCRs antibody screening.


Subject(s)
Antigen-Antibody Reactions , Immobilized Proteins/immunology , Receptors, G-Protein-Coupled/immunology , Single-Chain Antibodies/immunology , Two-Hybrid System Techniques , Antibodies, Immobilized/immunology , Colorimetry , DNA-Binding Proteins , Epitopes/immunology , Genes, Reporter , Humans , Membrane Proteins , Protein Interaction Domains and Motifs , Receptors, CXCR4/immunology , Receptors, CXCR5/immunology , Recombinant Fusion Proteins/immunology , Saccharomyces cerevisiae Proteins , Transcription Factors , Ubiquitin/genetics
5.
Int J Mol Sci ; 22(11)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071130

ABSTRACT

The diagnosis of autoimmune polyglandular syndrome (APS) types 1/2 is difficult due to their rarity and nonspecific clinical manifestations. APS-1 development can be identified with assays for autoantibodies against cytokines, and APS-2 development with organ-specific antibodies. In this study, a microarray-based multiplex assay was proposed for simultaneous detection of both organ-specific (anti-21-OH, anti-GAD-65, anti-IA2, anti-ICA, anti-TG, and anti-TPO) and APS-1-specific (anti-IFN-ω, anti-IFN-α-2a, and anti-IL-22) autoantibodies. Herein, 206 serum samples from adult patients with APS-1, APS-2, isolated autoimmune endocrine pathologies or non-autoimmune endocrine pathologies and from healthy donors were analyzed. The prevalence of autoantibodies differed among the groups of healthy donors and patients with non-, mono- and multi-endocrine diseases. APS-1 patients were characterized by the presence of at least two specific autoantibodies (specificity 99.5%, sensitivity 100%). Furthermore, in 16 of the 18 patients, the APS-1 assay revealed triple positivity for autoantibodies against IFN-ω, IFN-α-2a and IL-22 (specificity 100%, sensitivity 88.9%). No anti-cytokine autoantibodies were found in the group of patients with non-APS-1 polyendocrine autoimmunity. The accuracy of the microarray-based assay compared to ELISA for organ-specific autoantibodies was 88.8-97.6%. This multiplex assay can be part of the strategy for diagnosing and predicting the development of APS.


Subject(s)
Autoantibodies/blood , Polyendocrinopathies, Autoimmune/immunology , Adolescent , Adult , Autoantigens/immunology , Endocrine System Diseases/blood , Endocrine System Diseases/immunology , Female , Humans , Immobilized Proteins/immunology , Interferon Type I/immunology , Interferon alpha-2/immunology , Interleukins/immunology , Male , Microarray Analysis/methods , Middle Aged , Organ Specificity , Polyendocrinopathies, Autoimmune/blood , Polyendocrinopathies, Autoimmune/diagnosis , Sensitivity and Specificity , Young Adult , Interleukin-22
6.
Anal Chem ; 92(20): 13880-13887, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32929962

ABSTRACT

Autoantibodies are key biomarkers in clinical diagnosis of autoimmune diseases routinely detected by enzyme-linked immunosorbent assays (ELISAs). However, the complexity of these assays is limiting their use in routine diagnostics. Fiber optic-surface plasmon resonance (FO-SPR) can overcome these limitations, but improved surface chemistries are still needed to guarantee detection of autoantibodies in complex matrices. In this paper, we describe the development of an FO-SPR immunoassay for the detection of autoantibodies in plasma samples from immune-mediated thrombotic thrombocytopenic purpura (iTTP) patients. Hereto, hexahistidine-tagged recombinant ADAMTS13 (rADAMTS13-His6) was immobilized on nitrilotriacetic acid (NTA)-coated FO probes chelated by cobalt (Co(III)) and exposed to anti-ADAMTS13 autoantibodies. Initial studies were performed to optimize rADAMTS13-His6 immobilization and to confirm the specificity of the immunoassay for detection of anti-ADAMTS13 autoantibodies with FO-SPR. The performance of the immunoassay was then evaluated by comparing Co(III)- and nickel (Ni(II))-NTA stabilized surfaces, confirming the stable immobilization of the antigen in Co(III)-NTA-functionalized FO probes. A calibration curve was prepared with a dilution series of a cloned human anti-ADAMTS13 autoantibody in ADAMTS13-depleted plasma resulting in an average interassay coefficient of variation of 7.1% and a limit of detection of 0.24 ng/mL. Finally, the FO-SPR immunoassay was validated using seven iTTP patient plasma samples, resulting in an excellent correlation with an in-house-developed ELISA (r = 0.973). In summary, the specificity and high sensitivity in combination with a short time-to-result (2.5 h compared to 4-5 h for a regular ELISA) make the FO-SPR immunoassay a powerful assay for routine diagnosis of iTTP and with extension for any other autoimmune disease.


Subject(s)
Autoantibodies/blood , Biosensing Techniques/methods , Copper/chemistry , Nitrilotriacetic Acid/chemistry , Surface Plasmon Resonance , ADAMTS13 Protein/chemistry , ADAMTS13 Protein/genetics , ADAMTS13 Protein/metabolism , Fiber Optic Technology , Histidine/genetics , Histidine/metabolism , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunoassay , Limit of Detection , Oligopeptides/genetics , Oligopeptides/metabolism , Purpura, Thrombotic Thrombocytopenic/diagnosis
7.
Proc Natl Acad Sci U S A ; 114(9): 2319-2324, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193885

ABSTRACT

Chemokines control the migration of a large array of cells by binding to specific receptors on cell surfaces. The biological function of chemokines also depends on interactions between nonreceptor binding domains and proteoglycans, which mediate chemokine immobilization on cellular or extracellular surfaces and formation of fixed gradients. Chemokine gradients regulate synchronous cell motility and integrin-dependent cell adhesion. Of the various chemokines, CXCL12 has a unique structure because its receptor-binding domain is distinct and does not overlap with the immobilization domains. Although CXCL12 is known to be essential for the germinal center (GC) response, the role of its immobilization in biological functions has never been addressed. In this work, we investigated the unexplored paradigm of CXCL12 immobilization during the germinal center reaction, a fundamental process where cellular traffic is crucial for the quality of humoral immune responses. We show that the structure of murine germinal centers and the localization of GC B cells are impaired when CXCL12 is unable to bind to cellular or extracellular surfaces. In such mice, B cells carry fewer somatic mutations in Ig genes and are impaired in affinity maturation. Therefore, immobilization of CXCL12 is necessary for proper trafficking of B cells during GC reaction and for optimal humoral immune responses.


Subject(s)
B-Lymphocytes/immunology , Chemokine CXCL12/immunology , Germinal Center/immunology , Immobilized Proteins/immunology , Immunity, Humoral , Immunoglobulins/genetics , Animals , Antigens, CD/genetics , Antigens, CD/immunology , B-Lymphocytes/cytology , Cell Movement , Chemokine CXCL12/genetics , Erythrocytes/chemistry , Erythrocytes/immunology , Gene Expression , Gene Expression Regulation , Germinal Center/cytology , Immobilized Proteins/genetics , Immunization , Immunoglobulins/metabolism , Mice , Mice, Transgenic , Sheep , Somatic Hypermutation, Immunoglobulin
8.
Mikrochim Acta ; 187(8): 455, 2020 07 18.
Article in English | MEDLINE | ID: mdl-32683571

ABSTRACT

An ultrasensitive electrochemiluminescence biosensor was established based on the Zn-MOF/GO nanocomposite. Ag(I)-embedded DNA complexes were used as a signal amplification reagent. In this work, 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and Zn2+ were integrated into a porphyrin paddlewheel framework (Zn-MOF) by a hydrothermal method. The synthesized Zn-MOF material has electrochemiluminescence property, and the luminescence intensity is improved after being composited with graphene oxide (GO). Based on the composite material, we constructed an ultrasensitive ECL biosensor for the p53 antibody detection. The composite material acted as an admirable substrate and then loaded plenty of p53 antigens to recognize the target (p53 antibody) accurately. Because of the bridging effect of streptavidin and biotin-conjugated goat anti-rabbit IgG (bio-ab2), the rich-C DNA with positive correlation with the target was modified on the electrode and then captured the co-reactant accelerator Ag+ to amplify the signal. Therefore, the ECL biosensor response increases with increasing p53 antibody concentration. In the range 0.1 fg/mL-0.01 ng/mL, the response signal of the biosensor has a good linear relationship with the p53 antibody concentration. The detection limit is 0.03 fg/mL (S/N = 3). Impressively, the biosensor not only featured high sensitivity, good stability, and excellent specificity for the detection of p53 antibody, but also provides a new way for early detection of cancer. Graphical abstract Schematic representation of the electrochemiluminescence sensor based on a Zn-MOF/GO nanocomposite, which can be applied to the determination of p53 antibody.


Subject(s)
Antibodies/analysis , Biosensing Techniques/methods , DNA/chemistry , Metal-Organic Frameworks/chemistry , Nanocomposites/chemistry , Silver/chemistry , Antibodies/immunology , Electrochemical Techniques/methods , Graphite/chemistry , Immobilized Proteins/immunology , Limit of Detection , Luminescent Measurements/methods , Metalloporphyrins/chemistry , Tumor Suppressor Protein p53/immunology , Zinc/chemistry
9.
Nano Lett ; 19(10): 7226-7235, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31508968

ABSTRACT

Lymph node follicles capture and retain antigens to induce germinal centers and long-lived humoral immunity. However, control over antigen retention has been limited. Here we discovered that antigen conjugated to nanoparticle carriers of different sizes impacts the intralymph node transport and specific cell interaction. We found that follicular dendritic cell (FDC) networks determine the intralymph node follicle fate of these nanoparticles by clearing smaller ones (5-15 nm) within 48 h and retaining larger ones (50-100 nm) for over 5 weeks. The 50-100 nm-sized nanoparticles had 175-fold more delivery of antigen at the FDC dendrites, 5-fold enhanced humoral immune responses of germinal center B cell formation, and 5-fold more antigen-specific antibody production over 5-15 nm nanoparticles. Our results show that we can tune humoral immunity by simply manipulating the carrier size design to produce effectiveness of vaccines.


Subject(s)
Antigens/immunology , Immunity, Humoral , Lymph Nodes/immunology , Nanoconjugates/chemistry , Ovalbumin/immunology , Animals , Antigens/administration & dosage , B-Lymphocytes/immunology , Dendritic Cells/immunology , Germinal Center/immunology , Gold/chemistry , Immobilized Proteins/immunology , Mice , Mice, Inbred C57BL , Ovalbumin/administration & dosage , Particle Size , Vaccines/administration & dosage , Vaccines/immunology
10.
Mikrochim Acta ; 186(8): 523, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292788

ABSTRACT

Heroin, marijuana and cocaine are widely abused drugs. Their use can be readily detected by analyzing urine for the metabolites morphine (MOR), tetrahydrocannabinol (THC) or benzoylecgonine (BZC). A multiplex immunosensor is described here for detection of MOR, THC and BZC using screen printed carbon array electrodes modified with gold nanoparticles. Antibodies against MOR, THC and BZC were immobilized on eight electrodes in a sensor array simultaneously, and a competitive assay was used for the detection. The free analytes in the sample compete with bovine serum albumin-conjugated analytes for the immobilized antibodies on the sensor surface. The array is capable of detecting the three drugs simultaneously within 20-40 min. The method has a high sensitivity, with detection limits as low as 1.2, 7.0, and 8.0 pg.mL-1 for MOR, THC and BZC, respectively. Cross reactivity testing was preformed to monitor any nonspecific binding. The results revealed good selectivity. Urine samples were spiked with the 3 drugs and tested with the multiplexed immunosensor. Recovery percentages ranged between 88 to 115%. Graphical abstract Schematic presentation of the multiplexed immunosensor for drugs of abuse,viz. tetrahydrocannabinol (THC), morphine (MOR), and benzoylecgonine (BZC)) by using an array of modified electrodes.


Subject(s)
Cocaine/analogs & derivatives , Dronabinol/urine , Illicit Drugs/urine , Morphine/urine , Antibodies/chemistry , Antibodies/immunology , Cocaine/immunology , Cocaine/urine , Dronabinol/immunology , Electrochemical Techniques , Gold/chemistry , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunoassay , Limit of Detection , Metal Nanoparticles/chemistry , Morphine/immunology , Substance Abuse Detection
11.
Biochem Biophys Res Commun ; 502(1): 91-97, 2018 07 07.
Article in English | MEDLINE | ID: mdl-29787754

ABSTRACT

To detect potential risk of severe cytokine release syndrome, in vitro assay formats with human cells have been developed. The two major testing platforms are a combination of whole blood with aqueous-phase test articles (whole blood cytokine assay, WBCA) and peripheral blood mononuclear cells with solid-phase articles (PBMC assay). Significant induction of cytokines was seen in both assays after treatment with a widely used control agent, TGN1412 or its analog CD28SA, but the WBCA cytokine profile differed from what was expected from clinical experience. In the WBCA, potential risk of CD28SA was detected by elevation of IL-8 whereas IL-2, a key cytokine after stimulation of CD28, was not induced in approximately 40% of donor samples. Therefore, further mechanistic understanding of the different responses in the in vitro assay was needed. In this study of donor samples treated with CD28SA, we compared the induction of cytokines and identified the cytokine-producing cells in the two assays. IL-2 was markedly elevated in all the donors in the PBMC assay but only in 1 of 3 donors in the WBCA. IL-8, the most sensitive biomarker in the WBCA, was produced by monocytes and granulocytes. T cells, the most relevant player in the PBMC assay with CD28SA, did not contribute to the positive response seen in two donors in the WBCA, which suggests that different players caused the positive cytokine responses to CD28SA in the two assays.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Cytokines/immunology , Leukocytes, Mononuclear/immunology , Cells, Cultured , Cytokines/analysis , Flow Cytometry/methods , Humans , Immobilized Proteins/immunology
12.
Bioconjug Chem ; 29(3): 786-794, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29382195

ABSTRACT

A simple and effective strategy was developed to enrich ubiquitinated proteins (UPs) from cancer cell lysate using the α-Al2O3 nanoparticles covalently linked with ubiquitin binding protein (Vx3) (denoted as α-Al2O3-Vx3) via a chemical linker. The functionalized α-Al2O3-Vx3 showed long-term stability and high efficiency for the enrichment of UPs from cancer cell lysates. Flow cytometry analysis results indicated dendritic cells (DCs) could more effectively phagocytize the covalently linked α-Al2O3-Vx3-UPs than the physical mixture of α-Al2O3 and Vx3-UPs (α-Al2O3/Vx3-UPs). Laser confocal microscopy images revealed that α-Al2O3-Vx3-UPs localized within the autophagosome of DCs, which then cross-presented α-Al2O3-Vx3-UPs to CD8+ T cells in an autophagosome-related cross-presentation pathway. Furthermore, α-Al2O3-Vx3-UPs enhanced more potent antitumor immune response and antitumor efficacy than α-Al2O3/cell lysate or α-Al2O3/Vx3-UPs. This work highlights the potential of using the Vx3 covalently linked α-Al2O3 as a simple and effective platform to enrich UPs from cancer cells for the development of highly efficient therapeutic cancer vaccines.


Subject(s)
Aluminum Oxide/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/prevention & control , Ubiquitinated Proteins/therapeutic use , Aluminum Oxide/chemistry , Aluminum Oxide/immunology , Animals , Autophagosomes/immunology , Cell Line, Tumor , Dendritic Cells/cytology , Dendritic Cells/immunology , Female , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immobilized Proteins/therapeutic use , Mice, Inbred BALB C , Nanoparticles/chemistry , Neoplasms/immunology , Phagocytosis , Ubiquitinated Proteins/chemistry , Ubiquitinated Proteins/immunology
13.
Bioconjug Chem ; 29(5): 1544-1552, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29701995

ABSTRACT

The dengue virus (DENV) causes over 350 million infections, resulting in ∼25,000 deaths per year globally. An effective dengue vaccine requires generation of strong and balanced neutralizing antibodies against all four antigenically distinct serotypes of DENV. The leading live-attenuated tetravalent dengue virus vaccine platform has shown partial efficacy, with an unbalanced response across the four serotypes in clinical trials. DENV subunit vaccine platforms are being developed because they provide a strong safety profile and are expected to avoid the unbalanced immunization issues associated with live multivalent vaccines. Subunit vaccines often lack immunogenicity, requiring either a particulate or adjuvanted formulation. Particulate formulations adsorbing monomeric DENV-E antigen to the particle surface incite a strong immune response, but have no control of antigen presentation. Highly neutralizing epitopes are displayed by DENV-E quaternary structures. To control the display of DENV-E and produce quaternary structures, particulate formulations that covalently attach DENV-E to the particle surface are needed. Here we develop a surface attached DENV2-E particulate formulation, as well as analysis tools, using PEG hydrogel nanoparticles created with particle replication in nonwetting templates (PRINT) technology. We found that adding Tween-20 to the conjugation buffer controls DENV-E adsorption to the particle surface during conjugation, improving both protein stability and epitope display. Immunizations with the anionic but not the cationic DENV2-E conjugated particles were able to produce DENV-specific and virus neutralizing antibody in mice. This work optimized the display of DENV-E conjugated to the surface of a nanoparticle through EDC/NHS chemistry, establishing a platform that can be expanded upon in future work to fully control the display of DENV-E.


Subject(s)
Antibodies, Neutralizing/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Immobilized Proteins/immunology , Nanoparticles , Viral Envelope Proteins/immunology , Adsorption , Animals , Antibodies, Viral/immunology , Antibody Formation , Chlorocebus aethiops , Dengue/immunology , Dengue Vaccines/administration & dosage , Dengue Vaccines/chemistry , Dengue Virus/chemistry , Female , Immobilized Proteins/administration & dosage , Immobilized Proteins/chemistry , Immunization , Mice, Inbred BALB C , Models, Molecular , Nanoparticles/chemistry , Vero Cells , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/chemistry
14.
Anal Bioanal Chem ; 410(21): 5101-5105, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29947901

ABSTRACT

First functional acting autoantibodies against G protein-coupled receptors such as the beta2-adrenoceptor in e.g. asthmatic patients have already been discovered in the early 1980s of the last century using assays that show their functional activity. Today, almost 40 years later, the measurement of such autoantibodies is still a challenge. Bioassays able to show the functional activity of such autoantibodies against G protein-coupled receptors are still the ne plus ultra for their detection and also classification when additionally exploiting specific receptor blockers for the neutralisation of the effect. Bioassays based on living cells make specific demands on the laboratories and are, therefore not suitable for every routine laboratory. Routine diagnostics, therefore, ideally requires different assays based on e.g. solid-phase technology, such as enzyme-linked immunosorbent assay (ELISA) technology. Here, endeavours are going on, using either the exact epitopes of such autoantibodies, if known, for trapping the autoantibodies, or the complete receptor in biological or artificial membranes that are immobilised onto a plastic carrier (ELISA principle). Here, we question and discuss the outcome of such tests, especially, if no controls such as the non-coated plastic carrier or the corresponding receptor-free membrane coat is offered as control in parallel, in light of the manifold experiences already collected with even non-agonistic acting autoantibodies by Güven et al. (J Immunol Methods 403:26-36, 2014).


Subject(s)
Autoantibodies/analysis , Autoantibodies/immunology , Enzyme-Linked Immunosorbent Assay/methods , Receptors, G-Protein-Coupled/immunology , Enzyme-Linked Immunosorbent Assay/instrumentation , Humans , Immobilized Proteins/immunology , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Membranes, Artificial
15.
Nano Lett ; 17(10): 6110-6116, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28876947

ABSTRACT

Adoptive cell therapy (ACT) has shown very promising results as treatment for cancer in a few clinical trials, such as the complete remissions of otherwise terminal leukemia patients. Nevertheless, the introduction of ACT into clinics requires overcoming not only medical but also technical challenges, such as the ex vivo expansion of large amounts of specific T-cells. Nanostructured surfaces represent a novel T-cell stimulation technique that enables us to fine-tune the density and orientation of activating molecules presented to the cells. In this work, we studied the influence of integrin-mediated cell-adhesion on T-cell activation, proliferation, and differentiation using nanostructured surfaces, which provide a well-defined system at the nanoscale compared with standard cultures. Specifically, we synthesized a polymeric polyethylene glycol (PEG) hydrogel cross-linked with two fibronectin-derived peptides, cyclic Arg-Gly-Asp (cRGD) and cyclic Leu-Asp-Val (cLDV), that are known to activate different integrins. Moreover, the hydrogels were decorated with a quasi-hexagonal array of gold nanoparticles (AuNPs) functionalized with the activating antibody CD3 to initiate T-cell activation. Both cLDV and cRGD hydrogels showed higher T-cell activation (CD69 expression and IL-2 secretion) than nonfunctionalized PEG hydrogels. However, only the cRGD hydrogels clearly supported proliferation giving a higher proportion of cells with memory (CD4+CD45RO+) than naïve (CD4+CD45RA+) phenotypes when interparticle distances smaller than 150 nm were used. Thus, T-cell proliferation can be enhanced by the activation of integrins through the RGD sequence.


Subject(s)
Fibronectins/immunology , Integrins/immunology , Lymphocyte Activation , Nanostructures/chemistry , Oligopeptides/immunology , Peptides, Cyclic/immunology , T-Lymphocytes/immunology , Biocompatible Materials/chemistry , Cell Adhesion , Cell Proliferation , Cells, Cultured , Fibronectins/chemistry , Humans , Hydrogels/chemistry , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Integrins/chemistry , Oligopeptides/chemistry , Peptides, Cyclic/chemistry , Polyethylene Glycols/chemistry , T-Lymphocytes/cytology
16.
Anal Chem ; 89(5): 2972-2977, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28192973

ABSTRACT

A biosensor for the detection of hepatitis B antibodies in clinical saliva was developed. Compared to conventional analysis of blood serum, it offers the advantage of noninvasive collection of samples. Detection of biomarkers in saliva imposes two major challenges associated with the low analyte concentration and increased surface fouling. The detection of minute amounts of hepatitis B antibodies was performed by plasmonically amplified fluorescence sandwich immunoassay. To have access to specific detection, we prevented the nonspecific adsorption of biomolecules present in saliva by brushes of poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] grafted from the gold sensor surface and post modified with hepatitis B surface antigen. Obtained results were validated against the response measured with ELISA at a certified laboratory using serum from the same patients.


Subject(s)
Biosensing Techniques/methods , Hepatitis B Antibodies/analysis , Hepatitis B Surface Antigens/chemistry , Saliva/metabolism , Biomarkers/analysis , Gold/chemistry , Hepatitis B Antibodies/blood , Hepatitis B Antibodies/immunology , Hepatitis B Surface Antigens/immunology , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunoassay , Polymers/chemistry , Spectrometry, Fluorescence , Surface Plasmon Resonance
17.
Anal Biochem ; 539: 149-151, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29066102

ABSTRACT

Solution based protein conjugation of small molecules involves multiple steps of chemical syntheses, bio-conjugation and purifications which are labor intensive and time-consuming. Since many small molecules have limited water solubility, conjugation to a protein is also a relatively low efficiency process in aqueous solutions. In this study, a model in situ protein conjugation of small molecules was achieved onto SPR surfaces, using progesterone and ovalbumin as a model small-molecule-protein system. The in situ protein conjugation not only eliminated the requirement for wet chemistry, but also provided an easy way to optimize the assay performance and screen various molecular linkers.


Subject(s)
Immobilized Proteins/analysis , Immunoassay/methods , Ovalbumin/chemistry , Progesterone/chemistry , Antibodies/immunology , Gold/chemistry , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Surface Plasmon Resonance , Surface Properties
18.
Anal Chem ; 88(24): 12339-12345, 2016 12 20.
Article in English | MEDLINE | ID: mdl-28193070

ABSTRACT

Autoantibodies raised against tumor-associated antigens have shown high promise as clinical biomarkers for reliable diagnosis, prognosis, and therapy monitoring of cancer. An electrochemical disposable biosensor for the specific and sensitive determination of p53-specific autoantibodies has been developed for the first time in this work. This biosensor involves the use of magnetic microcarriers (MBs) modified with covalently immobilized HaloTag fusion p53 protein as solid supports for the selective capture of specific autoantibodies. After magnetic capture of the modified MBs onto screen-printed carbon working electrodes, the amperometric signal using the system hydroquinone/H2O2 was related to the levels of p53-autoantibodies in the sample. The biosensor was applied for the analysis of sera from 24 patients with high-risk of developing colorectal cancer and 6 from patients already diagnosed with colorectal (4) and ovarian (2) cancer. The developed biosensor was able to determine p53 autoantibodies with a sensitivity higher than that of a commercial standard ELISA using a just-in-time produced protein in a simpler protocol with less sample volume and easily miniaturized and cost-effective instrumentation.


Subject(s)
Autoantibodies/blood , Autoantibodies/immunology , Biosensing Techniques/methods , Neoplasms/blood , Neoplasms/immunology , Tumor Suppressor Protein p53/immunology , Biosensing Techniques/instrumentation , Colorectal Neoplasms/blood , Colorectal Neoplasms/immunology , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Equipment Design , Female , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunity, Humoral , Limit of Detection , Liquid Biopsy/instrumentation , Liquid Biopsy/methods , Models, Molecular , Ovarian Neoplasms/blood , Ovarian Neoplasms/immunology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/immunology , Tumor Suppressor Protein p53/chemistry
19.
Biochem Biophys Res Commun ; 472(1): 281-6, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-26926563

ABSTRACT

Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Heme/immunology , Adaptive Immunity , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Monoclonal, Murine-Derived/metabolism , Antibody Diversity , Antigen-Antibody Reactions , Immobilized Proteins/immunology , Immobilized Proteins/metabolism , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Kinetics , Mice , Protein Processing, Post-Translational , Rats , Surface Plasmon Resonance , Thermodynamics
20.
Org Biomol Chem ; 14(2): 701-710, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26552661

ABSTRACT

Mimics of discontinuous epitopes of for example bacterial or viral proteins may have considerable potential for the development of synthetic vaccines, especially if conserved epitopes can be mimicked. However, due to the structural complexity and size of discontinuous epitopes molecular construction of these mimics remains challeging. We present here a convergent route for the assembly of discontinuous epitope mimics by successive azide alkyne cycloaddition on an orthogonal alkyne functionalized scaffold. Here the synthesis of mimics of the HIV gp120 discontinuous epitope that interacts with the CD4 receptor is described. The resulting protein mimics are capable of inhibition of the gp120-CD4 interaction. The route is convergent, robust and should be applicable to other discontinuous epitopes.


Subject(s)
Alkynes/chemistry , Epitopes/chemistry , HIV Envelope Protein gp120/chemistry , Immobilized Proteins/chemistry , Peptides, Cyclic/chemistry , Vaccines, Synthetic/chemistry , Azides/chemistry , CD4 Antigens/metabolism , Cycloaddition Reaction , Epitopes/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , Immobilized Proteins/chemical synthesis , Immobilized Proteins/immunology , Models, Molecular , Molecular Structure , Peptides, Cyclic/immunology , Structure-Activity Relationship , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL