Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 676
Filter
Add more filters

Publication year range
1.
Avian Pathol ; 53(5): 380-389, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38572655

ABSTRACT

Infectious bronchitis virus (IBV) strains of genotype GVIII have been emerging in Europe in the last decade, but no biological characterization has been reported so far. This paper reports the extensive genetic and biological characterization of IBV strain D2860 of genotype GVIII which was isolated from a Dutch layer flock that showed a drop in egg production. Whole genome sequencing showed that it has a high similarity (95%) to CK/DE/IB80/2016 (commonly known as IB80). Cross-neutralization tests with antigens and serotype-specific antisera of a panel of different non-GVIII genotypes consistently gave less than 2% antigenic cross-relationship with D2860. Five experiments using specified pathogen-free chickens of 0, 4, 29 and 63 weeks of age showed that D2860 was not able to cause clinical signs, drop in egg production, false layers or renal pathology. There was also a distinct lack of ciliostasis at both 5 and 8 days post-inoculation at any age, despite proof of infection by immunohistochemical (IHC) staining, RT-PCR and serology. IHC showed immunostaining between 5 and 8 days post inoculation in epithelial cells of sinuses and conchae, while only a few birds displayed immunostaining in the trachea. In vitro comparison of replication of D2860 and M41 in chicken embryo kidney cells at 37°C and at 41°C indicated that D2860 might have a degree of temperature sensitivity that might cause it to prefer the colder parts of the respiratory tract.


Subject(s)
Chickens , Coronavirus Infections , Genotype , Infectious bronchitis virus , Poultry Diseases , Infectious bronchitis virus/genetics , Infectious bronchitis virus/immunology , Animals , Chickens/virology , Poultry Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Specific Pathogen-Free Organisms , Female , Phylogeny , Genome, Viral/genetics , Virus Replication , Trachea/virology
2.
J Virol ; 95(17): e0066721, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34105997

ABSTRACT

Cellular immune responses play a key role in the control of viral infection. The nucleocapsid (N) protein of infectious bronchitis virus (IBV) is a major immunogenic protein that can induce protective immunity. To screen for potential T-cell epitopes on IBV N protein, 40 overlapping peptides covering the entirety of the N protein were designed and synthesized. Four T-cell epitope peptides were identified by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot), intracellular cytokine staining, and carboxyfluorescein succinimidyl ester (CFSE) lymphocyte proliferation assays; among them, three peptides (N211-230, N271-290, and N381-400) were cytotoxic T lymphocyte (CTL) epitopes, and one peptide (N261-280) was a dual-specific T-cell epitope, which can be recognized by both CD8+ and CD4+ T cells. Multi-epitope gene transcription cassettes comprising four neutralizing epitope domains and four T-cell epitope peptides were synthesized and inserted into the genome of Newcastle disease virus strain La Sota between the P and M genes. Recombinant IBV multi-epitope vaccine candidate rLa Sota/SBNT was generated via reverse genetics, and its immune protection efficacy was evaluated in specific-pathogen-free chickens. Our results show that rLa Sota/SBNT induced IBV-specific neutralizing antibody and T-cell responses and provided significant protection against homologous and heterologous IBV challenge. Thus, the T-cell epitope peptides identified in this study could be good candidates for IBV vaccine development, and recombinant Newcastle disease virus-expressing IBV multi-epitope genes represent a safe and effective vaccine candidate for controlling infectious bronchitis. IMPORTANCE T-cell-mediated immune responses are critical for the elimination of IBV-infected cells. To screen conserved T-cell epitopes in the IBV N protein, 40 overlapping peptides covering the entirety of the N protein were designed and synthesized. By combining IFN-γ ELISpot, intracellular cytokine staining, and CFSE lymphocyte proliferation assays, we identified three CTL epitopes and one dual-specific T-cell epitope. The value of T-cell epitope peptides identified in the N protein was further verified by the design of an IBV multi-epitope vaccine. Results show that IBV multi-epitope vaccine candidate rLa Sota/SBNT provided cross protection against challenges with a QX-like or a TW-like IBV strain. So, T-cell-mediated immune responses play an important role in the control of viral infection, and conserved T-cell epitopes serve as promising candidates for use in multi-epitope vaccine construction. Our results provide a new perspective for the development of a safer and more effective IBV vaccine.


Subject(s)
Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Immunity, Cellular/immunology , Infectious bronchitis virus/immunology , Nucleocapsid Proteins/immunology , Poultry Diseases/prevention & control , Viral Vaccines/administration & dosage , Animals , Chickens , Coronavirus Infections/immunology , Coronavirus Infections/virology , Immunity, Cellular/drug effects , Poultry Diseases/immunology , Specific Pathogen-Free Organisms , T-Lymphocytes, Cytotoxic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/immunology
3.
Allergy ; 77(12): 3648-3662, 2022 12.
Article in English | MEDLINE | ID: mdl-35869837

ABSTRACT

BACKGROUND: Although avian coronavirus infectious bronchitis virus (IBV) and SARS-CoV-2 belong to different genera of the Coronaviridae family, exposure to IBV may result in the development of cross-reactive antibodies to SARS-CoV-2 due to homologous epitopes. We aimed to investigate whether antibody responses to IBV cross-react with SARS-CoV-2 in poultry farm personnel who are occupationally exposed to aerosolized IBV vaccines. METHODS: We analyzed sera from poultry farm personnel, COVID-19 patients, and pre-pandemic controls. IgG levels against the SARS-CoV-2 antigens S1, RBD, S2, and N and peptides corresponding to the SARS-CoV-2 ORF3a, N, and S proteins as well as whole virus antigens of the four major S1-genotypes 4/91, IS/1494/06, M41, and D274 of IBV were investigated by in-house ELISAs. Moreover, live-virus neutralization test (VNT) was performed. RESULTS: A subgroup of poultry farm personnel showed elevated levels of specific IgG for all tested SARS-CoV-2 antigens compared with pre-pandemic controls. Moreover, poultry farm personnel, COVID-19 patients, and pre-pandemic controls showed specific IgG antibodies against IBV strains. These antibody titers were higher in long-term vaccine implementers. We observed a strong correlation between IBV-specific IgG and SARS-CoV-2 S1-, RBD-, S2-, and N-specific IgG in poultry farm personnel compared with pre-pandemic controls and COVID-19 patients. However, no neutralization was observed for these cross-reactive antibodies from poultry farm personnel using the VNT. CONCLUSION: We report here for the first time the detection of cross-reactive IgG antibodies against SARS-CoV-2 antigens in humans exposed to IBV vaccines. These findings may be useful for further studies on the adaptive immunity against COVID-19.


Subject(s)
Antibodies, Viral , COVID-19 , Farmers , Infectious bronchitis virus , Humans , Antibodies, Viral/immunology , COVID-19/prevention & control , Immunoglobulin G , Infectious bronchitis virus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Cross Reactions , Poultry , Animals
4.
J Virol ; 94(19)2020 09 15.
Article in English | MEDLINE | ID: mdl-32669327

ABSTRACT

Infectious bronchitis (IB) caused by infectious bronchitis virus (IBV) is currently a major threat to chicken health, with multiple outbreaks being reported in the United States over the past decade. Modified live virus (MLV) vaccines used in the field can persist and provide the genetic material needed for recombination and emergence of novel IBV serotypes. Inactivated and subunit vaccines overcome some of the limitations of MLV with no risk of virulence reversion and emergence of new virulent serotypes. However, these vaccines are weakly immunogenic and poorly protective. There is an urgent need to develop more effective vaccines that can elicit a robust, long-lasting immune response. In this study, we evaluate a novel adjuvant system developed from Quil-A and chitosan (QAC) for the intranasal delivery of nucleic acid immunogens to improve protective efficacy. The QAC adjuvant system forms nanocarriers (<100 nm) that efficiently encapsulate nucleic acid cargo, exhibit sustained release of payload, and can stably transfect cells. Encapsulation of plasmid DNA vaccine expressing IBV nucleocapsid (N) protein by the QAC adjuvant system (pQAC-N) enhanced immunogenicity, as evidenced by robust induction of adaptive humoral and cellular immune responses postvaccination and postchallenge. Birds immunized with pQAC-N showed reduced clinical severity and viral shedding postchallenge on par with protection observed with current commercial vaccines without the associated safety concerns. Presented results indicate that the QAC adjuvant system can offer a safer alternative to the use of live vaccines against avian and other emerging coronaviruses.IMPORTANCE According to 2017 U.S. agriculture statistics, the combined value of production and sales from broilers, eggs, turkeys, and chicks was $42.8 billion. Of this number, broiler sales comprised 67% of the industry value, with the production of >50 billion pounds of chicken meat. The economic success of the poultry industry in the United States hinges on the extensive use of vaccines to control infectious bronchitis virus (IBV) and other poultry pathogens. The majority of vaccines currently licensed for poultry health include both modified live vaccine and inactivated pathogens. Despite their proven efficacy, modified live vaccine constructs take time to produce and could revert to virulence, which limits their safety. The significance of our research stems from the development of a safer and potent alternative mucosal vaccine to replace live vaccines against IBV and other emerging coronaviruses.


Subject(s)
Bronchitis/prevention & control , Coronavirus Infections/veterinary , Gammacoronavirus/immunology , Mucous Membrane/immunology , Poultry Diseases/prevention & control , Viral Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Animals , Bronchitis/virology , Chickens , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Disease Models, Animal , Immunity, Cellular , Immunization , Infectious bronchitis virus/immunology , Nucleocapsid/immunology , Poultry Diseases/immunology , Poultry Diseases/virology , Recombinant Proteins/immunology , Vaccines, DNA/immunology , Viral Load
5.
Arch Virol ; 166(1): 73-81, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33067648

ABSTRACT

Avian infectious bronchitis (IB) is a highly contagious viral respiratory disease, caused by infectious bronchitis virus (IBV), that poses an important economic threat to the poultry industry. In recent years, genotypes GI-7, GI-13, and GI-19 have been the most prevalent IBV strains in China. However, in this study, we found that most IBV strains from southern China in 2016-2017 belonged to genotype GVI-1. This genotype, for which there is no vaccine, has been reported sporadically in the region. The GDTS13 strain, which caused severe IB outbreaks on the farms where it was isolated, was evaluated as a candidate vaccine strain. GDTS13 was serially passaged in specific-pathogen-free embryonated chicken eggs for 100 generations to produce GDTS13-F100. Safety testing indicated that GDTS13-F100 had no pathogenic effect on chickens. Additionally, GDTS13-F100 showed an excellent protective effect against GDTS13, with no clinical signs or virus shedding observed in immunized chickens challenged with the parent strain. These findings indicate that GVI-1 has become the most prevalent IBV genotype in southern China and that GDTS13-F100 may serve as an attenuated vaccine to protect against infection with this genotype.


Subject(s)
Infectious bronchitis virus/genetics , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Animals , Chickens/virology , China , Coronavirus Infections/immunology , Coronavirus Infections/virology , Genotype , Infectious bronchitis virus/immunology , Phylogeny , Poultry Diseases/immunology , Poultry Diseases/virology , Specific Pathogen-Free Organisms/genetics , Vaccination/methods
6.
Arch Virol ; 166(4): 1113-1124, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33576898

ABSTRACT

Avian influenza virus (AIV), Newcastle disease virus (NDV), and avian infectious bronchitis virus (IBV) inflict immense damage on the global poultry industry annually. Serological diagnostic methods are fundamental for the effective control and prevention of outbreaks caused by these viruses. In this study, a novel triplex protein microarray assay was developed and validated for the rapid and simultaneous visualized detection of antibodies against AIV, NDV, and IBV in chicken sera. The AIV nuclear protein (NP), NDV phosphoprotein (P), and IBV nonstructural protein 5 (nsp5) were produced in a prokaryotic expression system, purified, and immobilized onto an initiator integrated poly(dimethylsiloxane) (iPDMS) film as probes to detect antibodies against these viruses in chicken sera. After optimization of the reaction conditions, no cross-reactivity was detected with infectious bursal disease virus, avian leukosis virus subgroup J and chicken anemia virus antisera. The lowest detectable antibody titers in this assay corresponded to hemagglutination inhibition (HI) titers of 24 and 21 for AIV and NDV, respectively, and to an IDEXX antibody titer of 103 for IBV, using the HI assay and IDEXX commercial ELISA kit as the reference methods. When156 serum samples were tested using the new assay, the HI test and the IBV IDEXX ELISA kit, the assay showed 96.8% (151/156), 97.4% (152/156) and 99.4% (155/156) diagnostic accuracy for detection of AIV, NDV and IBV antibody, respectively. The current study suggests that the newly developed triplex microarray is rapid, sensitive, and specific, providing a viable alternative assay for AIV, NDV, and IBV antibody screening in epidemiological investigations and vaccination evaluations.


Subject(s)
Antibodies, Viral/blood , Infectious bronchitis virus/isolation & purification , Influenza A virus/isolation & purification , Newcastle disease virus/isolation & purification , Poultry Diseases/diagnosis , Protein Array Analysis/veterinary , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , Chickens , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Immunoassay/standards , Immunoassay/veterinary , Infectious bronchitis virus/immunology , Influenza A virus/immunology , Influenza in Birds/diagnosis , Newcastle Disease/diagnosis , Newcastle disease virus/immunology , Poultry Diseases/virology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sensitivity and Specificity , Serologic Tests/standards , Serologic Tests/veterinary
7.
Avian Pathol ; 50(4): 295-310, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34126817

ABSTRACT

Infectious bronchitis virus (IBV) was first isolated in Australia in 1962. Ongoing surveillance and characterization of Australian IBVs have shown that they have evolved separately from strains found throughout the rest of the world, resulting in the evolution of a range of unique strains and changes in the dominant wild-type strains, affecting tissue tropism, pathogenicity, antigenicity, and gene arrangement. Between 1961 and 1976 highly nephropathogenic genotype GI-5 and GI-6 strains, causing mortalities of 40% to 100%, predominated, while strains causing mainly respiratory disease, with lower mortality rates, have predominated since then. Since 1988, viruses belonging to two distinct and novel genotypes, GIII and GV, have been detected. The genome organization of the GIII strains has not been seen in any other gammacoronavirus. Mutations that emerged soon after the introduction of vaccination, incursion of strains with a novel lineage from unknown sources, recombination between IBVs from different genetic lineages, and gene translocations and deletions have contributed to an increasingly complex IBV population. These processes and the consequences of this variation for the biology of these viruses provide an insight into the evolution of endemic coronaviruses during their control by vaccination and may provide a better understanding of the potential for evolution of other coronaviruses, including SARS-CoV-2. Furthermore, the continuing capacity of attenuated IBV vaccines developed over 40 years ago to provide protection against viruses in the same genetic lineage provides some assurance that coronavirus vaccines developed to control other coronaviruses may continue to be effective for an extended period.


Subject(s)
Biological Evolution , Chickens , Coronaviridae Infections/veterinary , Infectious bronchitis virus/physiology , Poultry Diseases/virology , Animals , Antigenic Variation , Australia/epidemiology , Coronaviridae Infections/epidemiology , Coronaviridae Infections/prevention & control , Coronaviridae Infections/virology , Evolution, Molecular , Genetic Variation , Infectious bronchitis virus/classification , Infectious bronchitis virus/genetics , Infectious bronchitis virus/immunology , Phenotype , Phylogeny , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Viral Vaccines
8.
BMC Vet Res ; 17(1): 51, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33494765

ABSTRACT

BACKGROUND: Infectious bronchitis virus (IBV), a coronavirus, is one of the most important poultry pathogens worldwide due to its multiple serotypes and poor cross-protection. Vaccination plays a vital role in controlling the disease. The efficacy of vaccination in chicken flocks can be evaluated by detecting neutralizing antibodies with the neutralization test. However there are no simple and rapid methods for detecting the neutralizing antibodies. RESULTS: In this study, a peptide enzyme-linked immunosorbent assay (pELISA) as a possible alternative to the neutralization test for evaluating the immune response to IBV vaccine was developed. The pELISA could indirect evaluate neutralizing antibody titers against different types of IBV in all tested sera. The titers measured with the pELISA had a coefficient of 0.83 for neutralizing antibody titers. CONCLUSIONS: The pELISA could detect antibodies against different types of IBV in all tested sera. The pELISA has the potential to evaluate samples for IBV-specific neutralizing antibodies and surveillance the infection of IBV.


Subject(s)
Coronavirus Infections/prevention & control , Enzyme-Linked Immunosorbent Assay , Infectious bronchitis virus/immunology , Neutralization Tests , Poultry Diseases/prevention & control , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chickens/immunology , Chickens/virology , Coronavirus Infections/immunology , Enzyme-Linked Immunosorbent Assay/methods , Neutralization Tests/methods , Poultry Diseases/immunology , Poultry Diseases/virology , Reproducibility of Results , Sensitivity and Specificity
9.
Biologicals ; 73: 24-30, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34389244

ABSTRACT

The present study describes the development of a novel affordable and rapid visual dot-blot assay using synthetic multiple antigenic peptides (MAP) for simultaneous detection of antibodies to infectious bronchitis virus (IBV) and Newcastle disease virus (NDV). Antibody detection efficiencies of MAP peptides namely, NP1 MAP (Nucleoprotein IBV) and HN MAP (Haemagglutinin-neuraminidase NDV) were studied in solid-phase indirect peptide ELISA. In comparison with the commercial kit, the NP1 MAP showed 89.20% diagnostic sensitivity (DSn) and 85.90% diagnostic specificity (DSp) at 19.45% ROC cut-off. Similarly, HN MAP was evaluated and showed 89.70% DSn and 92.90% DSp at 19.90 % ROC cut-off. The peptides after evaluating their ELISA performance were further used to device a flow-through dot-blot assay (FT-DBA) for simultaneous detection of IBV and NDV antibodies. The kappa value for IBV by FT-DBA in comparison to commercial ELISA was 0.64 whereas for NDV, FT-DBA gave a kappa value of 0.68 in comparison to commercial ELISA indicating substantial agreement between the assays. In essence, the divergent MAP based diagnostic design could provide an alternative for antibody detection of IBV and NDV. Further, the FT-DBA approach could be used for low cost, rapid and pen-side detection of IBV and NDV antibodies simultaneously.


Subject(s)
Antibodies, Viral/isolation & purification , Coronavirus Infections , Immunoassay , Newcastle Disease , Poultry Diseases , Animals , Chickens , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Newcastle Disease/diagnosis , Newcastle disease virus/immunology , Peptides , Poultry Diseases/diagnosis , Poultry Diseases/virology
10.
J Gen Virol ; 101(6): 599-608, 2020 06.
Article in English | MEDLINE | ID: mdl-32213247

ABSTRACT

Infection of chicken coronavirus infectious bronchitis virus (IBV) is initiated by binding of the viral heavily N-glycosylated attachment protein spike to the alpha-2,3-linked sialic acid receptor Neu5Ac. Previously, we have shown that N-glycosylation of recombinantly expressed receptor binding domain (RBD) of the spike of IBV-M41 is of critical importance for binding to chicken trachea tissue. Here we investigated the role of N-glycosylation of the RBD on receptor specificity and virus replication in the context of the virus particle. Using our reverse genetics system we were able to generate recombinant IBVs for nine-out-of-ten individual N-glycosylation mutants. In vitro growth kinetics of these viruses were comparable to the virus containing the wild-type M41-S1. Furthermore, Neu5Ac binding by the recombinant viruses containing single N-glycosylation site knock-out mutations matched the Neu5Ac binding observed with the recombinant RBDs. Five N-glycosylation mutants lost the ability to bind Neu5Ac and gained binding to a different, yet unknown, sialylated glycan receptor on host cells. These results demonstrate that N-glycosylation of IBV is a determinant for receptor specificity.


Subject(s)
Coronavirus Infections/immunology , Host Specificity/immunology , Infectious bronchitis virus/chemistry , Protein Domains , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Animals , Cell Line , Chick Embryo , Coronavirus Infections/virology , Glycosylation , Infectious bronchitis virus/immunology , Kidney/cytology , Kidney/embryology , Protein Binding , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism , Recombinant Proteins , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism/immunology , Virus Attachment , Virus Replication
11.
J Virol ; 93(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31043525

ABSTRACT

The gammacoronavirus infectious bronchitis virus (IBV) causes an acute, highly contagious respiratory disease of poultry. Live attenuated vaccines are traditionally generated by serial passage of a virulent strain in embryonated chicken eggs; however, the molecular mechanism of attenuation is unknown. M41-CK, a virulent lab-adapted strain of IBV, was egg passaged over 100 times in four parallel independent replicates. All four final egg-passaged viruses were attenuated in vivo and exhibited similar growth phenotypes in adult chicken kidney cells and ex vivo tracheal organ cultures. The virus populations were sequenced by 454 pyrosequencing at the end of passaging, and the results showed that overall sequence diversity in the IBV population increased but the four replicates only had between 11 and 17 consensus-level single nucleotide polymorphisms (SNPs). Although hot spots of variation were identified in spike and nucleocapsid structural proteins as well as the 3' untranslated region, each attenuated virus possessed a different pattern of genomic variation. Overall, only a small number of consensus-level SNPs were acquired during egg passage, leaving a potentially short route back to virulence. These results highlight the unpredictable nature of attenuation by serial egg passage and the need to develop mechanisms to rationally attenuate IBV for the next generation of effective vaccines.IMPORTANCE Infectious bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines are currently developed by serial passage of a virulent strain on embryonated hen's eggs until attenuation; however, little is known about the evolution of the viral population during the process of attenuation. High-throughput sequencing of four replicates of a serially egg-passaged IBV revealed a different pattern of genomic variation in each attenuated replicate and few consensus-level SNPs. This raises concerns that only a small number of genomic mutations are required to revert to a virulent phenotype, which may result in vaccine breakdown in the field. The observed hot spots of variation in the attenuated viruses have the potential to be used in the rational attenuation of virulent IBV for next-generation vaccine design.


Subject(s)
Eggs/virology , Infectious bronchitis virus , Polymorphism, Single Nucleotide , Viral Vaccines , Animals , Cell Line , Chickens , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Infectious bronchitis virus/genetics , Infectious bronchitis virus/immunology , Poultry Diseases/genetics , Poultry Diseases/immunology , Poultry Diseases/virology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
12.
J Virol ; 93(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30867314

ABSTRACT

Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi membranes, and has cation channel activity in vitro The E protein from avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system, which require residues in the HD. Mutation of the HD of IBV E in a recombinant virus background results in impaired growth kinetics, impaired release of infectious virions, accumulation of IBV spike (S) protein on the plasma membrane compared to wild-type (WT) IBV-infected cells, and aberrant cleavage of IBV S on virions. We previously reported the formation of two distinct oligomeric pools of IBV E in transfected and infected cells. Disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity. Here, we present evidence suggesting that the monomeric form of IBV E correlates with an increased Golgi luminal pH. Infection with IBV or expression of IBV E induces neutralization of Golgi pH, promoting a model in which IBV E alters the secretory pathway through interaction with host cell factors, protecting IBV S from premature cleavage and leading to the efficient release of infectious virus from the cells. This is the first demonstration of a coronavirus-induced alteration in the microenvironment of the secretory pathway.IMPORTANCE Coronaviruses are important human pathogens with significant zoonotic potential. Progress has been made toward identifying potential vaccine candidates for highly pathogenic human CoVs, including the use of attenuated viruses that lack the CoV E protein or express E mutants. However, no approved vaccines or antiviral therapeutics exist. Understanding the role of the CoV E protein in virus assembly and release is thus an important prerequisite for potential vaccines as well as in identifying novel antiviral therapeutics.


Subject(s)
Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism , Animals , Bronchitis/immunology , Bronchitis/virology , Cell Membrane/metabolism , Chlorocebus aethiops , Coronavirus/pathogenicity , Coronavirus Envelope Proteins , Coronavirus Infections/virology , Golgi Apparatus/physiology , HeLa Cells , Humans , Hydrogen-Ion Concentration , Infectious bronchitis virus/immunology , Secretory Pathway , Vero Cells , Viral Envelope Proteins/physiology , Virion/metabolism , Virus Assembly , Virus Diseases/metabolism
13.
Microb Pathog ; 149: 104535, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32980469

ABSTRACT

The immunopathogenesis of avian coronavirus, infectious bronchitis virus (IBV) Q1, was investigated in specific pathogen free chicks. Following infection, chicks exhibited respiratory clinical signs and reduced body weight. Oropharyngeal (OP) and cloacal (CL) swabs were collected at intervals and found to be RT-PCR positive, with a greater number of partial-S1 amino acid changes noted in CL swabs compared to OP swabs. In tissue samples, IBV viral load peaked 9 days post infection (dpi) in the trachea and kidneys, and 14 dpi in the proventriculus. At 28 dpi, ELISA data showed that 63% of infected chicks seroconverted. There was significantly higher mRNA up-regulation of IFN-α, TLR3, MDA5, LITAF, IL-1ß and IL-6 in the trachea compared to the kidneys. Findings presented here demonstrate that this Q1 isolate induces greater lesions and host innate immune responses in chickens' tracheas compared to the kidneys.


Subject(s)
Chickens/immunology , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Poultry Diseases/immunology , Poultry Diseases/virology , Animals , Antibodies, Viral/blood , Body Weight , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Gene Expression , Immunity, Innate , Infectious bronchitis virus/genetics , Infectious bronchitis virus/isolation & purification , Poultry Diseases/pathology , Specific Pathogen-Free Organisms , Viral Load
14.
Microb Pathog ; 149: 104560, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33068733

ABSTRACT

Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry.


Subject(s)
Chitosan/immunology , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Poultry Diseases/immunology , Saponins/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Bronchitis/immunology , Bronchitis/prevention & control , Bronchitis/veterinary , CD8-Positive T-Lymphocytes/immunology , Chickens , Chitosan/chemistry , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection , Immunity, Cellular , Immunization, Secondary/veterinary , Immunogenicity, Vaccine , Nanoparticles/chemistry , Poultry Diseases/prevention & control , Saponins/chemistry , Vaccination/veterinary , Vaccines, DNA/chemistry , Vaccines, DNA/genetics , Viral Vaccines/chemistry , Viral Vaccines/genetics
15.
Vet Res ; 51(1): 86, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32641162

ABSTRACT

Continued reports of infections with infectious bronchitis virus (IBV) variants have occurred since its first isolation in the 1930s. Currently, QX-like IBVs are the predominant circulating genotype around the world. Here, the pathogenicity of QX-like IBV strain SD was characterized in chickens at different ages of exposure to the virus, and the protection efficacy of available vaccine combinations against IBV was evaluated. The results revealed that QX-like IBV strain SD was severely pathogenic in chickens, causing respiratory, urinary and reproductive infections, irrespective of age, based on clinical observations, viral distribution in tissues and a ciliostasis study. Severe respiratory signs, tracheal cilia injury, nephritis and abnormal development of the oviduct and ovarian follicles were evident throughout the experiment. A challenge experiment demonstrated that the homologous QX vaccine showed superior protection efficacy compared with other available vaccines, confirming the importance of IBV vaccine seed homology against the circulating IBV strains. Our findings aid an understanding of the pathogenicity of QX-like IBVs that may help to further control the infection.


Subject(s)
Chickens , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Poultry Diseases/prevention & control , Age Factors , Animals , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Poultry Diseases/virology , Specific Pathogen-Free Organisms , Vaccination/veterinary , Viral Vaccines/immunology
16.
Avian Pathol ; 49(4): 335-341, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32242456

ABSTRACT

Two or more different live attenuated infectious bronchitis virus (IBV) vaccine types are often given to broilers to induce homologous protection as well as to broaden protection against other IBV types in the field. However, the ability of broilers to respond to three or four different antigenic types of IBV vaccine has not been examined experimentally. In this study, we vaccinated one-day-old broiler chicks by eyedrop with three or four different IBV vaccine types simultaneously. The presence and relative amount of each vaccine was examined in all of the birds by IBV type-specific real-time RT-PCR at 5 days post-vaccination and each vaccine was detected in all of the birds given that vaccine. The birds were challenged at 28 days of age and protection was measured by clinical signs, virus detection and by ciliostasis. Birds vaccinated with three different IBV types (Ark, Mass and GA98) were protected against challenge with each of those IBV types and were partially protected against challenge with the GA08 virus. Birds vaccinated with four different IBV types (Ark, Mass, GA98 and GA08) were protected against challenge with each of those IBV types with the exception of Mass challenged birds which clearly had 3/11 birds not protected based on individual ciliostasis scores, but had an average ciliostasis score of >50% which is considered protected. The results are important for the control of IBV because they indicate that simultaneous vaccination with up to four different IBV vaccine types can provide adequate protection against challenge for each type.


Subject(s)
Chickens/virology , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Vaccination/veterinary , Viral Vaccines/immunology , Animals , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Poultry Diseases/virology , Real-Time Polymerase Chain Reaction/veterinary , Vaccines, Attenuated/immunology
17.
Avian Pathol ; 49(2): 185-192, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31899942

ABSTRACT

To protect layers, breeders and grandparents against damage by infectious bronchitis virus infections during the laying period, vaccination using live priming followed by a boost with inactivated IB vaccine is commonly used. For many IB variants, homologous live vaccines are not available for priming. Very little is known about the efficacy of priming with heterologous live IB vaccines (or combination of live IB vaccines) to induce broad IB protection in long-living chickens. In this study, the protection levels induced by vaccination programmes with only heterologous live priming by a Massachusetts vaccine and a 4/91 vaccine, only a multivalent inactivated vaccine that contained D1466 antigen and a combination of both, against a D1466 challenge were compared. The infection with infectious bronchitis virus D1466, a genotype II, lineage 1 virus, was able to cause serious damage to the unvaccinated laying hens resulting in respiratory signs, a long-lasting drop in egg production and loss of egg quality. All three vaccination programmes induced significant levels of protection against challenge with a pathogenic D1466 strain. Overall, the vaccination programme using the broad heterologous live priming and the inactivated vaccine provided high protection against the combination of egg drop and loss of egg quality. The results showed that this combination of heterologous live vaccines was able to increase the efficacy of the inactivated infectious bronchitis virus vaccine despite the very low antigenic relationship of both live vaccines with the challenge strain.


Subject(s)
Chickens , Coronavirus Infections/veterinary , Infectious bronchitis virus , Poultry Diseases/prevention & control , Viral Vaccines/immunology , Animals , Coronavirus Infections/prevention & control , Eggs/standards , Female , Infectious bronchitis virus/immunology , Oviposition , Poultry Diseases/virology , Tissue Culture Techniques , Trachea , Vaccines, Inactivated/immunology
18.
Mol Biol Rep ; 47(12): 9939-9949, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33185828

ABSTRACT

The outbreak of a novel coronavirus namely SARS-CoV-2, which first emerged from Wuhan, China, has wreaked havoc not only in China but the whole world that now has been engulfed in its wrath. In a short lapse of time, this virus was successful in spreading at a blistering pace throughout the globe, hence raising the flag of pandemic status. The mounting number of deaths with each elapsing day has summoned researchers from all around the world to play their part in driving this SARS-CoV-2 pandemic to an end. As of now, multiple research teams are immersed in either scrutinizing various antiviral drugs for their efficacy or developing different types of vaccines that will be capable of providing long-term immunity against this deadly virus. The mini-review sheds light on the possible approaches that can be undertaken to curb the COVID-19 spread. Possible strategies comprise viral vector-based, nucleic acid-based, protein-based, inactivated and weakened virus vaccines; COVID-19 vaccine being developed by deploying Hyleukin-7 technology; plant-based chimeric protein and subunit vaccines; humanized nano-bodies and human antibodies; intravenous immunoglobulin (IVIG) infusion therapy; inhibitors for ACE-2, Angiotensin 1 receptor (AT1R), complement system, viral proteins, host cell protease and endocytosis; shield immunity; IL-6R, NKG2A and hACE2-SARS-CoV-2-RBD interaction blocking monoclonal antibodies; SARS-CoV RdRp-based drugs, traditional Chinese medicine, repositioned and anti-viral drugs. These vaccines and drugs are currently being screened in the clinical trials as several of them have manifested positive results, hence increasing the probability of becoming one of the potential treatments for this disease.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19 Vaccines/pharmacology , COVID-19/prevention & control , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Clinical Trials as Topic , Drug Repositioning , Humans , Infectious bronchitis virus/immunology , Mesenchymal Stem Cell Transplantation/methods , RNA, Messenger/immunology , Recombinant Proteins/genetics , Single-Domain Antibodies/pharmacology , Vaccines, Attenuated/pharmacology , Vaccines, Subunit/pharmacology , Vaccines, Synthetic/pharmacology
19.
J Virol ; 92(23)2018 12 01.
Article in English | MEDLINE | ID: mdl-30209177

ABSTRACT

Vaccination regimes against Infectious bronchitis virus (IBV), which are based on a single virus serotype, often induce insufficient levels of cross-protection against serotypes and two or more antigenically diverse vaccines are used in attempt to provide broader protection. Amino acid differences in the surface protein, spike (S), in particular the S1 subunit, are associated with poor cross-protection. Here, homologous vaccination trials with recombinant IBVs (rIBVs), based on the apathogenic strain, BeauR, were conducted to elucidate the role of S1 in protection. A single vaccination of specific-pathogen-free chickens with rIBV expressing S1 of virulent strains M41 or QX, BeauR-M41(S1) and BeauR-QX(S1), gave incomplete protection against homologous challenge, based on ciliary activity and clinical signs. There could be conformational issues with the spike if heterologous S1 and S2 are linked, suggesting a homologous S2 might be essential. To address this, a homologous vaccination-challenge trial incorporating rIBVs expressing full spike from M41, BeauR-M41(S), and S2 subunit from M41, BeauR-M41(S2) was conducted. All chimeric viruses grew to similar titers in vitro, induced virus-specific partial protective immunity, evident by cellular infiltrations, reductions in viral RNA load in the trachea and conjunctiva and higher serum anti-IBV titers. Collectively, these findings show that vaccination with rIBVs primed the birds for challenge but the viruses were cleared rapidly from the mucosal tissues in the head. Chimeric S1 and S2 viruses did not protect as effectively as BeauR-M41(S) based on ciliary activity and clinical signs. Booster vaccinations and an rIBV with improved in vivo replication may improve the levels of protection.IMPORTANCE Infectious bronchitis virus causes an acute, highly contagious respiratory disease, responsible for significant economic losses to the poultry industry. Amino acid differences in the surface protein, spike (S), in particular the S1 subunit, have been associated with poor cross-protection. Available vaccines give poor cross-protection and rationally designed live attenuated vaccines, based on apathogenic BeauR, could address these. Here, to determine the role of S1 in protection, a series of homologous vaccination trials with rIBVs were conducted. Single vaccinations with chimeric rIBVs induced virus-specific partial protective immunity, characterized by reduction in viral load and serum antibody titers. However, BeauR-M41(S) was the only vaccination to improve the level of protection against clinical signs and the loss of tracheal ciliary activity. Growth characteristics show that all of the rIBVs replicated in vitro to similar levels. Booster vaccinations and an rIBV with improved in vivo replication may improve the levels of protection.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Poultry Diseases/immunology , Poultry Diseases/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Virus Replication , Animals , Antibodies, Viral/immunology , Chickens , Coronavirus Infections/virology , DNA, Recombinant , Infectious bronchitis virus/genetics , Infectious bronchitis virus/growth & development , Poultry Diseases/virology , Specific Pathogen-Free Organisms , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Load , Viral Vaccines/administration & dosage
20.
Vet Res ; 50(1): 92, 2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31706335

ABSTRACT

Despite the fact that vaccine resistance has been typically considered a rare phenomenon, some episodes of vaccine failure have been reported with increasing frequency in intensively-raised livestock. Infectious bronchitis virus (IBV) is a widespread avian coronavirus, whose control relies mainly on extensive vaccine administration. Unfortunately, the continuous emergence of new vaccine-immunity escaping variants prompts the development of new vaccines. In the present work, a molecular epidemiology study was performed to evaluate the potential role of homologous vaccination in driving IBV evolution. This was undertaken by assessing IBV viral RNA sequences from the ORF encoding the S1 portion of viral surface glycoprotein (S) before and after the introduction of a new live vaccine on broiler farms in northern-Italy. The results of several biostatistics analyses consistently demonstrate the presence of a higher pressure in the post-vaccination period. Natural selection was detected essentially on sites located on the protein surface, within or nearby domains involved in viral attachment or related functions. This evidence strongly supports the action of vaccine-induced immunity in conditioning viral evolution, potentially leading to the emergence of new vaccine-escape variants. The great plasticity of rapidly-evolving RNA-viruses in response to human intervention, which extends beyond the poultry industry, is demonstrated, claiming further attention due to their relevance for animal and especially human health.


Subject(s)
Biological Evolution , Chickens , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Poultry Diseases/prevention & control , Viral Vaccines/pharmacology , Animals , Coronavirus Infections/prevention & control , Italy , RNA, Viral/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Attenuated/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL