Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Publication year range
1.
Phys Chem Chem Phys ; 26(38): 24963-24974, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39297222

ABSTRACT

The utility of knotted proteins in biological activities has been ambiguous since their discovery. From their evolutionary significance to their functionality in stabilizing the native protein structure, a unilateral conclusion hasn't been achieved yet. While most studies have been performed to understand the stabilizing effect of the knotted fold on the protein chain, more ideas are yet to emerge regarding the interactions in stabilizing the knot. Using classical molecular dynamics (MD) simulations, we have explored the dynamics of the figure-of-eight knotted domain present in ketol acid reductoisomerase (KARI). Our main focus was on the presence of a salt bridge network evident within the knotted region and its role in shaping the conformational dynamics of the knotted chain. Through the potential of mean forces (PMFs) calculation, we have also marked the specific salt bridges that are pivotal in stabilizing the knotted structure. The correlated motions have been further monitored with the help of principal component analysis (PCA) and dynamic cross-correlation maps (DCCM). Furthermore, mutation of the specific salt bridges led to a change in their conformational stability, vindicating their importance.


Subject(s)
Ketol-Acid Reductoisomerase , Molecular Dynamics Simulation , Ketol-Acid Reductoisomerase/chemistry , Ketol-Acid Reductoisomerase/metabolism , Protein Conformation , Salts/chemistry , Principal Component Analysis
2.
Microbiology (Reading) ; 167(9)2021 09.
Article in English | MEDLINE | ID: mdl-34515631

ABSTRACT

Branched-chain amino acids (BCAAs) are essential amino acids, but their biosynthetic pathway is absent in mammals. Ketol-acid reductoisomerase (IlvC) is a BCAA biosynthetic enzyme that is coded by Rv3001c in Mycobacterium tuberculosis H37Rv (Mtb-Rv) and MRA_3031 in M. tuberculosis H37Ra (Mtb-Ra). IlvCs are essential in Mtb-Rv as well as in Escherichia coli. Compared to wild-type and IlvC-complemented Mtb-Ra strains, IlvC knockdown strain showed reduced survival at low pH and under low pH+starvation stress conditions. Further, increased expression of IlvC was observed under low pH and starvation stress conditions. Confirmation of a role for IlvC in pH and starvation stress was achieved by developing E. coli BL21(DE3) IlvC knockout, which was defective for growth in M9 minimal medium, but growth could be rescued by isoleucine and valine supplementation. Growth was also restored by complementing with over-expressing constructs of Mtb-Ra and E. coli IlvCs. The E. coli knockout also had a survival deficit at pH=5.5 and 4.5 and was more susceptible to killing at pH=3.0. The biochemical characterization of Mtb-Ra and E. coli IlvCs confirmed that both have NADPH-dependent activity. In conclusion, this study demonstrates the functional complementation of E. coli IlvC by Mtb-Ra IlvC and also suggests that IlvC has a role in tolerance to low pH and starvation stress.


Subject(s)
Ketol-Acid Reductoisomerase , Mycobacterium tuberculosis , Amino Acids, Branched-Chain , Animals , Escherichia coli/genetics , Isoleucine , Mycobacterium tuberculosis/genetics
3.
Chemistry ; 27(9): 3130-3141, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33215746

ABSTRACT

New drugs aimed at novel targets are urgently needed to combat the increasing rate of drug-resistant tuberculosis (TB). Herein, the National Cancer Institute Developmental Therapeutic Program (NCI-DTP) chemical library was screened against a promising new target, ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway. From this library, 6-hydroxy-2-methylthiazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (NSC116565) was identified as a potent time-dependent inhibitor of Mycobacterium tuberculosis (Mt) KARI with a Ki of 95.4 nm. Isothermal titration calorimetry studies showed that this inhibitor bound to MtKARI in the presence and absence of the cofactor, nicotinamide adenine dinucleotide phosphate (NADPH), which was confirmed by crystal structures of the compound in complex with closely related Staphylococcus aureus KARI. It is also shown that NSC116565 inhibits the growth of H37Ra and H37Rv strains of Mt with MIC50 values of 2.93 and 6.06 µm, respectively. These results further validate KARI as a TB drug target and show that NSC116565 is a promising lead for anti-TB drug development.


Subject(s)
Antitubercular Agents/pharmacology , Ketol-Acid Reductoisomerase/antagonists & inhibitors , Mycobacterium tuberculosis/enzymology , Pyrimidinones/pharmacology , Cell Line , Humans , Ketol-Acid Reductoisomerase/metabolism , Mycobacterium tuberculosis/drug effects , NADP/metabolism , Staphylococcus aureus/enzymology , Tuberculosis/drug therapy , Tuberculosis/microbiology
4.
Chembiochem ; 21(3): 381-391, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31309701

ABSTRACT

Binuclear Mg ketol-acid reductoisomerase (KARI), which converts (S)-2-acetolactate into (R)-2,3-dihydroxyisovalerate, is responsible for the second step of the biosynthesis of branched-chain amino acids in plants and microorganisms and thus serves as a key inhibition target potentially without effects on mammals. Here, through the use of density functional calculations and a chemical model, the KARI-catalyzed reaction has been demonstrated to include the initial deprotonation of the substrate C2 hydroxy group, bridged by the two Mg ions, alkyl migration from the C2-alkoxide carbon atom to the C3-carbonyl carbon atom, and hydride transfer from a nicotinamide adenine dinucleotide phosphate [NAD(P)H] cofactor to C2. A dead-end mechanism with a hydride transferred to the C3 carbonyl group has been ruled out. The nucleophilicity (migratory aptitude) of the migrating carbon atom and the provision of additional negative charge to the di-Mg coordination sphere have significant effects on the steps of alkyl migration and hydride transfer, respectively. Other important mechanistic characteristics are also revealed. Inspired by the mechanism, an inhibitor (2-carboxylate-lactic acid) was designed and predicted by barrier analysis to be effective in inactivating KARI, hence probably enriching the antifungal and antibacterial library. Two types of slow substrate analogues (2-trihalomethyl acetolactic acids and 2-glutaryl lactic acid) were also found.


Subject(s)
Amino Acids, Branched-Chain/antagonists & inhibitors , Carboxylic Acids/pharmacology , Enzyme Inhibitors/pharmacology , Ketol-Acid Reductoisomerase/antagonists & inhibitors , Lactic Acid/pharmacology , Magnesium/metabolism , Amino Acids, Branched-Chain/biosynthesis , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Crystallography, X-Ray , Density Functional Theory , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ketol-Acid Reductoisomerase/chemistry , Ketol-Acid Reductoisomerase/metabolism , Lactic Acid/chemical synthesis , Lactic Acid/chemistry , Magnesium/chemistry , Models, Molecular , Molecular Structure
5.
Chemistry ; 26(41): 8958-8968, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32198779

ABSTRACT

Ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid biosynthesis pathway, is a potential drug target for bacterial infections including Mycobacterium tuberculosis. Here, we have screened the Medicines for Malaria Venture Pathogen Box against purified M. tuberculosis (Mt) KARI and identified two compounds that have Ki values below 200 nm. In Mt cell susceptibility assays one of these compounds exhibited an IC50 value of 0.8 µm. Co-crystallization of this compound, 3-((methylsulfonyl)methyl)-2H-benzo[b][1,4]oxazin-2-one (MMV553002), in complex with Staphylococcus aureus KARI, which has 56 % identity with Mt KARI, NADPH and Mg2+ yielded a structure to 1.72 Šresolution. However, only a hydrolyzed product of the inhibitor (i.e. 3-(methylsulfonyl)-2-oxopropanic acid, missing the 2-aminophenol attachment) is observed in the active site. Surprisingly, Mt cell susceptibility assays showed that the 2-aminophenol product is largely responsible for the anti-TB activity of the parent compound. Thus, 3-(methylsulfonyl)-2-oxopropanic acid was identified as a potent KARI inhibitor that could be further explored as a potential biocidal agent and we have shown 2-aminophenol, as an anti-TB drug lead, especially given it has low toxicity against human cells. The study highlights that careful analysis of broad screening assays is required to correctly interpret cell-based activity data.


Subject(s)
Ketol-Acid Reductoisomerase/metabolism , Magnesium/chemistry , Mycobacterium tuberculosis/enzymology , NADP/chemistry , Staphylococcus aureus/metabolism , Catalytic Domain , Crystallization , Crystallography, X-Ray , Humans , Ketol-Acid Reductoisomerase/chemistry , Mycobacterium tuberculosis/chemistry , NADP/metabolism , Staphylococcus aureus/chemistry
6.
Arch Biochem Biophys ; 692: 108516, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32745463

ABSTRACT

Ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway, is an emerging target for the discovery of biocides. Here, we demonstrate that cyclopropane-1,1-dicarboxylate (CPD) inhibits KARIs from the pathogens Mycobacterium tuberculosis (Mt) and Campylobacter jejuni (Cj) reversibly with Ki values of 3.03 µM and 0.59 µM, respectively. Another reversible inhibitor of both KARIs, Hoe 704, is more potent than CPD with Ki values of 300 nM and 110 nM for MtKARI and CjKARI, respectively. The most potent inhibitor tested here is N-hydroxy-N-isopropyloxamate (IpOHA). It has a Ki of ~26 nM for MtKARI, but binds rather slowly (kon ~900 M-1s-1). In contrast, IpOHA binds more rapidly (kon ~7000 M-1s-1) to CjKARI and irreversibly.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Campylobacter jejuni/enzymology , Enzyme Inhibitors/chemistry , Ketol-Acid Reductoisomerase/antagonists & inhibitors , Mycobacterium tuberculosis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Campylobacter jejuni/chemistry , Cyclopropanes/chemistry , Dicarboxylic Acids/chemistry , Hydroxamic Acids/chemistry , Ketol-Acid Reductoisomerase/chemistry , Ketol-Acid Reductoisomerase/metabolism , Mycobacterium tuberculosis/chemistry , Organophosphorus Compounds/chemistry
7.
J Am Chem Soc ; 141(9): 4108-4118, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30761897

ABSTRACT

Despite tremendous progress in understanding and engineering enzymes, knowledge of how enzyme structures and their dynamics induce observed catalytic properties is incomplete, and capabilities to engineer enzymes fall far short of industrial needs. Here, we investigate the structural and dynamic drivers of enzyme catalysis for the rate-limiting step of the industrially important enzyme ketol-acid reductoisomerase (KARI) and identify a region of the conformational space of the bound enzyme-substrate complex that, when populated, leads to large increases in reactivity. We apply computational statistical mechanical methods that implement transition interface sampling to simulate the kinetics of the reaction and combine this with machine learning techniques from artificial intelligence to select features relevant to reactivity and to build predictive models for reactive trajectories. We find that conformational descriptors alone, without the need for dynamic ones, are sufficient to predict reactivity with greater than 85% accuracy (90% AUC). Key descriptors distinguishing reactive from almost-reactive trajectories quantify substrate conformation, substrate bond polarization, and metal coordination geometry and suggest their role in promoting substrate reactivity. Moreover, trajectories constrained to visit a region of the reactant well, separated from the rest by a simple hyperplane defined by ten conformational parameters, show increases in computed reactivity by many orders of magnitude. This study provides evidence for the existence of reactivity promoting regions within the conformational space of the enzyme-substrate complex and develops methodology for identifying and validating these particularly reactive regions of phase space. We suggest that identification of reactivity promoting regions and re-engineering enzymes to preferentially populate them may lead to significant rate enhancements.


Subject(s)
Ketol-Acid Reductoisomerase/metabolism , Machine Learning , Molecular Dynamics Simulation , Biocatalysis , Ketol-Acid Reductoisomerase/chemistry , Monte Carlo Method , Protein Conformation , Substrate Specificity
8.
J Am Chem Soc ; 141(51): 19983-19987, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31829582

ABSTRACT

Protein functions are temperature-dependent, but protein structures are usually solved at a single (often low) temperature because of limitations on the conditions of crystal growth or protein vitrification. Here we demonstrate the feasibility of solving cryo-EM structures of proteins vitrified at high temperatures, solve 12 structures of an archaeal ketol-acid reductoisomerase (KARI) vitrified at 4-70 °C, and show that structures of both the Mg2+ form (KARI:2Mg2+) and its ternary complex (KARI:2Mg2+:NADH:inhibitor) are temperature-dependent in correlation with the temperature dependence of enzyme activity. Furthermore, structural analyses led to dissection of the induced-fit mechanism into ligand-induced and temperature-induced effects and to capture of temperature-resolved intermediates of the temperature-induced conformational change. The results also suggest that it is preferable to solve cryo-EM structures of protein complexes at functional temperatures. These studies should greatly expand the landscapes of protein structure-function relationships and enhance the mechanistic analysis of enzymatic functions.


Subject(s)
Ketol-Acid Reductoisomerase/metabolism , Temperature , Cryoelectron Microscopy , Crystallography, X-Ray , Ketol-Acid Reductoisomerase/chemistry , Models, Molecular , Molecular Conformation , Sulfolobus solfataricus/enzymology
9.
J Am Chem Soc ; 141(15): 6136-6140, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30921515

ABSTRACT

While cryo-EM is revolutionizing structural biology, its impact on enzymology is yet to be fully demonstrated. The ketol-acid reductoisomerase (KARI) catalyzes conversion of (2 S)-acetolactate or (2 S)-aceto-2-hydroxybutyrate to 2,3-dihydroxy-3-alkylbutyrate. We found that KARI from archaea Sulfolobus solfataricus (Sso-KARI) is unusual in being a dodecamer, bispecific to NADH and NADPH, and losing activity above pH 7.8. While crystals were obtainable only at pH 8.5, cryo-EM structures were solved at pH 7.5 and 8.5 for Sso-KARI:2Mg2+. The results showed that the distances of the two catalytic Mg2+ ions are lengthened in both structures at pH 8.5. We next solved cryo-EM structures of two Sso-KARI complexes, with NADH+inhibitor and NADPH+inhibitor at pH 7.5, which indicate that the bispecificity can be attributed to a unique asparagine at the cofactor binding loop. Unexpectedly, Sso-KARI also differs from other KARI enzymes in lacking "induced-fit", reflecting structural rigidity. Thus, cryo-EM is powerful for structural and mechanistic enzymology.


Subject(s)
Alcohols/metabolism , Archaea/enzymology , Ketol-Acid Reductoisomerase/chemistry , Ketones/metabolism , Alcohols/chemistry , Crystallography, X-Ray , Hydrogen-Ion Concentration , Ketol-Acid Reductoisomerase/metabolism , Ketones/chemistry , Models, Molecular , Molecular Conformation
10.
J Comput Aided Mol Des ; 33(3): 357-366, 2019 03.
Article in English | MEDLINE | ID: mdl-30666485

ABSTRACT

Tuberculosis (TB) remains a major threat to human health. This due to the fact that current drug treatments are less than optimal and the increasing occurrence of multi drug-resistant strains of etiological agent, Mycobacterium tuberculosis (Mt). Given the wide-spread significance of this disease, we have undertaken a design and evaluation program to discover new anti-TB drug leads. Here, we focused on ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid biosynthesis pathway. Importantly, this enzyme is present in bacteria but not in humans, making it an attractive proposition for drug discovery. In the present work, we used molecular docking to identify seventeen potential inhibitors of KARI using an in-house database. Compounds were selected based on docking scores, which were assigned as the result of favourable interactions between the compound and the active site of KARI. The inhibitory constant values for two leads, compounds 14 and 16 are 3.71 and 3.06 µM respectively. To assess the mode of binding, 100 ns molecular dynamics simulations for these two compounds in association with Mt KARI were performed and showed that the complex was stable with an average root mean square deviation of less than 3.5 Å for all atoms. Furthermore, compound 16 showed a minimum inhibitory concentration of 2.06 ± 0.91 µM and a 1.9 fold logarithmic reduction in the growth of Mt in an infected macrophage model. The two compounds exhibited low toxicity against RAW 264.7 cell lines. Thus, both compounds are promising candidates for development as an anti-TB drug leads.


Subject(s)
Antitubercular Agents/chemistry , Enzyme Inhibitors/chemistry , Ketol-Acid Reductoisomerase/antagonists & inhibitors , Molecular Docking Simulation/methods , Mycobacterium tuberculosis/enzymology , Animals , Antitubercular Agents/pharmacology , Catalytic Domain , Cell Survival , Computer Simulation , Databases, Chemical , Enzyme Inhibitors/pharmacology , Kinetics , Mice , Mycobacterium tuberculosis/drug effects , Protein Binding , RAW 264.7 Cells , Structure-Activity Relationship
11.
Int J Mol Sci ; 20(8)2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31022947

ABSTRACT

The production of l-leucine was improved by the disruption of ltbR encoding transcriptional regulator and overexpression of the key genes (leuAilvBNCE) of the l-leucine biosynthesis pathway in Corynebacterium glutamicum XQ-9. In order to improve l-leucine production, we rationally engineered C. glutamicum to enhance l-leucine production, by improving the redox flux. On the basis of this, we manipulated the redox state of the cells by mutating the coenzyme-binding domains of acetohydroxyacid isomeroreductase encoded by ilvC, inserting NAD-specific leucine dehydrogenase, encoded by leuDH from Lysinibacillus sphaericus, and glutamate dehydrogenase encoded by rocG from Bacillus subtilis, instead of endogenous branched-chain amino acid transaminase and glutamate dehydrogenase, respectively. The yield of l-leucine reached 22.62 ± 0.17 g·L-1 by strain ΔLtbR-acetohydroxyacid isomeroreductase (AHAIR)M/ABNCME, and the concentrations of the by-products (l-valine and l-alanine) increased, compared to the strain ΔLtbR/ABNCE. Strain ΔLtbR-AHAIRMLeuDH/ABNCMLDH accumulated 22.87±0.31 g·L-1 l-leucine, but showed a drastically low l-valine accumulation (from 8.06 ± 0.35 g·L-1 to 2.72 ± 0.11 g·L-1), in comparison to strain ΔLtbR-AHAIRM/ABNCME, which indicated that LeuDH has much specificity for l-leucine synthesis but not for l-valine synthesis. Subsequently, the resultant strain ΔLtbR-AHAIRMLeuDHRocG/ABNCMLDH accumulated 23.31 ± 0.24 g·L-1 l-leucine with a glucose conversion efficiency of 0.191 g·g-1.


Subject(s)
Biosynthetic Pathways , Corynebacterium glutamicum/genetics , Leucine/genetics , Metabolic Engineering/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Corynebacterium glutamicum/metabolism , Glutamate Dehydrogenase (NADP+)/genetics , Glutamate Dehydrogenase (NADP+)/metabolism , Ketol-Acid Reductoisomerase/genetics , Ketol-Acid Reductoisomerase/metabolism , Leucine/metabolism , Leucine Dehydrogenase/genetics , Leucine Dehydrogenase/metabolism , Oxidation-Reduction
12.
Biochim Biophys Acta ; 1864(11): 1570-8, 2016 11.
Article in English | MEDLINE | ID: mdl-27544640

ABSTRACT

Salt stress is one of the key abiotic stresses threatening future agricultural production and natural ecosystems. This study investigates the salt stress response of two rice seedlings, which were screened from 28 Kenya rice cultivars. A proteomic analysis was carried out and Mapman bin codes employed in protein function categorization. Proteins in the redox, stress, and signaling categories were identified, and whose expression differed between the salt tolerant and the salt sensitive samples employed in the present study. 104 and 102 root proteins were observed as significantly altered during salt stress in the tolerant and sensitive samples, respectively and 13 proteins were commonly expressed. Among the 13 proteins, ketol-acid reductoisomerase protein was upregulated in both 1 and 3days of salt treatment in the tolerant sample, while it was down-regulated in both 1 and 3days of salt treatment in the sensitive sample. Actin-7, tubulin alpha, V-type proton ATPase, SOD (Cu-Zn), SOD (Mn), and pyruvate decarboxylase were among the observed salt-induced proteins. In general, this study improves our understanding about salt stress response mechanisms in rice.


Subject(s)
Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/genetics , Plant Roots/genetics , Proteome/genetics , Salt Tolerance/genetics , Actins/genetics , Actins/metabolism , Ketol-Acid Reductoisomerase/genetics , Ketol-Acid Reductoisomerase/metabolism , Oryza/drug effects , Oryza/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Proteome/metabolism , Proteomics , Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism , Salinity , Seedlings/drug effects , Seedlings/genetics , Seedlings/metabolism , Sodium Chloride/pharmacology , Stress, Physiological , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Tubulin/genetics , Tubulin/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
13.
Chemistry ; 23(72): 18289-18295, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-28975665

ABSTRACT

Ketol-acid reductoisomerase (KARI) is an NAD(P)H and Mg2+ -dependent enzyme of the branched-chain amino acid (BCAA) biosynthesis pathway. Here, the first crystal structures of Staphylococcus aureus (Sa) KARI in complex with two transition state analogues, cyclopropane-1,1-dicarboxylate (CPD) and N-isopropyloxalyl hydroxamate (IpOHA) are reported. These compounds bind competitively and in multi-dentate manner to KARI with Ki values of 2.73 µm and 7.9 nm, respectively; however, IpOHA binds slowly to the enzyme. Interestingly, intact IpOHA is present in only ≈25 % of binding sites, whereas its deoxygenated form is present in the remaining sites. This deoxy form of IpOHA binds rapidly to Sa KARI, but with much weaker affinity (Ki =21 µm). Thus, our data pinpoint the origin of the slow binding mechanism of IpOHA. Furthermore, we propose that CPD mimics the early stage of the catalytic reaction (preceding the reduction step), whereas IpOHA mimics the late stage (after the reduction took place). These structural insights will guide strategies to design potent and rapidly binding derivatives of these compounds for the development of novel biocides.


Subject(s)
Bacterial Proteins/chemistry , Cyclopropanes/chemistry , Dicarboxylic Acids/chemistry , Hydroxamic Acids/chemistry , Ketol-Acid Reductoisomerase/chemistry , Staphylococcus aureus/enzymology , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallization , Crystallography, X-Ray/methods , Ketol-Acid Reductoisomerase/metabolism , Models, Molecular , NAD/chemistry , Oxidation-Reduction , Protein Binding , Protein Conformation , Structure-Activity Relationship , Thermodynamics
14.
Bioorg Med Chem Lett ; 27(24): 5457-5462, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29132751

ABSTRACT

A series of new 3-substitutedphenyl-4-substitutedbenzylideneamino-1,2,4-triazole Mannich bases and bis-Mannich bases were synthesized through Mannich reaction with high yields. Their structures were confirmed by means of IR, 1H NMR, 13C NMR and elemental analysis. The preliminary bioassay indicated that compounds 7g, 7h and 7l exhibited potent in vitro inhibitory activities against ketol-acid reductoisomerase (KARI) with Ki value of (0.38 ±â€¯0.25), (6.59 ±â€¯2.75) and (8.46 ±â€¯3.99) µmol/L, respectively, and were comparable with IpOHA. They could be new KARI inhibitors for follow-up research. Some of the title compounds also exhibited obvious herbicidal activities against Echinochloa crusgalli and remarkable in vitro fungicidal activities against Physalospora piricola and Rhizoctonia cerealis. The SAR of the compounds were analyzed, in which the molecular docking revealed the binding mode of 7g with the KARI, and the 3D-QSAR results provided useful information for guiding further optimization of this kind of structures to discover new fungicidal agents towards Rhizoctonia cerealis.


Subject(s)
Antifungal Agents/chemical synthesis , Herbicides/chemical synthesis , Ketol-Acid Reductoisomerase/antagonists & inhibitors , Mannich Bases/chemistry , Triazoles/chemistry , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Binding Sites , Echinochloa/drug effects , Echinochloa/enzymology , Fungi/drug effects , Fungi/enzymology , Herbicides/chemistry , Herbicides/pharmacology , Ketol-Acid Reductoisomerase/metabolism , Kinetics , Molecular Docking Simulation , Protein Structure, Tertiary , Quantitative Structure-Activity Relationship
15.
Chemistry ; 22(22): 7427-36, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27136273

ABSTRACT

Ketol-acid reductoisomerase (KARI) is a Mg(2+) -dependent enzyme in the branched-chain amino acid biosynthesis pathway. It catalyses a complex two-part reaction: an alkyl migration followed by a NADPH-dependent reduction. Both reactions occur within the one active site, but in particular, the mechanism of the isomerisation step is poorly understood. Here, using a combination of kinetic, thermodynamic and spectroscopic techniques, the reaction mechanisms of both Escherichia coli and rice KARI have been investigated. We propose a conserved mechanism of catalysis, whereby a hydroxide, bridging the two Mg(2+) ions in the active site, initiates the reaction by abstracting a proton from the C2 alcohol group of the substrate. While the µ-hydroxide-bridged dimetallic centre is pre-assembled in the bacterial enzyme, in plant KARI substrate binding leads to a reduction of the metal-metal distance with the concomitant formation of a hydroxide bridge. Only Mg(2+) is capable of promoting the isomerisation reaction, likely to be due to non-competent substrate binding in the presence of other metal ions.


Subject(s)
Ketol-Acid Reductoisomerase/metabolism , Catalysis , Catalytic Domain , Escherichia coli/metabolism , Ions/chemistry , Magnesium/chemistry , NADP/metabolism
16.
Bioorg Med Chem Lett ; 26(19): 4661-4665, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27575481

ABSTRACT

A series of novel 5-substituted-1,3,4-oxadiazole Mannich bases and bis-Mannich bases have been conveniently synthesized in good yields. Their structures were characterized by IR, (1)H NMR, (13)C NMR and elemental analysis. The preliminary bioassay results indicated that some of the compounds showed promising in vitro fungicidal activities towards several test plant fungi; some of them exhibited significant herbicidal activities against Brassica campestris and excellent in vitro inhibitory activities against rice ketol-acid reductoisomerase (KARI). Among 14 novel compounds, 8c, 8d and 8m showed potent KARI inhibitory activities with Ki value of (0.96±0.42), (3.86±0.49) and (3.10±0.71) µmol/L, respectively, and were comparable with IpOHA. These compounds could be novel KARI inhibitors for further investigation. The density functional theory (DFT) calculations and molecular docking were carried out to study the structure-activity relationship (SAR) of the active inhibitors in this Letter.


Subject(s)
Enzyme Inhibitors/pharmacology , Ketol-Acid Reductoisomerase/antagonists & inhibitors , Mannich Bases/chemical synthesis , Mannich Bases/pharmacology , Oxadiazoles/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Mannich Bases/chemistry , Molecular Structure , Proton Magnetic Resonance Spectroscopy , Spectrophotometry, Infrared , Structure-Activity Relationship
17.
Biochem J ; 468(3): 475-84, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25849365

ABSTRACT

Although most sequenced members of the industrially important ketol-acid reductoisomerase (KARI) family are class I enzymes, structural studies to date have focused primarily on the class II KARIs, which arose through domain duplication. In the present study, we present five new crystal structures of class I KARIs. These include the first structure of a KARI with a six-residue ß2αB (cofactor specificity determining) loop and an NADPH phosphate-binding geometry distinct from that of the seven- and 12-residue loops. We also present the first structures of naturally occurring KARIs that utilize NADH as cofactor. These results show insertions in the specificity loops that confounded previous attempts to classify them according to loop length. Lastly, we explore the conformational changes that occur in class I KARIs upon binding of cofactor and metal ions. The class I KARI structures indicate that the active sites close upon binding NAD(P)H, similar to what is observed in the class II KARIs of rice and spinach and different from the opening of the active site observed in the class II KARI of Escherichia coli. This conformational change involves a decrease in the bending of the helix that runs between the domains and a rearrangement of the nicotinamide-binding site.


Subject(s)
Alicyclobacillus/enzymology , Azotobacter vinelandii/enzymology , Bacterial Proteins/metabolism , Coenzymes/metabolism , Desulfurococcaceae/enzymology , Ketol-Acid Reductoisomerase/metabolism , Models, Molecular , Adenosine Diphosphate Ribose/analogs & derivatives , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Coenzymes/chemistry , Crystallography, X-Ray , Ketol-Acid Reductoisomerase/chemistry , Ketol-Acid Reductoisomerase/genetics , Magnesium/chemistry , Magnesium/metabolism , Molecular Conformation , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , NAD/chemistry , NAD/metabolism , NADP/chemistry , NADP/metabolism , Phosphorylation , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment
18.
Proc Natl Acad Sci U S A ; 110(27): 10946-51, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23776225

ABSTRACT

To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. High-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.


Subject(s)
Escherichia coli Proteins/metabolism , Ketol-Acid Reductoisomerase/metabolism , Amino Acid Sequence , Directed Molecular Evolution , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Ketol-Acid Reductoisomerase/chemistry , Ketol-Acid Reductoisomerase/genetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , NAD/metabolism , NADP/metabolism , Protein Structure, Secondary , Sequence Homology, Amino Acid
19.
Appl Environ Microbiol ; 81(7): 2265-73, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25595769

ABSTRACT

Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant.


Subject(s)
Acetobacteraceae/metabolism , Acetoin/metabolism , Behavior, Animal/drug effects , Chemotactic Factors/metabolism , Drosophila melanogaster/drug effects , Entomology/methods , Metabolic Engineering , Acetobacteraceae/genetics , Acetobacteraceae/growth & development , Animals , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Drosophila melanogaster/physiology , Gene Deletion , Ketol-Acid Reductoisomerase/genetics , Molecular Sequence Data , Sequence Analysis, DNA
20.
Appl Microbiol Biotechnol ; 99(2): 761-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25081555

ABSTRACT

2-Ketoisovalerate is an important cellular intermediate for the synthesis of branched-chain amino acids as well as other important molecules, such as pantothenate, coenzyme A, and glucosinolate. This ketoacid can also serve as a precursor molecule for the production of biofuels, pharmaceutical agents, and flavor agents in engineered organisms, such as the betaproteobacterium Ralstonia eutropha. The biosynthesis of 2-ketoisovalerate from pyruvate is carried out by three enzymes: acetohydroxyacid synthase (AHAS, encoded by ilvBH), acetohydroxyacid isomeroreductase (AHAIR, encoded by ilvC), and dihydroxyacid dehydratase (DHAD, encoded by ilvD). In this study, enzymatic activities and kinetic parameters were determined for each of the three R. eutropha enzymes as heterologously purified proteins. AHAS, which serves as a gatekeeper for the biosynthesis of all three branched-chain amino acids, demonstrated the tightest regulation through feedback inhibition by L-valine (IC50=1.2 mM), L-isoleucine (IC50=2.3 mM), and L-leucine (IC50=5.4 mM). Intermediates in the valine biosynthesis pathway also exhibit feedback inhibitory control of the AHAS enzyme. In addition, AHAS has a very weak affinity for pyruvate (KM=10.5 µM) and is highly selective towards 2-ketobutyrate (R=140) as a second substrate. AHAIR and DHAD are also inhibited by the branched-chain amino acids, although to a lesser extent when compared to AHAS. Experimental evolution and rational site-directed mutagenesis revealed mutants of the regulatory subunit of AHAS (IlvH) (N11S, T34I, A36V, T104S, N11F, G14E, and N29H), which, when reconstituted with wild-type IlvB, lead to AHAS having reduced valine, leucine, and isoleucine sensitivity. The study of the kinetics and inhibition mechanisms of R. eutropha AHAS, AHAIR, and DHAD has shed light on interactions between these enzymes and the products they produce; it, therefore, can be used to engineer R. eutropha strains with optimal production of 2-ketoisovalerate for value-added materials.


Subject(s)
Acetolactate Synthase/metabolism , Cupriavidus necator/enzymology , Hydro-Lyases/metabolism , Keto Acids/metabolism , Ketol-Acid Reductoisomerase/metabolism , Acetolactate Synthase/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways/genetics , Butyrates/metabolism , Culture Media , Cupriavidus necator/genetics , DNA, Bacterial/genetics , Hemiterpenes , Hydro-Lyases/genetics , Isoleucine/biosynthesis , Ketol-Acid Reductoisomerase/genetics , Leucine/biosynthesis , Mutagenesis, Site-Directed , Valine/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL