Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.059
Filter
Add more filters

Publication year range
1.
Nature ; 611(7935): 352-357, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36289331

ABSTRACT

The vertebrate adaptive immune system modifies the genome of individual B cells to encode antibodies that bind particular antigens1. In most mammals, antibodies are composed of heavy and light chains that are generated sequentially by recombination of V, D (for heavy chains), J and C gene segments. Each chain contains three complementarity-determining regions (CDR1-CDR3), which contribute to antigen specificity. Certain heavy and light chains are preferred for particular antigens2-22. Here we consider pairs of B cells that share the same heavy chain V gene and CDRH3 amino acid sequence and were isolated from different donors, also known as public clonotypes23,24. We show that for naive antibodies (those not yet adapted to antigens), the probability that they use the same light chain V gene is around 10%, whereas for memory (functional) antibodies, it is around 80%, even if only one cell per clonotype is used. This property of functional antibodies is a phenomenon that we call light chain coherence. We also observe this phenomenon when similar heavy chains recur within a donor. Thus, although naive antibodies seem to recur by chance, the recurrence of functional antibodies reveals surprising constraint and determinism in the processes of V(D)J recombination and immune selection. For most functional antibodies, the heavy chain determines the light chain.


Subject(s)
Antibodies , Clonal Selection, Antigen-Mediated , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Animals , Amino Acid Sequence , Antibodies/chemistry , Antibodies/genetics , Antibodies/immunology , Antigens/chemistry , Antigens/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Mammals , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunologic Memory , V(D)J Recombination , Clonal Selection, Antigen-Mediated/genetics , Clonal Selection, Antigen-Mediated/immunology
2.
J Immunol ; 212(10): 1579-1588, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38557795

ABSTRACT

Abs are vital to human immune responses and are composed of genetically variable H and L chains. These structures are initially expressed as BCRs. BCR diversity is shaped through somatic hypermutation and selection during immune responses. This evolutionary process produces B cell clones, cells that descend from a common ancestor but differ by mutations. Phylogenetic trees inferred from BCR sequences can reconstruct the history of mutations within a clone. Until recently, BCR sequencing technologies separated H and L chains, but advancements in single-cell sequencing now pair H and L chains from individual cells. However, it is unclear how these separate genes should be combined to infer B cell phylogenies. In this study, we investigated strategies for using paired H and L chain sequences to build phylogenetic trees. We found that incorporating L chains significantly improved tree accuracy and reproducibility across all methods tested. This improvement was greater than the difference between tree-building methods and persisted even when mixing bulk and single-cell sequencing data. However, we also found that many phylogenetic methods estimated significantly biased branch lengths when some L chains were missing, such as when mixing single-cell and bulk BCR data. This bias was eliminated using maximum likelihood methods with separate branch lengths for H and L chain gene partitions. Thus, we recommend using maximum likelihood methods with separate H and L chain partitions, especially when mixing data types. We implemented these methods in the R package Dowser: https://dowser.readthedocs.io.


Subject(s)
B-Lymphocytes , Phylogeny , Receptors, Antigen, B-Cell , Humans , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , B-Lymphocytes/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Single-Cell Analysis/methods , Mutation
3.
J Immunol ; 212(11): 1744-1753, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38629917

ABSTRACT

H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system. The majority of vertebrates use the standard heterodimeric (both H and L chains) structure and do not produce sdAb format Igs. To investigate if other animals are able to support sdAb development and function, transgenic chickens (Gallus gallus) were designed to produce H chain-only Abs by omitting the L chain V region and maintaining only the LC region to serve as a chaperone for Ab secretion from the cell. These birds produced 30-50% normal B cell populations within PBMCs and readily expressed chicken sequence sdAbs. Interestingly, the H chains contained a spontaneous CH1 deletion. Although no isotype switching to IgY or IgA occurred, the IgM repertoire was diverse, and immunization with a variety of protein immunogens rapidly produced high and specific serum titers. mAbs of high affinity were efficiently recovered by single B cell screening. In in vitro functional assays, the sdAbs produced by birds immunized against SARS-CoV-2 were also able to strongly neutralize and prevent viral replication. These data suggest that the truncated L chain design successfully supported sdAb development and expression in chickens.


Subject(s)
Animals, Genetically Modified , Chickens , Immunoglobulin Heavy Chains , Single-Domain Antibodies , Animals , Chickens/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/immunology , Transgenes/genetics , B-Lymphocytes/immunology , Antibodies, Viral/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Humans
4.
Bioinformatics ; 40(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38652603

ABSTRACT

MOTIVATION: Antibody therapeutic candidates must exhibit not only tight binding to their target but also good developability properties, especially low risk of immunogenicity. RESULTS: In this work, we fit a simple generative model, SAM, to sixty million human heavy and seventy million human light chains. We show that the probability of a sequence calculated by the model distinguishes human sequences from other species with the same or better accuracy on a variety of benchmark datasets containing >400 million sequences than any other model in the literature, outperforming large language models (LLMs) by large margins. SAM can humanize sequences, generate new sequences, and score sequences for humanness. It is both fast and fully interpretable. Our results highlight the importance of using simple models as baselines for protein engineering tasks. We additionally introduce a new tool for numbering antibody sequences which is orders of magnitude faster than existing tools in the literature. AVAILABILITY AND IMPLEMENTATION: All tools developed in this study are available at https://github.com/Wang-lab-UCSD/AntPack.


Subject(s)
Antibodies , Humans , Antibodies/chemistry , Software , Sequence Analysis, Protein/methods , Computational Biology/methods , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/immunology , Algorithms
5.
Adv Exp Med Biol ; 1445: 59-71, 2024.
Article in English | MEDLINE | ID: mdl-38967750

ABSTRACT

According to classical immunology theory, immunoglobulin (Ig) is exclusively produced by differentiated B lymphocytes, which exhibit a typical tetrapeptide chain structure and are predominantly present on the surface of B cells and in bodily fluids. B-Ig is one of the critical effector molecules for humoral immune responses specifically recognising antigens and eliminating them. However, mounting evidence has demonstrated that Ig is widely expressed in non B lineage cells, especially malignant ones (referred to as non B-Ig). Interestingly, non B-Ig mainly resides in the cytoplasm and secretion, but to some extent on the cell surface. Furthermore non B-Ig not only displays a tetrapeptide chain structure but also shows free heavy chains and free light chains (FLCs). Additionally, Ig derived from non B cancer cell typically displays unique glycosylation modifications. Functionally, non B-Ig demonstrated diversity and versatility, showing antibody activity and cellular biological activity, such as promoting cell proliferation and survival, and it is implicated in cancer progression and some immune-related diseases, such as renal diseases.


Subject(s)
B-Lymphocytes , Humans , Animals , Glycosylation , B-Lymphocytes/immunology , Immunoglobulins/immunology , Immunoglobulins/metabolism , Immunoglobulins/chemistry , Neoplasms/immunology , Neoplasms/pathology , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/metabolism
6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658386

ABSTRACT

V(D)J recombination generates mature B cells that express huge repertoires of primary antibodies as diverse immunoglobulin (Ig) heavy chain (IgH) and light chain (IgL) of their B cell antigen receptors (BCRs). Cognate antigen binding to BCR variable region domains activates B cells into the germinal center (GC) reaction in which somatic hypermutation (SHM) modifies primary variable region-encoding sequences, with subsequent selection for mutations that improve antigen-binding affinity, ultimately leading to antibody affinity maturation. Based on these principles, we developed a humanized mouse model approach to diversify an anti-PD1 therapeutic antibody and allow isolation of variants with novel properties. In this approach, component Ig gene segments of the anti-PD1 antibody underwent de novo V(D)J recombination to diversify the anti-PD1 antibody in the primary antibody repertoire in the mouse models. Immunization of these mouse models further modified the anti-PD1 antibodies through SHM. Known anti-PD1 antibodies block interaction of PD1 with its ligands to alleviate PD1-mediated T cell suppression, thereby boosting antitumor T cell responses. By diversifying one such anti-PD1 antibody, we derived many anti-PD1 antibodies, including anti-PD1 antibodies with the opposite activity of enhancing PD1/ligand interaction. Such antibodies theoretically might suppress deleterious T cell activities in autoimmune diseases. The approach we describe should be generally applicable for diversifying other therapeutic antibodies.


Subject(s)
Antibody Affinity/genetics , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Receptors, Antigen, B-Cell , Somatic Hypermutation, Immunoglobulin , V(D)J Recombination/immunology , Animals , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Mice , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology
7.
Eur J Immunol ; 52(2): 297-311, 2022 02.
Article in English | MEDLINE | ID: mdl-34727578

ABSTRACT

Plasma cells and their secreted antibodies play a central role in the long-term protection against chronic viral infection. However, due to experimental limitations, a comprehensive description of linked genotypic, phenotypic, and antibody repertoire features of plasma cells (gene expression, clonal frequency, virus specificity, and affinity) has been challenging to obtain. To address this, we performed single-cell transcriptome and antibody repertoire sequencing of the murine BM plasma cell population following chronic lymphocytic choriomeningitis virus infection. Our single-cell sequencing approach recovered full-length and paired heavy- and light-chain sequence information for thousands of plasma cells and enabled us to perform recombinant antibody expression and specificity screening. Antibody repertoire analysis revealed that, relative to protein immunization, chronic infection led to increased levels of clonal expansion, class-switching, and somatic variants. Furthermore, antibodies from the highly expanded and class-switched (IgG) plasma cells were found to be specific for multiple viral antigens and a subset of clones exhibited cross-reactivity to nonviral and autoantigens. Integrating single-cell transcriptome data with antibody specificity suggested that plasma cell transcriptional phenotype was correlated to viral antigen specificity. Our findings demonstrate that chronic viral infection can induce and sustain plasma cell clonal expansion, combined with significant somatic hypermutation, and can generate cross-reactive antibodies.


Subject(s)
Antibodies, Viral , Clonal Selection, Antigen-Mediated , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus/immunology , Plasma Cells/immunology , Single-Cell Analysis , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Chronic Disease , Female , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/immunology , Mice
8.
PLoS Pathog ; 17(8): e1009843, 2021 08.
Article in English | MEDLINE | ID: mdl-34379707

ABSTRACT

In humans, orthohantaviruses can cause hemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). An earlier study reported that acute Andes virus HPS caused a massive and transient elevation in the number of circulating plasmablasts with specificity towards both viral and host antigens suggestive of polyclonal B cell activation. Immunoglobulins (Igs), produced by different B cell populations, comprise heavy and light chains; however, a certain amount of free light chains (FLCs) is constantly present in serum. Upregulation of FLCs, especially clonal species, associates with renal pathogenesis by fibril or deposit formations affecting the glomeruli, induction of epithelial cell disorders, or cast formation in the tubular network. We report that acute orthohantavirus infection increases the level of Ig FLCs in serum of both HFRS and HPS patients, and that the increase correlates with the severity of acute kidney injury in HFRS. The fact that the kappa to lambda FLC ratio in the sera of HFRS and HPS patients remained within the normal range suggests polyclonal B cell activation rather than proliferation of a single B cell clone. HFRS patients demonstrated increased urinary excretion of FLCs, and we found plasma cell infiltration in archival patient kidney biopsies that we speculate to contribute to the observed FLC excreta. Analysis of hospitalized HFRS patients' peripheral blood mononuclear cells showed elevated plasmablast levels, a fraction of which stained positive for Puumala virus antigen. Furthermore, B cells isolated from healthy donors were susceptible to Puumala virus in vitro, and the virus infection induced increased production of Igs and FLCs. The findings propose that hantaviruses directly activate B cells, and that the ensuing intense production of polyclonal Igs and FLCs may contribute to acute hantavirus infection-associated pathological findings.


Subject(s)
Acute Kidney Injury/pathology , B-Lymphocytes/immunology , Hantavirus Infections/immunology , Immunoglobulin Light Chains/blood , Lymphocyte Activation/immunology , Orthohantavirus/immunology , Acute Kidney Injury/blood , Acute Kidney Injury/etiology , Hantavirus Infections/blood , Hantavirus Infections/virology , Humans , Immunoglobulin Light Chains/immunology
9.
J Gen Virol ; 102(7)2021 07.
Article in English | MEDLINE | ID: mdl-34280085

ABSTRACT

Pigs are susceptible to foot-and-mouth disease virus (FMDV), and the humoral immune response plays an essential role in protection against FMDV infection. However, little information is available about FMDV-specific mAbs derived from single B cells of pigs. This study aimed to determine the antigenic features of FMDV that are recognized by antibodies from pigs. Therefore, a panel of pig-derived mAbs against FMDV were developed using fluorescence-based single B cell antibody technology. Western blotting revealed that three of the antibodies (1C6, P2-7E and P2-8G) recognized conserved antigen epitopes on capsid protein VP2, and exhibited broad reactivity against both FMDV serotypes A and O. An alanine-substitution scanning assay and sequence conservation analysis elucidated that these porcine mAbs recognized two conserved epitopes on VP2: a linear epitope (2KKTEETTLL10) in the N terminus and a conformational epitope involving residues K63, H65, L66, F67, D68 and L81 on two ß-sheets (B-sheet and C-sheet) that depended on the integrity of VP2. Random parings of heavy and light chains of the IgGs confirmed that the heavy chain is predominantly involved in binding to antigen. The light chain of porcine IgG contributes to the binding affinity toward an antigen and may function as a support platform for antibody stability. In summary, this study is the first to reveal the conserved antigenic profile of FMDV recognized by porcine B cells and provides a novel method for analysing the antibody response against FMDV in its natural hosts (i.e. pigs) at the clonal level.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Capsid Proteins/immunology , Foot-and-Mouth Disease Virus/immunology , Swine/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/isolation & purification , Antibody Affinity , Antigens, Viral/immunology , B-Lymphocytes/immunology , Capsid Proteins/chemistry , Epitope Mapping , Epitopes/immunology , Foot-and-Mouth Disease Virus/classification , Genes, Immunoglobulin Heavy Chain , Genes, Immunoglobulin Light Chain , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/immunology , Serogroup
10.
Br J Haematol ; 195(2): 230-243, 2021 10.
Article in English | MEDLINE | ID: mdl-34341985

ABSTRACT

Lenalidomide and dexamethasone (RD) is a standard treatment in relapsed/refractory immunoglobulin light chain (AL) amyloidosis (RRAL). We retrospectively investigated toxicity, efficacy and prognostic markers in 260 patients with RRAL. Patients received a median of two prior treatment lines (68% had been bortezomib-refractory; 33% had received high-dose melphalan). The median treatment duration was four cycles. The 3-month haematological response rate was 31% [very good haematological response (VGHR) in 18%]. The median follow-up was 56·5 months and the median overall survival (OS) and haematological event-free survival (haemEFS) were 32 and 9 months. The 2-year dialysis rate was 15%. VGHR resulted in better OS (62 vs. 26 months, P < 0·001). Cardiac progression predicted worse survival (22 vs. 40 months, P = 0·027), although N-terminal prohormone of brain natriuretic peptide (NT-proBNP) increase was frequently observed. Multivariable analysis identified these prognostic factors: NT-proBNP for OS [hazard ratio (HR) 1·71; P < 0·001]; gain 1q21 for haemEFS (HR 1·68, P = 0·014), with a trend for OS (HR 1·47, P = 0·084); difference between involved and uninvolved free light chains (dFLC) and light chain isotype for OS (HR 2·22, P < 0·001; HR 1·62, P = 0·016) and haemEFS (HR 1·88, P < 0·001; HR 1·59, P = 0·008). Estimated glomerular filtration rate (HR 0·71, P = 0·004) and 24-h proteinuria (HR 1·10, P = 0·004) were prognostic for renal survival. In conclusion, clonal and organ biomarkers at baseline identify patients with favourable outcome, while VGHR and cardiac progression define prognosis during RD treatment.


Subject(s)
Dexamethasone/therapeutic use , Immunoglobulin Light Chains/metabolism , Immunoglobulin Light-chain Amyloidosis/diagnosis , Immunoglobulin Light-chain Amyloidosis/drug therapy , Lenalidomide/therapeutic use , Adult , Aged , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Agents, Hormonal/therapeutic use , Antineoplastic Agents, Hormonal/toxicity , Biomarkers/metabolism , Cohort Studies , Dexamethasone/administration & dosage , Dexamethasone/toxicity , Drug Therapy, Combination/methods , Female , Follow-Up Studies , Humans , Immunoglobulin Light Chains/immunology , Immunoglobulin Light-chain Amyloidosis/immunology , Immunoglobulin Light-chain Amyloidosis/mortality , Immunologic Factors/administration & dosage , Immunologic Factors/therapeutic use , Immunologic Factors/toxicity , Lenalidomide/administration & dosage , Lenalidomide/toxicity , Male , Middle Aged , Natriuretic Peptide, Brain/metabolism , Peptide Fragments/metabolism , Prognosis , Progression-Free Survival , Recurrence , Retrospective Studies
11.
Biochem Biophys Res Commun ; 567: 201-207, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34166919

ABSTRACT

We previously reported an antibody (clone ID: FR9, IgM-κ) that recognizes the sialyl oligosaccharide Neu5Acα2,6Galß1,4GlcNAc as an epitope on glycoproteins and glycolipids. In the present study, we developed an antibody (clone ID: AFR45, IgM-κ) that recognizes Neu5Acα2,3Galß1,4GlcNAc/Glc as an epitope on glycoproteins and glycolipids and compared the nucleotide and amino acid sequences of the immunoglobulin gene variable regions with those of FR9. The heavy chain variable (VH) regions of FR9 and AFR45 were encoded by different VH gene segments, each of which was composed of a characteristic D gene segment. The major differences between VH genes encoding various antibodies deposited in public databases and FR9 and AFR45 were identified in the D gene segment, indicating that D genes play a critical role in determining the epitope specificity of these antibodies. Surprisingly, although FR9 and AFR45 were obtained independently from different mice immunized with different immunogens, the light chain variable (VL) region nucleotide sequences were identical. The VL gene consisted of Igkv4-57 and Igkj4 gene segments (Igkv4-57j4), the sequences of which were identical to VL genes for a number of antibodies against meningococcal group C capsular polysaccharide deposited in public databases. As this polysaccharide is a sialic acid homopolymer, these results indicate that Igkv4-57j4 encodes a VL common to immunoglobulins that recognize sialylated glycans.


Subject(s)
Genes, Immunoglobulin , Immunoglobulin Variable Region/genetics , N-Acetylneuraminic Acid/analysis , Polysaccharides/analysis , Animals , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Variable Region/immunology , Mice , N-Acetylneuraminic Acid/immunology , Polysaccharides/immunology
12.
PLoS Pathog ; 15(6): e1007716, 2019 06.
Article in English | MEDLINE | ID: mdl-31170257

ABSTRACT

There is still no safe and effective vaccine against dengue virus infection. Epidemics of dengue virus infection are increasingly a threat to human health around the world. Antibodies generated in response to dengue infection have been shown to impact disease development and effectiveness of dengue vaccine. In this study, we investigated monoclonal antibody responses to an experimental dengue vaccine in rhesus macaques. Variable regions of both heavy chain (VH) and light chain (VL) were cloned from single antibody-secreting B cells. A total of 780 monoclonal antibodies (mAbs) composed of paired VH and VL were characterized. Results show that the vaccination induces mAbs with diverse germline sequences and a wide range of binding affinities. Six potent neutralizing mAbs were identified among 130 dengue envelope protein binders. Critical amino acids for each neutralizing antibody binding to the dengue envelope protein were identified by alanine scanning of mutant libraries. Diverse epitopes were identified, including epitopes on the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the ß-strands and loops of DI. Significantly, one of the neutralizing mAbs has a previously unknown epitope in DII at the interface of the envelope and membrane protein and is capable of neutralizing all four dengue serotypes. Taken together, the results of this study not only provide preclinical validation for the tested experimental vaccine, but also shed light on a potential application of the rhesus macaque model for better dengue vaccine evaluation and design of vaccines and immunization strategies.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Dengue Vaccines , Epitopes , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Dengue Vaccines/genetics , Dengue Vaccines/immunology , Dengue Virus/immunology , Epitopes/genetics , Epitopes/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Macaca mulatta
13.
Blood ; 133(6): 576-587, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30578255

ABSTRACT

Monoclonal immunoglobulin deposition disease (MIDD) is a rare complication of B-cell clonal disorders, defined by Congo red negative-deposits of monoclonal light chain (LCDD), heavy chain (HCDD), or both (LHCDD). MIDD is a systemic disorder with prominent renal involvement, but little attention has been paid to the description of extrarenal manifestations. Moreover, mechanisms of pathogenic immunoglobulin deposition and factors associated with renal and patient survival are ill defined. We retrospectively studied a nationwide cohort of 255 patients, with biopsy-proven LCDD (n = 212) (including pure LCDD [n = 154], LCDD with cast nephropathy (CN) [n = 58]), HCDD (n = 23), or LHCDD (n = 20). Hematological diagnosis was monoclonal gammopathy of renal significance in 64% and symptomatic myeloma in 34%. Renal presentation was acute kidney injury in patients with LCCD and CN, and chronic glomerular disease in the other types, 35% of whom had symptomatic extrarenal (mostly hepatic and cardiac) involvement. Sequencing of 18 pathogenic LC showed high isoelectric point values of variable domain complementarity determining regions, possibly accounting for tissue deposition. Among 169 patients who received chemotherapy (bortezomib-based in 58%), 67% achieved serum free light chain (FLC) response, including very good partial response (VGPR) or above in 52%. Renal response occurred in 62 patients (36%), all of whom had achieved hematological response. FLC response ≥ VGPR and absence of severe interstitial fibrosis were independent predictors of renal response. This study highlights an unexpected frequency of extrarenal manifestations in MIDD. Rapid diagnosis and achievement of deep FLC response are key factors of prognosis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/immunology , Kidney Diseases/pathology , Paraproteinemias/pathology , Aged , Cohort Studies , Female , Follow-Up Studies , Humans , Kidney Diseases/drug therapy , Kidney Diseases/immunology , Male , Middle Aged , Paraproteinemias/drug therapy , Paraproteinemias/immunology , Prognosis , Survival Rate
14.
Protein Expr Purif ; 188: 105955, 2021 12.
Article in English | MEDLINE | ID: mdl-34416361

ABSTRACT

Assembly of IgG-like asymmetric bispecific antibodies (bsAbs) requires heavy chain heterodimerization and cognate heavy-light chain pairings. Multiple strategies have been developed to solve these chain association issues. While these strategies greatly promote correct chain pairing, they normally cannot prevent low amount of chain mispaired byproducts from being generated. Besides, byproducts can also be generated as a result of discordant chain expression. The existence of various byproducts poses considerable challenges to downstream processing during the production of recombinant IgG-like bsAbs. In many cases, yield is greatly compromised for purity improvement. This mini review introduces eight IgG-like bsAb platforms, which share a common feature: they all contain built-in purification-facilitating elements in addition to chain pairing control designs. These platforms, by simultaneously providing solutions to the two issues associated with bsAb production (i.e., correct chain pairing and efficient purification), improve both efficiency and robustness of bsAb production.


Subject(s)
Antibodies, Bispecific/chemistry , Immunoglobulin G/chemistry , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Light Chains/chemistry , Protein Engineering/methods , Receptors, Antigen, T-Cell/chemistry , Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Antibodies, Bispecific/isolation & purification , Chromatography, Gel/methods , Chromatography, Ion Exchange/methods , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Isoelectric Point , Protein Binding , Protein Multimerization , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism
15.
J Immunol ; 203(7): 1687-1692, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31484734

ABSTRACT

B cell clonal expansion is vital for adaptive immunity. High-throughput BCR sequencing enables investigating this process but requires computational inference to identify clonal relationships. This inference usually relies on only the BCR H chain, as most current protocols do not preserve H:L chain pairing. The extent to which paired L chains aids inference is unknown. Using human single-cell paired BCR datasets, we assessed the ability of H chain-based clonal clustering to identify clones. Of the expanded clones identified, <20% grouped cells expressing inconsistent L chains. H chains from these misclustered clones contained more distant junction sequences and shared fewer V segment mutations than the accurate clones. This suggests that additional H chain information could be leveraged to refine clonal relationships. Conversely, L chains were insufficient to refine H chain-based clonal clusters. Overall, the BCR H chain alone is sufficient to identify clonal relationships with confidence.


Subject(s)
B-Lymphocytes/immunology , Databases, Genetic , Gene Rearrangement, B-Lymphocyte, Heavy Chain , Immunoglobulin Heavy Chains/immunology , Receptors, Antigen, B-Cell/immunology , B-Lymphocytes/cytology , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Receptors, Antigen, B-Cell/genetics
16.
Proc Natl Acad Sci U S A ; 115(46): E10839-E10848, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30377267

ABSTRACT

Amyloidosis is a malignant pathology associated with the formation of proteinaceous amyloid fibrils that deposit in organs and tissues, leading to dysfunction and severe morbidity. More than 25 proteins have been identified as components of amyloid, but the most common form of systemic amyloidosis is associated with the deposition of amyloid composed of Ig light chains (AL). Clinical management of amyloidosis focuses on reducing synthesis of the amyloid precursor protein. However, recently, passive immunotherapy using amyloid fibril-reactive antibodies, such as 11-1F4, to remove amyloid from organs has been shown to be effective at restoring organ function in patients with AL amyloidosis. However, 11-1F4 does not bind amyloid in all AL patients, as evidenced by PET/CT imaging, nor does it efficiently bind the many other forms of amyloid. To enhance the reactivity and expand the utility of the 11-1F4 mAb as an amyloid immunotherapeutic, we have developed a pretargeting "peptope" comprising a multiamyloid-reactive peptide, p5+14, fused to a high-affinity peptide epitope recognized by 11-1F4. The peptope, known as p66, bound the 11-1F4 mAb in vitro with subnanomolar efficiency, exhibited multiamyloid reactivity in vitro and, using tissue biodistribution and SPECT imaging, colocalized with amyloid deposits in a mouse model of systemic serum amyloid A amyloidosis. Pretreatment with the peptope induced 11-1F4 mAb accumulation in serum amyloid A deposits in vivo and enhanced 11-1F4-mediated dissolution of a human AL amyloid extract implanted in mice.


Subject(s)
Amyloidosis/metabolism , Amyloidosis/therapy , Antibodies, Monoclonal/physiology , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Animals , Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Cadaver , Epitopes/metabolism , Humans , Immunoglobulin Light Chains/immunology , Mice , Peptides/metabolism , Positron Emission Tomography Computed Tomography , Protein Binding , Serum Amyloid A Protein/metabolism , Tissue Distribution , Treatment Outcome
17.
Proc Natl Acad Sci U S A ; 115(29): 7569-7574, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29954862

ABSTRACT

Elicitation of broadly neutralizing antibodies (bnAbs) is a leading strategy in rational vaccine design against antigenically diverse pathogens. Here, we studied a panel of monoclonal antibodies (mAbs) from mice immunized with the hepatitis C virus (HCV) envelope glycoproteins E1E2. Six of the mAbs recognize the conserved E2 antigenic site 412-423 (AS412) and cross-neutralize diverse HCV genotypes. Immunogenetic and structural analysis revealed that the antibodies originated from two different germline (GL) precursors and bind AS412 in a ß-hairpin conformation. Intriguingly, the anti-HCV activity of one antibody lineage is associated with maturation of the light chain (LC), whereas the other lineage is dependent on heavy-chain (HC) maturation. Crystal structures of GL precursors of the LC-dependent lineage in complex with AS412 offer critical insights into the maturation process of bnAbs to HCV, providing a scientific foundation for utilizing the mouse model to study AS412-targeting vaccine candidates.


Subject(s)
Antibodies, Neutralizing/chemistry , Hepacivirus/chemistry , Hepatitis C Antibodies/chemistry , Immunoglobulin Light Chains/chemistry , Single-Chain Antibodies/chemistry , Viral Envelope Proteins/chemistry , Animals , Antibodies, Neutralizing/immunology , Cell Line , Hepacivirus/immunology , Hepatitis C Antibodies/immunology , Humans , Immunoglobulin Light Chains/immunology , Mice , Single-Chain Antibodies/immunology , Viral Envelope Proteins/immunology , Viral Hepatitis Vaccines/chemistry , Viral Hepatitis Vaccines/immunology
18.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34281193

ABSTRACT

The kidney is one of the main organs affected by the autoimmune disease systemic lupus erythematosus. Lupus nephritis (LN) concerns 30-60% of adult SLE patients and it is significantly associated with an increase in the morbidity and mortality. The definitive diagnosis of LN can only be achieved by histological analysis of renal biopsies, but the invasiveness of this technique is an obstacle for early diagnosis of renal involvement and a proper follow-up of LN patients under treatment. The use of urine for the discovery of non-invasive biomarkers for renal disease in SLE patients is an attractive alternative to repeated renal biopsies, as several studies have described surrogate urinary cells or analytes reflecting the inflammatory state of the kidney, and/or the severity of the disease. Herein, we review the main findings in the field of urine immune-related biomarkers for LN patients, and discuss their prognostic and diagnostic value. This manuscript is focused on the complement system, antibodies and autoantibodies, chemokines, cytokines, and leukocytes, as they are the main effectors of LN pathogenesis.


Subject(s)
Biomarkers/urine , Lupus Nephritis/immunology , Lupus Nephritis/urine , Autoantibodies/immunology , Autoantibodies/urine , Complement System Proteins/immunology , Complement System Proteins/urine , Early Diagnosis , Humans , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/urine , Inflammation/immunology , Inflammation/urine , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/urine , Lupus Nephritis/diagnosis , Prognosis
19.
Crit Rev Clin Lab Sci ; 57(2): 73-85, 2020 03.
Article in English | MEDLINE | ID: mdl-31612753

ABSTRACT

Serum κ and λ free light chain levels are markers of plasma cell proliferation, and their measurements have been included in recent guidelines by the International Myeloma Working Group for the management of patients with plasma cellular dyscrasias. Five in vitro diagnostic methods for the immunochemical quantification of serum free light chains (FLC) are available, three based on polyclonal antibodies (Freelite®, The Binding Site; FLC ELISA κ and λ, Sebia; human κ and λ FLC, Diazyme Laboratories) and two on monoclonal antibodies (N Latex FLC, Siemens Healthineers; Seralite®, Sebia). Several studies have shown that these methods cannot be used interchangeably for the follow-up of patients because measured κ and λ FLC concentrations may differ significantly, especially at high levels. Because no international reference material for the measurement of FLC is available, it is not possible to establish which method is the most accurate. For this reason, knowledge about the analytical and diagnostic performances of the assays used is important. The aim of this review is to describe the main analytical features of the κ and λ FLC assays and how they may influence the clinical use of these parameters.


Subject(s)
Immunoglobulin Light Chains/analysis , Immunoglobulin kappa-Chains/analysis , Immunoglobulin lambda-Chains/analysis , Clinical Laboratory Services , Humans , Immunoglobulin Light Chains/blood , Immunoglobulin Light Chains/immunology , Immunoglobulin kappa-Chains/blood , Immunoglobulin lambda-Chains/blood , Laboratories , Paraproteinemias/blood , Paraproteinemias/diagnosis , Reproducibility of Results
20.
Br J Haematol ; 191(5): 673-681, 2020 12.
Article in English | MEDLINE | ID: mdl-32298469

ABSTRACT

Immunoglobulin light-chain (AL) amyloidosis is a clonal plasma cell disorder characterised by production and deposition of misfolded monoclonal light chains in vital organs with potential to cause irreversible organ damage. The treatment of AL amyloidosis has evolved along the lines of multiple myeloma (MM) owing to clonal plasma cells being at the root of both disease processes. Treatment with melphalan and autologous haematopoietic cell transplantation, as well as proteasome inhibitors and immunomodulatory agents, are the standard of care for AL amyloidosis. While these treatment modalities are highly effective against the neoplastic plasma cells, patients often relapse and those with advanced disease may be unable to tolerate these treatments due to side-effects. Immunotherapy with monoclonal antibodies, bispecific antibodies, antibody-drug conjugates and chimeric antigen receptor T cells have revolutionised the treatment armamentarium for MM. These novel immunotherapy agents are in the early phases of evaluation and clinical development for patients with AL amyloidosis. The present review aims to discuss the role of novel immunotherapies currently in development and their potential for use in the treatment of AL amyloidosis.


Subject(s)
Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Immunoconjugates/therapeutic use , Immunoglobulin Light-chain Amyloidosis/therapy , Immunotherapy, Adoptive , Humans , Immunoglobulin Light Chains/immunology , Immunoglobulin Light-chain Amyloidosis/immunology , Immunoglobulin Light-chain Amyloidosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL