Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.810
Filter
Add more filters

Publication year range
1.
J Cell Mol Med ; 28(8): e18301, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652212

ABSTRACT

X-linked nephrogenic diabetes insipidus (X-NDI) is a rare congenital disease caused by inactivating mutations of the vasopressin type-2 receptor (AVPR2), characterized by impaired renal concentrating ability, dramatic polyuria, polydipsia and risk of dehydration. The disease, which still lacks a cure, could benefit from the pharmacologic stimulation of other GPCRs, activating the cAMP-intracellular pathway in the kidney cells expressing the AVPR2. On the basis of our previous studies, we here hypothesized that the ß3-adrenergic receptor could be such an ideal candidate. We evaluated the effect of continuous 24 h stimulation of the ß3-AR with the agonist BRL37344 and assessed the effects on urine output, urine osmolarity, water intake and the abundance and activation of the key renal water and electrolyte transporters, in the mouse model of X-NDI. Here we demonstrate that the ß3-AR agonism exhibits a potent antidiuretic effect. The strong improvement in symptoms of X-NDI produced by a single i.p. injection of BRL37344 (1 mg/kg) was limited to 3 h but repeated administrations in the 24 h, mimicking the effect of a slow-release preparation, promoted a sustained antidiuretic effect, reducing the 24 h urine output by 27%, increasing urine osmolarity by 25% and reducing the water intake by 20%. At the molecular level, we show that BRL37344 acted by increasing the phosphorylation of NKCC2, NCC and AQP2 in the renal cell membrane, thereby increasing electrolytes and water reabsorption in the kidney tubule of X-NDI mice. Taken together, these data suggest that human ß3-AR agonists might represent an effective possible treatment strategy for X-NDI.


Subject(s)
Adrenergic beta-3 Receptor Agonists , Male , Animals , Mice, Inbred C57BL , Disease Models, Animal , Adrenergic beta-3 Receptor Agonists/pharmacology , Adrenergic beta-3 Receptor Agonists/therapeutic use , Antidiuretic Agents/pharmacology , Antidiuretic Agents/therapeutic use , Kidney Concentrating Ability/drug effects , Polydipsia/drug therapy , Polydipsia/etiology
2.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38695074

ABSTRACT

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Subject(s)
Deamino Arginine Vasopressin , Kidney Tubules, Collecting , Mice, Knockout , Animals , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Collecting/drug effects , Deamino Arginine Vasopressin/pharmacology , Kidney Concentrating Ability/drug effects , Arginine Vasopressin/metabolism , Male , Antidiuretic Hormone Receptor Antagonists/pharmacology , Mice , Aquaporin 2/metabolism , Aquaporin 2/genetics , Antidiuretic Agents/pharmacology , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Mice, Inbred C57BL , Water Deprivation , Osmolar Concentration , Sodium/urine , Sodium/metabolism , Vasopressins/metabolism , Benzazepines
3.
Am J Physiol Renal Physiol ; 320(6): F1106-F1122, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33938239

ABSTRACT

Ksp-cadherin (cadherin-16) is an atypical member of the cadherin superfamily of cell adhesion molecules that is ubiquitously expressed on the basolateral membrane of epithelial cells lining the nephron and the collecting system of the mammalian kidney. The principal aim of the present study was to determine if Ksp-cadherin played a critical role in the development and maintenance of the adult mammalian kidney by generating and evaluating a mouse line deficient in Ksp-cadherin. Ksp-null mutant animals were viable and fertile, and kidneys from both neonates and adults showed no evidence of structural abnormalities. Immunolocalization and Western blot analyses of Na+-K+-ATPase and E-cadherin indicated that Ksp-cadherin is not essential for either the genesis or maintenance of the polarized tubular epithelial phenotype. Moreover, E-cadherin expression was not altered to compensate for Ksp-cadherin loss. Plasma electrolytes, total CO2, blood urea nitrogen, and creatinine levels were also unaffected by Ksp-cadherin deficiency. However, a subtle but significant developmental delay in the ability to maximally concentrate urine was detected in Ksp-null mice. Expression analysis of the principal proteins involved in the generation of the corticomedullary osmotic gradient and the resultant movement of water identified misexpression of aquaporin-2 in the inner medullary collecting duct as the possible cause for the inability of young adult Ksp-cadherin-deficient animals to maximally concentrate their urine. In conclusion, Ksp-cadherin is not required for normal kidney development, but its absence leads to a developmental delay in maximal urinary concentrating ability.NEW & NOTEWORTHY Ksp-cadherin (cadherin-16) is an atypical member of the cadherin superfamily of cell adhesion molecules that is ubiquitously expressed on the basolateral membrane of epithelial cells lining the nephron and the collecting system. Using knockout mice, we found that Ksp-cadherin is in fact not required for kidney development despite its high and specific expression along the nephron. However, its absence leads to a developmental delay in maximal urinary concentrating ability.


Subject(s)
Cadherins/metabolism , Kidney Concentrating Ability/physiology , Kidney/growth & development , Animals , Aquaporin 2/genetics , Aquaporin 2/metabolism , Cadherins/genetics , Gene Expression Regulation, Developmental , Kidney/physiology , Kidney Concentrating Ability/genetics , Male , Mice , Mice, Knockout , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
4.
Adv Exp Med Biol ; 1319: 221-254, 2021.
Article in English | MEDLINE | ID: mdl-34424518

ABSTRACT

The subterranean-dwelling naked mole-rat (Heterocephalus glaber) is an extremophilic rodent, able to thrive in the harsh underground conditions of sub-Saharan Northeast Africa. This pelage-free mammal exhibits numerous unusual ecophysiological features including pronounced tolerance of thermolability, hypoxia, hypercapnia and noxious substances. As a mammal, the naked mole-rat provides a proof-of-concept that age-related changes in physiology are avoidable. At ages far beyond their expected lifespans given both their body size and/or the timing of early developmental milestones, naked mole-rats fail to exhibit meaningful changes in physiological health or demographic mortality. Lack of physiological deterioration with age is also evident in lean and fat mass, bone quality, and reproductive capacity. Rather, regardless of age, under basal conditions naked mole-rats appear to "idle on low" with their "shields up" as is manifested by low body temperature, metabolic rate, cardiac output and kidney concentrating ability, enabling better protection of organs and cellular function. When needed, they can nevertheless ramp up these functions, increasing cardiac output and metabolism 2-5 fold. Here we review many unusual aspects of their physiology and examine how these attributes facilitate both tolerance of the diverse suite of hostile conditions encountered in their natural milieu as well as contribute to their extraordinary longevity and resistance to common, age-related chronic diseases.


Subject(s)
Longevity , Mole Rats , Aging , Animals , Disease Models, Animal , Kidney Concentrating Ability
5.
Proc Natl Acad Sci U S A ; 115(21): 5600-5605, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29739889

ABSTRACT

Hypertonicity in renal medulla is critical for the kidney to produce concentrated urine. Renal medullary cells have to survive high medullary osmolarity during antidiuresis. Previous study reported that farnesoid X receptor (FXR), a nuclear receptor transcription factor activated by endogenous bile acids, increases urine concentrating ability by up-regulating aquaporin 2 expression in medullary collecting duct cells (MCDs). However, whether FXR is also involved in the maintenance of cell survival of MCDs under dehydration condition and hypertonic stress remains largely unknown. In the present study, we demonstrate that 24-hours water restriction selectively up-regulated renal medullary expression of FXR with little MCD apoptosis in wild-type mice. In contrast, water deprivation caused a massive apoptosis of MCDs in both global FXR gene-deficient mice and collecting duct-specific FXR knockout mice. In vitro studies showed that hypertonicity significantly increased FXR and tonicity response enhancer binding protein (TonEBP) expression in mIMCD3 cell line and primary cultured MCDs. Activation and overexpression of FXR markedly increased cell viability and decreased cell apoptosis under hyperosmotic conditions. In addition, FXR can increase gene expression and nuclear translocation of TonEBP. We conclude that FXR protects MCDs from hypertonicity-induced cell injury very likely via increasing TonEBP expression and nuclear translocation. This study provides insights into the molecular mechanism by which FXR enhances urine concentration via maintaining cell viability of MCDs under hyperosmotic condition.


Subject(s)
Kidney Concentrating Ability/physiology , Kidney Medulla/cytology , Kidney Tubules, Collecting/cytology , Osmotic Pressure/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Stress, Physiological , Transcription Factors/metabolism , Animals , Gene Expression Regulation , Kidney Medulla/metabolism , Kidney Tubules, Collecting/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics
6.
J Am Soc Nephrol ; 31(6): 1212-1225, 2020 06.
Article in English | MEDLINE | ID: mdl-32381599

ABSTRACT

BACKGROUND: As the glomerular filtrate passes through the nephron and into the renal medulla, electrolytes, water, and urea are reabsorbed through the concerted actions of solute carrier channels and aquaporins at various positions along the nephron and in the outer and inner medulla. Proliferating stem cells expressing the nuclear transcription factor Pax2 give rise to renal epithelial cells. Pax2 expression ends once the epithelial cells differentiate into mature proximal and distal tubules, whereas expression of the related Pax8 protein continues. The collecting tubules and renal medulla are derived from Pax2-positive ureteric bud epithelia that continue to express Pax2 and Pax8 in adult kidneys. Despite the crucial role of Pax2 in renal development, functions for Pax2 or Pax8 in adult renal epithelia have not been established. METHODS: To examine the roles of Pax2 and Pax8 in the adult mouse kidney, we deleted either Pax2, Pax8, or both genes in adult mice and examined the resulting phenotypes and changes in gene expression patterns. We also explored the mechanism of Pax8-mediated activation of potential target genes in inner medullary collecting duct cells. RESULTS: Mice with induced deletions of both Pax2 and Pax8 exhibit severe polyuria that can be attributed to significant changes in the expression of solute carriers, such as the urea transporters encoded by Slc14a2, as well as aquaporins within the inner and outer medulla. Furthermore, Pax8 expression is induced by high-salt levels in collecting duct cells and activates the Slc14a2 gene by recruiting a histone methyltransferase complex to the promoter. CONCLUSIONS: These data reveal novel functions for Pax proteins in adult renal epithelia that are essential for retaining water and concentrating urine.


Subject(s)
Aquaporins/physiology , Kidney Concentrating Ability/physiology , Kidney/physiology , Membrane Transport Proteins/physiology , PAX2 Transcription Factor/physiology , PAX8 Transcription Factor/physiology , Animals , Female , HEK293 Cells , Humans , Male , Mice , Osmoregulation , PAX2 Transcription Factor/genetics , PAX8 Transcription Factor/genetics , Urea Transporters
7.
FASEB J ; 33(2): 2156-2170, 2019 02.
Article in English | MEDLINE | ID: mdl-30252533

ABSTRACT

cAMP is a universal second messenger regulating a plethora of processes in the kidney. Two downstream effectors of cAMP are PKA and exchange protein directly activated by cAMP (Epac), which, unlike PKA, is often linked to elevation of [Ca2+]i. While both Epac isoforms (Epac1 and Epac2) are expressed along the nephron, their relevance in the kidney remains obscure. We combined ratiometric calcium imaging with quantitative immunoblotting, immunofluorescent confocal microscopy, and balance studies in mice lacking Epac1 or Epac2 to determine the role of Epac in renal water-solute handling. Epac1-/- and Epac2-/- mice developed polyuria despite elevated arginine vasopressin levels. We did not detect major deficiencies in arginine vasopressin [Ca2+]i signaling in split-opened collecting ducts or decreases in aquaporin water channel type 2 levels. Instead, sodium-hydrogen exchanger type 3 levels in the proximal tubule were dramatically reduced in Epac1-/- and Epac2-/- mice. Water deprivation revealed persisting polyuria, impaired urinary concentration ability, and augmented urinary excretion of Na+ and urea in both mutant mice. In summary, we report a nonredundant contribution of Epac isoforms to renal function. Deletion of Epac1 and Epac2 decreases sodium-hydrogen exchanger type 3 expression in the proximal tubule, leading to polyuria and osmotic diuresis.-Cherezova, A., Tomilin, V., Buncha, V., Zaika, O., Ortiz, P. A., Mei, F., Cheng, X., Mamenko, M., Pochynyuk, O. Urinary concentrating defect in mice lacking Epac1 or Epac2.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Kidney Concentrating Ability/genetics , Animals , Aquaporin 2/metabolism , Arginine Vasopressin/metabolism , Calcium Signaling , Diuresis , Gene Deletion , Kidney/metabolism , Kidney/physiology , Mice , Mice, Knockout , Osmosis , Polyuria/genetics , Sodium-Hydrogen Exchanger 3/metabolism
8.
BMC Nephrol ; 21(1): 379, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32867720

ABSTRACT

BACKGROUND: Concentration of the urine is primarily regulated via vasopressin dependent aquaporin-2 water channels in the apical membrane of kidney principal cells. It is unclear whether urine concentration ability in ADPKD differs from other patients with similar degree of impaired renal function (non-ADPKD patients). The purpose of this case control study was to measure urine concentration ability in ADPKD patients compared to non-ADPKD patients and healthy controls. METHODS: A seventeen hour long water deprivation test was carried out in 17 ADPKD patients (CKD I-IV), 16 non-ADPKD patients (CKD I-IV), and 18 healthy controls. Urine was collected in 4 consecutive periods during water deprivation (12 h, 1 h, 2 h and 2 h, respectively) and analyzed for osmolality (u-Osm), output (UO), fractional excretion of sodium (FENa), aquaporin2 (u-AQP2) and ENaC (u-ENaC). Blood samples were drawn trice (after 13-, 15-, and 17 h after water deprivation) for analyses of osmolality (p-Osm), vasopressin (p-AVP), and aldosterone (p-Aldo). RESULTS: U-Osm was significantly lower and FENa significantly higher in both ADPKD patients and non-ADPKD patients compared to healthy controls during the last three periods of water deprivation. During the same periods, UO was higher and secretion rates of u-AQP2 and u-ENaC were lower and at the same level in the two groups of patients compared to controls. P-AVP and p-Osm did not differ significantly between the three groups. P-Aldo was higher in both groups of patients than in controls. CONCLUSIONS: Urine concentration ability was reduced to the same extent in patients with ADPKD and other chronic kidney diseases with the same level of renal function compared to healthy controls. The lower urine excretion of AQP2 and ENaC suggests that the underlying mechanism may be a reduced tubular response to vasopressin and aldosterone. TRIAL REGISTRATION: Current Controlled Trial NCT04363554 , date of registration: 20.08.2017.


Subject(s)
Kidney Concentrating Ability/physiology , Polycystic Kidney, Autosomal Dominant/physiopathology , Renal Insufficiency, Chronic/physiopathology , Adult , Aged , Aldosterone/blood , Aquaporin 2/urine , Case-Control Studies , Epithelial Sodium Channels/urine , Female , Humans , Male , Middle Aged , Osmolar Concentration , Polycystic Kidney, Autosomal Dominant/metabolism , Renal Elimination , Renal Insufficiency, Chronic/metabolism , Severity of Illness Index , Sodium/urine , Vasopressins/blood , Water Deprivation
9.
Proc Natl Acad Sci U S A ; 114(20): 5271-5276, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28461473

ABSTRACT

Whether the tight junction is permeable to water remains highly controversial. Here, we provide evidence that the tricellular tight junction is important for paracellular water permeation and that Ig-like domain containing receptor 1 (ILDR1) regulates its permeability. In the mouse kidney, ILDR1 is localized to tricellular tight junctions of the distal tubules. Genetic knockout of Ildr1 in the mouse kidney causes polyuria and polydipsia due to renal concentrating defects. Microperfusion of live renal distal tubules reveals that they are impermeable to water in normal animals but become highly permeable to water in Ildr1 knockout animals whereas paracellular ionic permeabilities in the Ildr1 knockout mouse renal tubules are not affected. Vasopressin cannot correct paracellular water loss in Ildr1 knockout animals despite normal effects on the transcellular aquaporin-2-dependent pathway. In cultured renal epithelial cells normally lacking the expression of Ildr1, overexpression of Ildr1 significantly reduces the paracellular water permeability. Together, our study provides a mechanism of how cells transport water and shows how such a mechanism may be exploited as a therapeutic approach to maintain water homeostasis.


Subject(s)
Aquaporins/physiology , Kidney Concentrating Ability/physiology , Receptors, Cell Surface/physiology , Animals , Aquaporin 2/metabolism , Aquaporins/metabolism , Biological Transport , Cell Membrane Permeability/physiology , Epithelial Cells/metabolism , Kidney/metabolism , Kidney Tubules/metabolism , Kidney Tubules, Distal/metabolism , Male , Mice , Mice, Knockout , Receptors, Cell Surface/metabolism , Tight Junctions/metabolism , Tight Junctions/physiology , Vasopressins/metabolism
10.
Am J Physiol Renal Physiol ; 316(3): F539-F549, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30539654

ABSTRACT

Although the role of urea in urine concentration is known, the effect of urea handling by the urea transporters (UTs), UT-A1 and UT-A3, on sodium balance remains elusive. Serum and urinary sodium concentration is similar between wild-type mice (WT) and UT-A3 null (UT-A3 KO) mice; however, mice lacking both UT-A1 and UT-A3 (UT-A1/A3 KO) have significantly lower serum sodium and higher urinary sodium. Protein expression of renal sodium transporters is unchanged among all three genotypes. WT, UT-A3 KO, and UT-A1/A3 KO acutely respond to hydrochlorothiazide and furosemide; however, UT-A1/A3 KO fail to show a diuretic or natriuretic response following amiloride administration, indicating that baseline epithelial Na+ channel (ENaC) activity is impaired. UT-A1/A3 KO have more ENaC at the apical membrane than WT mice, and single-channel analysis of ENaC in split-open inner medullary collecting duct (IMCD) isolated in saline shows that ENaC channel density and open probability is higher in UT-A1/A3 KO than WT. UT-A1/A3 KO excrete more urinary nitric oxide (NO), a paracrine inhibitor of ENaC, and inner medullary nitric oxide synthase 1 mRNA expression is ~40-fold higher than WT. Because endogenous NO is unstable, ENaC activity was reassessed in split-open IMCD with the NO donor PAPA NONOate [1-propanamine-3-(2-hydroxy-2-nitroso-1-propylhydrazine)], and ENaC activity was almost abolished in UT-A1/A3 KO. In summary, loss of both UT-A1 and UT-A3 (but not UT-A3 alone) causes elevated medullary NO production and salt wasting. NO inhibition of ENaC, despite elevated apical accumulation of ENaC in UT-A1/A3 KO IMCD, appears to be the main contributor to natriuresis in UT-A1/A3 KO mice.


Subject(s)
Epithelial Sodium Channels/metabolism , Kidney Medulla/metabolism , Membrane Transport Proteins/metabolism , Nitric Oxide/metabolism , Sodium/metabolism , Animals , Ion Transport/physiology , Kidney Concentrating Ability/physiology , Membrane Transport Proteins/genetics , Mice , Mice, Knockout , Urea Transporters
11.
Am J Physiol Renal Physiol ; 317(3): F547-F559, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31241990

ABSTRACT

The collecting duct (CD) concentrates the urine, thereby maintaining body water volume and plasma osmolality within a normal range. The endocrine hormone arginine vasopressin acts in the CD to increase water permeability via the vasopressin 2 receptor (V2R)-aquaporin (AQP) axis. Recent studies have suggested that autocrine factors may also contribute to the regulation of CD water permeability. Nitric oxide is produced predominantly by nitric oxide synthase 1 (NOS1) in the CD and acts as a diuretic during salt loading. The present study sought to determine whether CD NOS1 regulates diuresis during changes in hydration status. Male and female control and CD NOS1 knockout (CDNOS1KO) mice were hydrated (5% sucrose water), water deprived, or acutely challenged with the V2R agonist desmopressin. In male mice, water deprivation resulted in decreased urine flow and increased plasma osmolality, copeptin concentration, and kidney AQP2 abundance independent of CD NOS1. In female control mice, water deprivation reduced urine flow, increased plasma osmolality and copeptin, but did not significantly change total AQP2; however, there was increased basolateral AQP3 localization. Surprisingly, female CDNOS1KO mice while on the sucrose water presented with symptoms of dehydration. Fibroblast growth factor 21, an endocrine regulator of sweetness preference, was significantly higher in female CDNOS1KO mice, suggesting that this was reducing their drive to drink the sucrose water. With acute desmopressin challenge, female CDNOS1KO mice failed to appropriately concentrate their urine, resulting in higher plasma osmolality than controls. In conclusion, CD NOS1 plays only a minor role in urine-concentrating mechanisms.


Subject(s)
Dehydration/enzymology , Diuresis , Kidney Concentrating Ability , Kidney Tubules, Collecting/enzymology , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide/metabolism , Animals , Antidiuretic Agents/pharmacology , Aquaporin 2/genetics , Aquaporin 2/metabolism , Aquaporin 3/genetics , Aquaporin 3/metabolism , Deamino Arginine Vasopressin/pharmacology , Dehydration/physiopathology , Disease Models, Animal , Diuresis/drug effects , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Kidney Concentrating Ability/drug effects , Kidney Tubules, Collecting/drug effects , Male , Mice, Knockout , Nitric Oxide Synthase Type I/deficiency , Nitric Oxide Synthase Type I/genetics , Organism Hydration Status , Osmolar Concentration , Sex Factors , Signal Transduction , Urodynamics , Water Deprivation
12.
FASEB J ; 32(8): 4544-4559, 2018 08.
Article in English | MEDLINE | ID: mdl-29553830

ABSTRACT

A main feature of Fabry disease is nephropathy, with polyuria an early manifestation; however, the mechanism that underlies polyuria and affected tubules is unknown. To increase globotriaosylceramide (Gb3) levels, we previously crossbred asymptomatic Glatm mice with transgenic mice that expressed human Gb3 synthase (A4GALT) and generated the GlatmTg(CAG-A4GALT) symptomatic Fabry model mice. Additional analyses revealed that these mice exhibit polyuria and renal dysfunction without remarkable glomerular damage. In the present study, we investigated the mechanism of polyuria and renal dysfunction in these mice. Gb3 accumulation was mostly detected in the medulla; medullary thick ascending limbs (mTALs) were the most vacuolated tubules. mTAL cells contained lamellar bodies and had lost their characteristic structure ( i.e., extensive infolding and numerous elongated mitochondria). Decreased expression of the major molecules-Na+-K+-ATPase, uromodulin, and Na+-K+-2Cl- cotransporter-that are involved in Na+ reabsorption in mTALs and the associated loss of urine-concentrating ability resulted in progressive water- and salt-loss phenotypes. GlatmTg(CAG-A4GALT) mice exhibited fibrosis around mTALs and renal dysfunction. These and other features were consistent with pathologic findings in patients with Fabry disease. Results demonstrate that mTAL dysfunction causes polyuria and renal impairment and contributes to the pathophysiology of Fabry nephropathy.-Maruyama, H., Taguchi, A., Nishikawa, Y., Guili, C., Mikame, M., Nameta, M., Yamaguchi, Y., Ueno, M., Imai, N., Ito, Y., Nakagawa, T., Narita, I., Ishii, S. Medullary thick ascending limb impairment in the GlatmTg(CAG-A4GALT) Fabry model mice.


Subject(s)
Fabry Disease/pathology , Kidney Diseases/pathology , Kidney Medulla/pathology , Animals , Disease Models, Animal , Fabry Disease/metabolism , Kidney Concentrating Ability/physiology , Kidney Diseases/metabolism , Kidney Medulla/metabolism , Male , Mice , Mice, Inbred C57BL , Polyuria/metabolism , Polyuria/pathology , Sodium/metabolism , Sodium-Potassium-Chloride Symporters/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Trihexosylceramides/metabolism
13.
J Am Soc Nephrol ; 29(4): 1097-1107, 2018 04.
Article in English | MEDLINE | ID: mdl-29237738

ABSTRACT

Urinary concentrating ability is central to mammalian water balance and depends on a medullary osmotic gradient generated by a countercurrent multiplication mechanism. Medullary hyperosmolarity is protected from washout by countercurrent exchange and efficient removal of interstitial fluid resorbed from the loop of Henle and collecting ducts. In most tissues, lymphatic vessels drain excess interstitial fluid back to the venous circulation. However, the renal medulla is devoid of classic lymphatics. Studies have suggested that the fenestrated ascending vasa recta (AVRs) drain the interstitial fluid in this location, but this function has not been conclusively shown. We report that late gestational deletion of the angiopoietin receptor endothelial tyrosine kinase 2 (Tie2) or both angiopoietin-1 and angiopoietin-2 prevents AVR formation in mice. The absence of AVR associated with rapid accumulation of fluid and cysts in the medullary interstitium, loss of medullary vascular bundles, and decreased urine concentrating ability. In transgenic reporter mice with normal angiopoietin-Tie2 signaling, medullary AVR exhibited an unusual hybrid endothelial phenotype, expressing lymphatic markers (prospero homeobox protein 1 and vascular endothelial growth factor receptor 3) as well as blood endothelial markers (CD34, endomucin, platelet endothelial cell adhesion molecule 1, and plasmalemmal vesicle-associated protein). Taken together, our data redefine the AVRs as Tie2 signaling-dependent specialized hybrid vessels and provide genetic evidence of the critical role of AVR in the countercurrent exchange mechanism and the structural integrity of the renal medulla.


Subject(s)
Angiopoietin-1/physiology , Angiopoietin-2/physiology , Extracellular Fluid/metabolism , Kidney Concentrating Ability/physiology , Kidney Medulla/blood supply , Receptor, TIE-2/physiology , Angiopoietin-1/deficiency , Angiopoietin-1/genetics , Angiopoietin-2/deficiency , Angiopoietin-2/genetics , Animals , Body Patterning , Cell Lineage , Endothelium, Vascular , Genes, Reporter , Gestational Age , Homeodomain Proteins/analysis , Kidney Diseases, Cystic/genetics , Kidney Medulla/embryology , Kidney Medulla/physiology , Mice , Mice, Knockout , Mice, Transgenic , Myofibroblasts/pathology , Osmosis , Receptor, TIE-2/deficiency , Receptor, TIE-2/genetics , Renal Circulation , Signal Transduction , Tumor Suppressor Proteins/analysis , Vascular Endothelial Growth Factor Receptor-3/analysis
14.
Am J Physiol Renal Physiol ; 314(6): F1129-F1137, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29357416

ABSTRACT

Many experimental protocols in rodents require the comparison of groups that are fed different diets. Changes in dietary electrolyte and/or fat content can influence food intake, which can potentially introduce bias or confound the results. Unpalatable diets slow growth or cause weight loss, which is exacerbated by housing the animals in individual metabolic cages or by surgery. For balance studies in mice, small changes in body weight and food intake and low urinary flow can amplify these challenges. Powder food can be administered as gel with the addition of a desired amount of water, electrolytes, drugs (if any), and a small amount of agar. We describe here how the use of gel food to vary water, Na, K, and fat content can reduce weight loss and improve reproducibility of intake, urinary excretion, and blood pressure in rodents. In addition, mild food restriction reduces the interindividual variability and intergroup differences in food intake and associated variables, thus improving the statistical power of an experiment. Finally, we also demonstrate the advantages of using gel food for weight-based drug dosing. These protocols can improve the accuracy and reproducibility of experimental data where dietary manipulations are needed and are especially advisable in rodent studies related to water balance, obesity, and blood pressure.


Subject(s)
Animal Feed , Animal Husbandry/methods , Blood Pressure , Diet , Electrolytes/urine , Renal Elimination , Animal Nutritional Physiological Phenomena , Animals , Biomarkers/urine , Caloric Restriction , Eating , Gels , Kidney Concentrating Ability , Male , Mice, Inbred C57BL , Nutritional Status , Nutritive Value , Rats, Sprague-Dawley , Water-Electrolyte Balance , Weight Loss
15.
Am J Physiol Renal Physiol ; 315(5): F1271-F1282, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30110571

ABSTRACT

To better understand the role of the inward-rectifying K channel Kir4.1 (KCNJ10) in the distal nephron, we initially studied a global Kir4.1 knockout mouse (gKO), which demonstrated the hypokalemia and hypomagnesemia seen in SeSAME/EAST syndrome and was associated with reduced Na/Cl cotransporter (NCC) expression. Lethality by ~3 wk, however, limits the usefulness of this model, so we developed a kidney-specific Kir4.1 "knockdown" mouse (ksKD) using a cadherin 16 promoter and Cre-loxP methodology. These mice appeared normal and survived to adulthood. Kir4.1 protein expression was decreased ~50% vs. wild-type (WT) mice by immunoblotting, and immunofluorescence showed moderately reduced Kir4.1 staining in distal convoluted tubule that was minimal or absent in connecting tubule and cortical collecting duct. Under control conditions, the ksKD mice showed metabolic alkalosis and relative hypercalcemia but were normokalemic and mildly hypermagnesemic despite decreased NCC expression. In addition, the mice had a severe urinary concentrating defect associated with hypernatremia, enlarged kidneys with tubulocystic dilations, and reduced aquaporin-3 expression. On a K/Mg-free diet for 1 wk, however, ksKD mice showed marked hypokalemia (serum K: 1.5 ± 0.1 vs. 3.0 ± 0.1 mEq/l for WT), which was associated with renal K wasting (transtubular K gradient: 11.4 ± 0.8 vs. 1.6 ± 0.4 in WT). Phosphorylated-NCC expression increased in WT but not ksKD mice on the K/Mg-free diet, suggesting that loss of NCC adaptation underlies the hypokalemia. In conclusion, even modest reduction in Kir4.1 expression results in impaired K conservation, which appears to be mediated by reduced expression of activated NCC.


Subject(s)
Nephrons/metabolism , Potassium Channels, Inwardly Rectifying/deficiency , Potassium, Dietary/blood , Renal Reabsorption , Alkalosis/blood , Alkalosis/genetics , Alkalosis/physiopathology , Animals , Aquaporin 3/metabolism , Gene Knockdown Techniques , Genotype , Hypercalcemia/blood , Hypercalcemia/genetics , Hypercalcemia/physiopathology , Hyperkalemia/blood , Hyperkalemia/genetics , Hyperkalemia/physiopathology , Hypernatremia/blood , Hypernatremia/genetics , Hypernatremia/physiopathology , Kidney Concentrating Ability , Mice, Inbred C57BL , Mice, Knockout , Nephrons/physiopathology , Phenotype , Phosphorylation , Potassium Channels, Inwardly Rectifying/genetics , Solute Carrier Family 12, Member 3/metabolism
16.
Am J Physiol Renal Physiol ; 315(3): F413-F416, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29846113

ABSTRACT

The renal collecting duct and other postmacula densa sites are the primary tubular regions for fine-tuning of electrolyte homeostasis in the body. A role for the mechanistic target of rapamycin (mTOR), a serine-threonine kinase, has recently been appreciated in this regulation. mTOR exists in two distinct multiprotein functional complexes, i.e., mTORC1 and mTORC2. Upregulation of mTORC1, by growth factors and amino acids, is associated with cell cycle regulation and hypertrophic changes. In contrast, mTORC2 has been demonstrated to have a role in regulating Na+ and K+ reabsorptive processes, including those downstream of insulin and serum- and glucocorticoid-regulated kinase (SGK). In addition, mTORC2 can upregulate mTORC1. A number of elegant in vitro and in vivo studies using cell systems and genetically modified mice have revealed mechanisms underlying activation of the epithelial Na+ channel (ENaC) and the renal outer medullary K+ channel (ROMK) by mTORC2. Overall, mTOR in its systematic integration of phosphorylative signaling facilitates the delicate balance of whole body electrolyte homeostasis in the face of changes in metabolic status. Thus, inappropriate regulation of renal mTOR has the potential to result in electrolyte disturbances, such as acidosis/alkalosis, hyponatremia, and hypertension. The goal of this minireview is to highlight the physiological role of mTOR in its complexes in regulating electrolyte homeostasis in the aldosterone-sensitive distal nephron.


Subject(s)
Amino Acids/metabolism , Dietary Proteins/metabolism , Electrolytes/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Kidney Tubules, Collecting/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Chlorides/metabolism , Electrolytes/urine , Humans , Kidney Concentrating Ability , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Phosphorylation , Potassium/metabolism , Renal Elimination , Renal Reabsorption , Sodium/metabolism , TOR Serine-Threonine Kinases/genetics
17.
Am J Physiol Renal Physiol ; 315(2): F199-F210, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29592526

ABSTRACT

The molecular mechanisms of melamine-induced renal toxicity have not been fully understood. The purpose of the study aimed to investigate whether melamine and cyanuric acid induced NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in the kidney, which may contribute to abnormal water and sodium handling in a rat model. Wistar rats received melamine (Mel; 200 mg·kg body wt-1·day-1), cyanuric acid (CA; 200 mg·kg body wt-1·day-1), or Mel plus CA (Mel + CA; 100 mg·kg body wt-1·day-1, each) for 2 wk. Mel + CA caused damaged tubular epithelial structure and organelles, dilated tubular lumen, and inflammatory responses. Crystals were observed in urine and serum specimen, also in the lumen of dilated distal renal tubules. The combined ingestion of Mel and CA in rats caused a markedly impaired urinary concentration, which was associated with reduced protein expression of aquaporin (AQP)1, 2, and 3 in inner medulla and α-Na-K-ATPase and Na-K-2Cl transporters in cortex and outer medulla. Mel + CA treatment was associated with increased protein expression of CD3 and mRNA levels of CD68 and F4/80 as well as phosphorylation of NF-κB in the kidney. Mel + CA treatment increased protein and mRNA expression of NLRP3 inflammasome components apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, and IL-1ß in the inner medulla of rats. NF-κB inhibitor Bay 11-7082 reduced IL-1ß expression induced by Mel + CA and prevented downregulation of AQP2 in inner medullary collecting duct cell suspensions. In conclusion, Mel + CA treatment caused urinary-concentrating defects and reduced expression of renal AQPs and key sodium transporters, which is likely due to the inflammatory responses and activation of NLRP3 inflammasome induced by crystals formed in the kidney.


Subject(s)
Inflammasomes/metabolism , Kidney/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polyuria/metabolism , Triazines , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Aquaporins/metabolism , CARD Signaling Adaptor Proteins/metabolism , CD3 Complex/metabolism , Caspase 1/metabolism , Interleukin-1beta/metabolism , Kidney/pathology , Kidney/physiopathology , Kidney Concentrating Ability , Male , NF-kappa B/metabolism , Phosphorylation , Polyuria/chemically induced , Polyuria/pathology , Polyuria/physiopathology , Rats, Wistar , Signal Transduction , Sodium-Potassium-Chloride Symporters/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
18.
Am J Physiol Renal Physiol ; 314(5): F1020-F1025, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29357422

ABSTRACT

Lithium is widely used in treatment of bipolar affective disorders but often causes nephrogenic diabetes insipidus (NDI), a disorder characterized by severe urinary-concentrating defects. Lithium-induced NDI is caused by lithium uptake by collecting duct principal cells and altered expression of aquaporin-2 (AQP2), which are essential for water reabsorption of tubular fluid in the collecting duct. Sex hormones have previously been shown to affect the regulation of AQP2, so we tested whether tamoxifen (TAM), a selective estrogen receptor modulator, would attenuate lithium-induced alterations on renal water homeostasis. Rats were treated for 14 days with lithium, and TAM treatment was initiated 1 wk after onset of lithium administration. Lithium treatment resulted in severe polyuria and reduced AQP2 expression, which were ameliorated by TAM. Consistent with this, TAM attenuated downregulation of AQP2 and increased phosphorylation of the cAMP-responsive element-binding protein, which induced AQP2 expression in freshly isolated inner-medullary collecting duct suspension prepared from lithium-treated rats. In conclusion, TAM attenuated polyuria dose dependently and impaired urine concentration and downregulation of AQP2 protein expression in rats with lithium-induced NDI. These findings suggest that TAM is likely to be a novel therapeutic option for lithium-induced NDI.


Subject(s)
Diabetes Insipidus, Nephrogenic/prevention & control , Hypoglycemic Agents/pharmacology , Kidney Concentrating Ability/drug effects , Kidney Tubules, Collecting/drug effects , Lithium Chloride , Tamoxifen/pharmacology , Animals , Aquaporin 2/genetics , Aquaporin 2/metabolism , CREB-Binding Protein/metabolism , Diabetes Insipidus, Nephrogenic/chemically induced , Diabetes Insipidus, Nephrogenic/metabolism , Diabetes Insipidus, Nephrogenic/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Estrogen Receptor alpha/drug effects , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/drug effects , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Collecting/physiopathology , Male , Phosphorylation , Polyuria/chemically induced , Polyuria/physiopathology , Polyuria/prevention & control , Rats, Sprague-Dawley , Time Factors
19.
Am J Physiol Renal Physiol ; 314(2): F306-F316, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29046300

ABSTRACT

Aquaporin-2 (AQP2) is a water channel protein expressed in principal cells (PCs) of the kidney collecting ducts (CDs) and plays a critical role in mediating water reabsorption and urine concentration. AQP2 undergoes both regulated trafficking mediated by vasopressin (VP) and constitutive recycling, which is independent of VP. For both pathways, actin cytoskeletal dynamics is a key determinant of AQP2 trafficking. We report here that manganese chloride (MnCl2) is a novel and potent regulator of AQP2 trafficking in cultured cells and in the kidney. MnCl2 treatment promoted internalization and intracellular accumulation of AQP2. The effect of MnCl2 on the intracellular accumulation of AQP2 was associated with activation of RhoA and actin polymerization without modification of AQP2 phosphorylation. Although the level of total and phosphorylated AQP2 did not change, MnCl2 treatment impeded VP-induced phosphorylation of AQP2 at its serine-256, -264, and -269 residues and dephosphorylation at serine 261. In addition, MnCl2 significantly promoted F-actin polymerization along with downregulation of RhoA activity and prevented VP-induced membrane accumulation of AQP2. Finally, MnCl2 treatment in mice resulted in significant polyuria and reduced urinary concentration, likely due to intracellular relocation of AQP2 in the PCs of kidney CDs. More importantly, the reduced urinary concentration caused by MnCl2 treatment in animals was not corrected by VP. In summary, our study identified a novel effect of MnCl2 on AQP2 trafficking through modifying RhoA activity and actin polymerization and uncovered its potent impact on water diuresis in vivo.


Subject(s)
Actin Cytoskeleton/drug effects , Actins/metabolism , Aquaporin 2/metabolism , Chlorides/toxicity , Kidney Concentrating Ability/drug effects , Kidney Tubules, Collecting/drug effects , Polyuria/chemically induced , Actin Cytoskeleton/metabolism , Animals , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Collecting/physiopathology , LLC-PK1 Cells , Male , Manganese Compounds , Mice, Inbred C57BL , Phosphorylation , Polymerization , Polyuria/metabolism , Polyuria/physiopathology , Protein Transport , Signal Transduction/drug effects , Swine , Vasopressins/pharmacology , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
20.
Am J Physiol Regul Integr Comp Physiol ; 314(4): R563-R573, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29351422

ABSTRACT

In general, the mammalian whole body mass-specific metabolic rate correlates positively with maximal urine concentration (Umax) irrespective of whether or not the species have adapted to arid or mesic habitat. Accordingly, we hypothesized that the thick ascending limb (TAL) of a rodent with markedly higher whole body mass-specific metabolism than rat exhibits a substantially higher TAL metabolic rate as estimated by Na+-K+-ATPase activity and Na+-K+-ATPase α1-gene and protein expression. The kangaroo rat inner stripe of the outer medulla exhibits significantly higher mean Na+-K+-ATPase activity (~70%) compared with two rat strains (Sprague-Dawley and Munich-Wistar), extending prior studies showing rat activity exceeds rabbit. Furthermore, higher expression of Na+-K+-ATPase α1-protein (~4- to 6-fold) and mRNA (~13-fold) and higher TAL mitochondrial volume density (~20%) occur in the kangaroo rat compared with both rat strains. Rat TAL Na+-K+-ATPase α1-protein expression is relatively unaffected by body hydration status or, shown previously, by dietary Na+, arguing against confounding effects from two unavoidably dissimilar diets: grain-based diet without water (kangaroo rat) or grain-based diet with water (rat). We conclude that higher TAL Na+-K+-ATPase activity contributes to relationships between whole body mass-specific metabolic rate and high Umax. More vigorous TAL Na+-K+-ATPase activity in kangaroo rat than rat may contribute to its steeper Na+ and urea axial concentration gradients, adding support to a revised model of the urine concentrating mechanism, which hypothesizes a leading role for vigorous active transport of NaCl, rather than countercurrent multiplication, in generating the outer medullary axial osmotic gradient.


Subject(s)
Body Weight , Energy Metabolism , Kidney Concentrating Ability , Kidney Medulla/enzymology , Loop of Henle/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium/urine , Animals , Dipodomys , Gene Expression Regulation, Enzymologic , Kidney Medulla/ultrastructure , Loop of Henle/ultrastructure , Mitochondria/enzymology , Osmoregulation , Rats, Sprague-Dawley , Rats, Wistar , Renal Elimination , Renal Reabsorption , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL