Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 492
Filter
Add more filters

Publication year range
1.
Immunity ; 44(6): 1251-2, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27332728

ABSTRACT

Effective pathogens are successful, by definition, because they can defeat our immune response. Pingen et al. (2016) in this issue of Immunity demonstrate that some mosquito-transmitted viruses depend upon a strong host immune response triggered by the innate immune response to the bite to promote dissemination through the body.


Subject(s)
Immunity, Innate , Insecta/immunology , Animals , Humans
2.
PLoS Biol ; 19(5): e3001182, 2021 05.
Article in English | MEDLINE | ID: mdl-33979323

ABSTRACT

Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin's broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate-the most widely used herbicide globally-inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate's mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation-reduction balance. Overall, these findings suggest that glyphosate's environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.


Subject(s)
Anopheles/drug effects , Glycine/analogs & derivatives , Melanins/metabolism , Moths/drug effects , Animals , Anopheles/immunology , Cryptococcus neoformans/pathogenicity , Diptera/drug effects , Diptera/immunology , Glycine/metabolism , Glycine/pharmacology , Immunity, Innate/drug effects , Immunity, Innate/immunology , Infections/immunology , Infections/metabolism , Infections/physiopathology , Insecta/drug effects , Insecta/immunology , Lepidoptera/drug effects , Lepidoptera/immunology , Moths/immunology , Plasmodium falciparum/pathogenicity , Virulence , Glyphosate
3.
Fish Shellfish Immunol ; 150: 109625, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740231

ABSTRACT

The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.


Subject(s)
Animal Feed , Diet , Fishes , Immunity, Mucosal , Animals , Fishes/immunology , Animal Feed/analysis , Diet/veterinary , Insecta/immunology
4.
Postepy Biochem ; 70(3): 382-399, 2024 09 30.
Article in Polish | MEDLINE | ID: mdl-39365575

ABSTRACT

Host-pathogen interactions play an important role in understanding the dynamics of the insect immune system. The analysis of environmental modulators, both biotic and abiotic, directs our attention to the impact of the surroundings on the effectiveness of immunological responses. This knowledge is essential for the comprehensive understanding of insect's immune reaction after infection with a pathogen. This article discusses the role of the immune system in insect, with a special emphasis on greater wax moth Galleria mellonella and highlights its adaptive capabilities. The processes are not only extremely interesting area of scientific research but also indicate potential practical applications in the context of plan protection, pest population control and medicine.


Subject(s)
Moths , Animals , Moths/immunology , Host-Pathogen Interactions/immunology , Adaptive Immunity/immunology , Insecta/immunology , Adaptation, Physiological/immunology
5.
Trends Immunol ; 41(3): 190-199, 2020 03.
Article in English | MEDLINE | ID: mdl-32035764

ABSTRACT

For decades, insect immunology has contributed groundbreaking discoveries on the intricacies of innate immunity. These discoveries have profoundly impacted our understanding of innate immunology in mammalian systems and improved human therapeutic interventions, from the composition of vaccines to cell-based immune therapies. Current knowledge of insect immunity mainly encompasses detailed molecular mechanisms and systemic responses to pathogen infection. However, the organs and specific cell populations involved in immune responses remain elusive. Here, we highlight the need for a better understanding of insect immune responses at the level of organs and cell populations. Not only will it improve our current understanding of tissue- or cell-specific immune processes across species, but it will also pave the way for spatial modeling of within-host infection dynamics.


Subject(s)
Immune System , Immunity, Innate , Insecta , Animals , Humans , Immune System/cytology , Immunity, Innate/immunology , Immunotherapy , Insecta/immunology , Vaccines
6.
Annu Rev Entomol ; 66: 61-79, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417818

ABSTRACT

As an overarching immune mechanism, RNA interference (RNAi) displays pathogen specificity and memory via different pathways. The small interfering RNA (siRNA) pathway is the primary antiviral defense mechanism against RNA viruses of insects and plays a lesser role in defense against DNA viruses. Reflecting the pivotal role of the siRNA pathway in virus selection, different virus families have independently evolved unique strategies to counter this host response, including protein-mediated, decoy RNA-based, and microRNA-based strategies. In this review, we outline the interplay between insect viruses and the different pathways of the RNAi antiviral response; describe practical application of these interactions for improved expression systems and for pest and disease management; and highlight research avenues for advancement of the field.


Subject(s)
Host-Pathogen Interactions , Insect Viruses/physiology , Insecta/virology , RNA Interference , Animals , Insecta/genetics , Insecta/immunology
7.
Immunology ; 164(3): 401-432, 2021 11.
Article in English | MEDLINE | ID: mdl-34233014

ABSTRACT

The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.


Subject(s)
Hemocytes/immunology , Hemolymph/immunology , Immunity, Cellular , Insecta/immunology , Animals , Blood Coagulation/immunology , Hemocytes/metabolism , Hemolymph/cytology , Host-Pathogen Interactions/immunology , Immunity, Humoral , Insecta/microbiology , Wound Healing/immunology
8.
Environ Microbiol ; 23(2): 1256-1274, 2021 02.
Article in English | MEDLINE | ID: mdl-33393158

ABSTRACT

Laccases are widely present in bacteria, fungi, plants and invertebrates and involved in a variety of physiological functions. Here, we report that Beauveria bassiana, an economic important entomopathogenic fungus, secretes a laccase 2 (BbLac2) during infection that detoxifies insect immune response-generated reactive oxygen species (ROS) and interferes with host immune phenoloxidase (PO) activation. BbLac2 is expressed in fungal cells during proliferation in the insect haemocoel and can be found to distribute on the surface of haemolymph-derived in vivo fungal hyphal bodies or be secreted. Targeted gene-knockout of BbLac2 increased fungal sensitivity to oxidative stress, decreased virulence to insect, and increased host PO activity. Strains overexpressing BbLac2 showed increased virulence, with reduced host PO activity and lowered ROS levels in infected insects. In vitro assays revealed that BbLac2 could eliminate ROS and oxidize PO substrates (phenols), verifying the enzymatic functioning of the protein in detoxification of cytotoxic ROS and interference with the PO cascade. Moreover, BbLac2 acted as a cell surface protein that masked pathogen associated molecular patterns (PAMPs), enabling the pathogen to evade immune recognition. Our data suggest a multifunctional role for fungal pathogen-secreted laccase 2 in evasion of insect immune defenses.


Subject(s)
Beauveria/enzymology , Beauveria/pathogenicity , Insecta/immunology , Laccase/immunology , Membrane Proteins/immunology , Animals , Hemolymph/metabolism , Hyphae/metabolism , Immune Evasion , Insecta/microbiology , Laccase/metabolism , Membrane Proteins/metabolism , Monophenol Monooxygenase/immunology , Reactive Oxygen Species/immunology , Virulence
9.
Int Arch Allergy Immunol ; 182(10): 904-916, 2021.
Article in English | MEDLINE | ID: mdl-33951642

ABSTRACT

The fifth class of immunoglobulin, immunoglobulin E (IgE) was discovered in 1967 and has had immense importance for the understanding, diagnosis, and treatment of allergic disease. More than 50 years have passed and efforts to characterize, standardize, and refine allergens with the aim to improve clinical diagnosis and allergen-specific immunotherapy are still ongoing. Another important breakthrough was made in 1999 with the introduction of component-resolved diagnostics (CRD), making it possible to quantify IgE antibodies against individual allergen proteins for diagnostic purposes at a molecular level. The progress and developments made in allergy diagnosis often originate from clinical observations and case studies. Observant physicians and health-care personnel have reported their findings in the medical literature, which in turn has inspired researchers to become involved in clinical research. Allergists continuously encounter new allergies and are often asked by their patients how to prevent new reactions. In the current article, we focus on recent clinical observations that can now be explained by CRD. The examples taken concern allergic reactions toward peanuts, tree nuts, lemon kernels, health drinks, meat, insects, dog dander, cannabis, and semen. We now have an improved understanding of why patients may react in a serious or unexpected way, as illustrated by these examples, yet many other clinical observations remain unexplained. The aim of this review is to highlight the importance of clinical observations among allergic patients, focusing on systemic, or unusual and unexpected allergic reactions, where component-testing has further refined the diagnosis of IgE-mediated allergy.


Subject(s)
Hypersensitivity/diagnosis , Animals , Cannabis/immunology , Diagnostic Tests, Routine , Humans , Insecta/immunology , Meat , Nuts/immunology , Pollen/immunology , Seeds/immunology , Glycine max/immunology
10.
Subcell Biochem ; 94: 123-161, 2020.
Article in English | MEDLINE | ID: mdl-32189298

ABSTRACT

Insects possess powerful immune systems that have evolved to defend against wounding and environmental pathogens such as bacteria, fungi, protozoans, and parasitoids. This surprising sophistication is accomplished through the activation of multiple immune pathways comprised of a large array of components, many of which have been identified and studied in detail using both genetic manipulations and traditional biochemical techniques. Recent advances indicate that certain pathways activate arrays of proteins that interact to form large functional complexes. Here we discuss three examples from multiple insects that exemplify such processes, including pathogen recognition, melanization, and coagulation. The functionality of each depends on integrating recognition with the recruitment of immune effectors capable of healing wounds and destroying pathogens. In both melanization and coagulation, protein interactions also appear to be essential for enzymatic activities tied to the formation of melanin and for the recruitment of hemocytes. The importance of these immune complexes is highlighted by the evolution of mechanisms in pathogens to disrupt their formation, an example of which is provided. While technically difficult to study, and not always readily amenable to dissection through genetics, modern mass spectrometry has become an indispensable tool in the study of these higher-order protein interactions. The formation of immune complexes should be viewed as an essential and emerging frontier in the study of insect immunity.


Subject(s)
Antigen-Antibody Complex/immunology , Hemolymph/immunology , Insecta/immunology , Animals , Hemocytes/immunology , Hemocytes/metabolism , Hemolymph/cytology , Insect Proteins/immunology , Insect Proteins/metabolism , Melanins/biosynthesis
11.
Subcell Biochem ; 94: 81-121, 2020.
Article in English | MEDLINE | ID: mdl-32189297

ABSTRACT

The composition of insect hemolymph can change depending on many factors, e.g. access to nutrients, stress conditions, and current needs of the insect. In this chapter, insect immune-related polypeptides, which can be permanently or occasionally present in the hemolymph, are described. Their division into peptides or low-molecular weight proteins is not always determined by the length or secondary structure of a given molecule but also depends on the mode of action in insect immunity and, therefore, it is rather arbitrary. Antimicrobial peptides (AMPs) with their role in immunity, modes of action, and classification are presented in the chapter, followed by a short description of some examples: cecropins, moricins, defensins, proline- and glycine-rich peptides. Further, we will describe selected immune-related proteins that may participate in immune recognition, may possess direct antimicrobial properties, or can be involved in the modulation of insect immunity by both abiotic and biotic factors. We briefly cover Fibrinogen-Related Proteins (FREPs), Down Syndrome Cell Adhesion Molecules (Dscam), Hemolin, Lipophorins, Lysozyme, Insect Metalloproteinase Inhibitor (IMPI), and Heat Shock Proteins. The reader will obtain a partial picture presenting molecules participating in one of the most efficient immune strategies found in the animal world, which allow insects to inhabit all ecological land niches in the world.


Subject(s)
Anti-Bacterial Agents/immunology , Anti-Bacterial Agents/metabolism , Insect Proteins/immunology , Insect Proteins/metabolism , Insecta/immunology , Peptides/immunology , Peptides/metabolism , Animals , Hemolymph/immunology , Hemolymph/metabolism , Insecta/microbiology
12.
J Invertebr Pathol ; 185: 107656, 2021 10.
Article in English | MEDLINE | ID: mdl-34464656

ABSTRACT

It may seem that the most important issues related to insect immunity have already been described. However, novel phenomena observed in recent years shed new light on the understanding of the immune response in insects.The adaptive abilities of insects helped them to populate all ecological land niches.One important adaptive ability of insects that facilitates their success is the plasticity of their immune system. Although they only have innate immune mechanisms, insects can increase their resistance after the first encounter with the pathogen. In recent years, this phenomenon,namedimmunepriming, has become a "hot topic" in immunobiology.Priming can occur within or across generations. In the first case, the resistance of a given individual can increase after surviving a previous infection. Transstadial immune priming occurs when infection takes place at one of the initial developmental stages and increased resistance is observed at the pupal or imago stages. Priming across generations (transgenerationalimmune priming, TGIP) relies on the increased resistance of the offspring when one or both parents are infected during their lifetime.Despite the attention that immune priming has received, basic questions remain to be answered, such as regulation of immune priming at the molecular level. Research indicates that pathogen recognition receptors (PRRs) can be involved in the priming phenomenon. Recent studies have highlighted the special role of microRNAs and epigenetics, which can influence expression of genes that can be transmitted through generations although they are not encoded in the nucleotide sequence. Considerable amounts of research are required to fully understand the mechanisms that regulate priming phenomena. The aim of our work is to analyse thoroughly the most important information on immune priming in insects and help raise pertinent questions such that a greater understanding of this phenomenon can be obtained in the future.


Subject(s)
Adaptive Immunity , Immunity, Innate , Insecta/immunology , Animals , Terminology as Topic
13.
Drug Chem Toxicol ; 44(1): 1-11, 2021 Jan.
Article in English | MEDLINE | ID: mdl-30760084

ABSTRACT

While nanoparticles (NPs) can be used as insecticides by themselves, they can also be carriers for insecticidal chemicals. Existing literature suggests that the smaller the NP size, the greater the toxicity and penetration into the insect's body. Nonetheless, there is a lack of literature pertaining to the mode of action within insects. This review article summarizes the currently available entomological studies on the mechanisms of NP-insect interactions. Externally, NPs affect pigmentation and integrity of the cuticle, while internally they induce immune responses and alter gene expression leading to altered protein, lipid, and carbohydrate metabolism along with cellular toxicity that impairs development and reproduction of the insect. Consequently, insects are incapacitated due to the disruption of the nutrient intake, production of reactive oxygen species and altered biochemical activity while some NPs can promote growth and development as well as diminish the effects of nontarget toxicity.


Subject(s)
Insecta/drug effects , Insecticides/pharmacology , Metal Nanoparticles , Animals , Insecta/growth & development , Insecta/immunology , Insecta/metabolism , Insecticides/metabolism , Nanotechnology
14.
Allergol Int ; 70(3): 303-312, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33903033

ABSTRACT

Airborne insect particles have been identified as an important cause of respiratory allergies, including allergic asthma and rhinitis. In the literature, the significance of respiratory exposure to insect particles as a cause of occupational allergy has been well-documented. Indeed, many cases of occupational allergy have been reported including allergy to the larvae of flies and moths in anglers and occupationally exposed workers, to grain pests in bakers or other workers handling grains, and to crickets and/or locusts in researchers and workers in aquaculture companies. Furthermore, the prevalence of sensitization to insect allergens is considerably high among patients with asthma and/or rhinitis who are not occupationally exposed to insects, suggesting the clinical relevance of exposure to insects in indoor and outdoor environmental non-occupational settings. Exposure to cockroaches, a well-studied indoor insect, is associated with cockroach sensitization and the development and exacerbation of asthma. Booklice, another common indoor insect, were recently identified as a significant sensitizer of asthmatic patients in Japan and India, and potentially of asthma patients living in warm and humid climates around the world. Lip b 1 was identified as an allergenic protein contributing to the species-specific sensitization to booklice. Moths are considered a significant seasonal outdoor allergen and their allergens are considered to have the highest sensitization rate among Japanese patients. However, other than cockroaches, allergenic insect proteins contributing to sensitization have not been fully characterized to date.


Subject(s)
Allergens/immunology , Insect Proteins/immunology , Insecta/immunology , Respiratory Hypersensitivity/immunology , Animals , Asthma/immunology , Chironomidae/immunology , Cockroaches/immunology , Humans , Moths/immunology , Occupational Diseases/immunology , Rhinitis, Allergic/immunology
15.
Curr Issues Mol Biol ; 34: 1-12, 2020.
Article in English | MEDLINE | ID: mdl-31167953

ABSTRACT

The insect virome is composed of a myriad of viruses. Both field populations and laboratory colonies of insects harbour diverse viruses, including viruses that infect the insect itself, viruses of microbes associated with the insect, and viruses associated with ingested materials. Metagenomics analysis for identification of virus-derived sequences has allowed for new appreciation of the extent and diversity of the insect virome. The complex interactions between insect viruses and host antiviral immune pathways (RNA interference and apoptosis), and between viruses and other members of the microbiome (e.g. Wolbachia) are becoming apparent. In this chapter, an overview of the diversity of viruses in insects and recent virus discovery research for specific insects and insect-derived cell lines is provided. The opportunities and challenges associated with the insect virome, including the potential impacts of viruses on both research and insect management programs are also addressed.


Subject(s)
Insect Viruses/classification , Insect Viruses/genetics , Insecta/virology , Animals , Biodiversity , Genome, Viral , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Insecta/genetics , Insecta/immunology , Invertebrates , Metagenomics , Microbiota
16.
Curr Issues Mol Biol ; 34: 83-112, 2020.
Article in English | MEDLINE | ID: mdl-31167957

ABSTRACT

Members of the family Dicistroviridae are small RNA viruses containing a monopartite positive-sense RNA genome. Dicistroviruses mainly infect arthropods, causing diseases that impact agriculture and the economy. In this chapter, we provide an overview of current and past research on dicistroviruses including the viral life cycle, viral translational control mechanisms, virus structure, and the use of dicistrovirus infection in Drosophila as a model to identify insect antiviral responses. We then delve into how research on dicistrovirus mechanisms has yielded insights into ribosome dynamics, RNA structure/function and insect innate immunity signaling. Finally, we highlight the diseases caused by dicistroviruses, their impacts on agriculture including the shrimp and honey bee industries, and the potential use of dicistroviruses as biopesticides. Although knowledge of the mechanisms underlying dicistrovirus virus-host interactions is limited, the establishment of the first infectious clone should accelerate the discovery of new mechanistic insights into dicistrovirus infections and pathogenesis.


Subject(s)
Dicistroviridae/physiology , Host-Pathogen Interactions , Insecta/virology , Animal Diseases , Animals , Dicistroviridae/classification , Dicistroviridae/ultrastructure , Gene Expression Regulation, Viral , Genome, Viral , Genomics/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Insect Control , Insect Viruses/physiology , Insecta/genetics , Insecta/immunology , Insecta/metabolism , Phylogeny , RNA Viruses/physiology , Virion , Virus Replication
17.
J Virol ; 93(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30651366

ABSTRACT

The development of a prophylactic vaccine for hepatitis C virus (HCV) remains a global health challenge. Cumulative evidence supports the importance of antibodies targeting the HCV E2 envelope glycoprotein to facilitate viral clearance. However, a significant challenge for a B cell-based vaccine is focusing the immune response on conserved E2 epitopes capable of eliciting neutralizing antibodies not associated with viral escape. We hypothesized that glycosylation might influence the antigenicity and immunogenicity of E2. Accordingly, we performed head-to-head molecular, antigenic, and immunogenic comparisons of soluble E2 (sE2) produced in (i) mammalian (HEK293) cells, which confer mostly complex- and high-mannose-type glycans; and (ii) insect (Sf9) cells, which impart mainly paucimannose-type glycans. Mass spectrometry demonstrated that all 11 predicted N-glycosylation sites were utilized in both HEK293- and Sf9-derived sE2, but that N-glycans in insect sE2 were on average smaller and less complex. Both proteins bound CD81 and were recognized by conformation-dependent antibodies. Mouse immunogenicity studies revealed that similar polyclonal antibody responses were generated against antigenic domains A to E of E2. Although neutralizing antibody titers showed that Sf9-derived sE2 induced moderately stronger responses than did HEK293-derived sE2 against the homologous HCV H77c isolate, the two proteins elicited comparable neutralization titers against heterologous isolates. Given that global alteration of HCV E2 glycosylation by expression in different hosts did not appreciably affect antigenicity or overall immunogenicity, a more productive approach to increasing the antibody response to neutralizing epitopes may be complete deletion, rather than just modification, of specific N-glycans proximal to these epitopes.IMPORTANCE The development of a vaccine for hepatitis C virus (HCV) remains a global health challenge. A major challenge for vaccine development is focusing the immune response on conserved regions of the HCV envelope protein, E2, capable of eliciting neutralizing antibodies. Modification of E2 by glycosylation might influence the immunogenicity of E2. Accordingly, we performed molecular and immunogenic comparisons of E2 produced in mammalian and insect cells. Mass spectrometry demonstrated that the predicted glycosylation sites were utilized in both mammalian and insect cell E2, although the glycan types in insect cell E2 were smaller and less complex. Mouse immunogenicity studies revealed similar polyclonal antibody responses. However, insect cell E2 induced stronger neutralizing antibody responses against the homologous isolate used in the vaccine, albeit the two proteins elicited comparable neutralization titers against heterologous isolates. A more productive approach for vaccine development may be complete deletion of specific glycans in the E2 protein.


Subject(s)
Antibody Formation/immunology , Hepacivirus/immunology , Insecta/immunology , Mammals/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Cell Line , Epitopes/immunology , Female , Glycosylation , HEK293 Cells , Hepatitis C/immunology , Hepatitis C/virology , Hepatitis C Antibodies/immunology , Humans , Insecta/virology , Mammals/virology , Mice , Polysaccharides/immunology , Sf9 Cells
18.
BMC Microbiol ; 20(1): 359, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33228536

ABSTRACT

BACKGROUND: Xenorhabdus and Photorhabdus are entomopathogenic bacteria that cause septicemia and toxemia in insects. They produce secondary metabolites to induce host immunosuppression. Their metabolite compositions vary among bacterial species. Little is known about the relationship between metabolite compositions and the bacterial pathogenicity. The objective of this study was to compare pathogenicity and production of secondary metabolites of 14 bacterial isolates (species or strains) of Xenorhabdus and Photorhabdus. RESULTS: All bacterial isolates exhibited insecticidal activities after hemocoelic injection to Spodoptera exigua (a lepidopteran insect) larvae, with median lethal doses ranging from 168.8 to 641.3 CFU per larva. Bacterial infection also led to immunosuppression by inhibiting eicosanoid biosynthesis. Bacterial culture broth was fractionated into four different organic extracts. All four organic extracts of each bacterial species exhibited insecticidal activities and resulted in immunosuppression. These organic extracts were subjected to GC-MS analysis which predicted 182 compounds, showing differential compositions for 14 bacteria isolates. There were positive correlations between total number of secondary metabolites produced by each bacterial culture broth and its bacterial pathogenicity based on immunosuppression and insecticidal activity. From these correlation results, 70 virulent compounds were selected from secondary metabolites of high virulent bacterial isolates by deducting those of low virulent bacterial isolates. These selected virulent compounds exhibited significant immunosuppressive activities by inhibiting eicosanoid biosynthesis. They also exhibited relatively high insecticidal activities. CONCLUSION: Virulence variation between Xenorhabdus and Photorhabdus is determined by their different compositions of secondary metabolites, of which PLA2 inhibitors play a crucial role.


Subject(s)
Insecta/immunology , Phospholipase A2 Inhibitors/metabolism , Photorhabdus/metabolism , Photorhabdus/pathogenicity , Xenorhabdus/metabolism , Xenorhabdus/pathogenicity , Animals , Eicosanoids/biosynthesis , Immune Tolerance/drug effects , Insect Proteins/metabolism , Insecta/drug effects , Insecta/metabolism , Insecta/microbiology , Insecticides/metabolism , Insecticides/pharmacology , Larva/drug effects , Larva/immunology , Larva/metabolism , Larva/microbiology , Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2/metabolism , Photorhabdus/isolation & purification , Secondary Metabolism , Spodoptera/drug effects , Spodoptera/immunology , Spodoptera/metabolism , Spodoptera/microbiology , Virulence , Xenorhabdus/isolation & purification
19.
Int Arch Allergy Immunol ; 181(2): 111-118, 2020.
Article in English | MEDLINE | ID: mdl-31794966

ABSTRACT

BACKGROUND: Venom immunotherapy (VIT) is an established and effective treatment for patients with Hymenoptera venom allergies. Especially during the build-up of VIT, systemic allergic reactions are a key issue. OBJECTIVE: To investigate the safety and effectiveness of a 3-day rush insect VIT protocol and a strategy for the management of individuals with VIT-induced anaphylaxis. METHODS: In this retrospective monocentric study, 11-year data regarding build-up cycles of VIT were retrieved from institutional records. The following parameters of VIT-induced anaphylaxis were analyzed: frequency, severity, time of occurrence within the build-up cycle, and impact on the success of VIT. The effectiveness of VIT was assessed by the results of sting challenges (SCs) by the culprit insect. RESULTS: In total, 1,317 initial build-up cycles of VIT were evaluated in this study, and the frequency of VIT-induced anaphylaxis was 6.6%. Anaphylaxis occurred most frequently when the daily cumulative venom dose was ≥100 µg. A group (n = 65) of patients with VIT-induced anaphylaxis in this dose range temporarily received a reduced maintenance dose, and without additional co-medications or complications, the target dose was reached after a second build-up in 91% of the cycles. After completing the VIT build-up, SCs were performed in 76.9% of the cohort, and the effectiveness of VIT was confirmed by 98.5% of the tests. CONCLUSIONS: In this study, we report a 3-day VIT rush protocol with a reasonable rate of VIT-induced anaphylaxis and excellent effectiveness of VIT.


Subject(s)
Arthropod Venoms/adverse effects , Arthropod Venoms/immunology , Immunotherapy/adverse effects , Insect Bites and Stings/immunology , Insecta/immunology , Adult , Aged , Aged, 80 and over , Allergens/immunology , Anaphylaxis/immunology , Animals , Desensitization, Immunologic/methods , Female , Humans , Immunologic Factors/immunology , Male , Middle Aged , Retrospective Studies , Treatment Outcome
20.
SELECTION OF CITATIONS
SEARCH DETAIL