Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 661
Filter
Add more filters

Publication year range
1.
BMC Plant Biol ; 24(1): 808, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198726

ABSTRACT

BACKROUND: The utilization of high-quality water in agriculture is increasingly constrained by climate change, affecting availability, quality, and distribution due to altered precipitation patterns, increased evaporation, extreme weather events, and rising salinity levels. Salinity significantly challenges salt-sensitive vegetables like lettuce, particularly in a greenhouse. Hydroponics water quality ensures nutrient solution stability, enhances nutrient uptake, prevents contamination, regulates pH and electrical conductivity, and maintains system components. This study aimed to mitigate salt-induced damage in lettuce grown via the floating culture method under 50 mM NaCl salinity by applying biostimulants. RESULTS: We examined lettuce's physiological, biochemical, and agronomical responses to salt stress after applying biostimulants such as amino acids, arbuscular mycorrhizal fungi, plant growth-promoting rhizobacteria (PGPR), fulvic acid, and chitosan. The experiment was conducted in a greenhouse with a randomized complete block design, and each treatment was replicated four times. Biostimulant applications alleviated salt's detrimental effects on plant weight, height, leaf number, and leaf area. Yield increases under 50 mM NaCl were 75%, 51%, 31%, 34%, and 33% using vermicompost, PGPR, fulvic acid, amino acid, and chitosan, respectively. Biostimulants improved stomatal conductance (58-189%), chlorophyll content (4-10%), nutrient uptake (15-109%), and water status (9-107%). They also reduced MDA content by 26-42%. PGPR (1.0 ml L‒1), vermicompost (2 ml L‒1), and fulvic acid (40 mg L‒1) were particularly effective, enhancing growth, yield, phenol, and mineral content while reducing nitrate levels under saline conditions. CONCLUSIONS: Biostimulants activated antioxidative defense systems, offering a sustainable, cost-effective solution for mitigating salt stress in hydroponic lettuce cultivation.


Subject(s)
Hydroponics , Lactuca , Lactuca/growth & development , Lactuca/drug effects , Lactuca/physiology , Salt Stress , Salinity , Chitosan/pharmacology , Mycorrhizae/physiology , Amino Acids/metabolism , Benzopyrans
2.
BMC Plant Biol ; 24(1): 648, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977994

ABSTRACT

BACKGROUND: A study on photosynthetic and enzyme activity changes and mineral content in lettuce under cadmium stress has been conducted in a greenhouse, utilizing the modulated effect of zinc (Zn) application in the nutrient solution on lettuce. Zn is a micronutrient that plays an essential role in various critical plant processes. Accordingly, three concentrations of Zn (0.022, 5, and 10 mg L- 1) were applied to hydroponically grown lettuce (Lactuca sativa L. cv. Ferdos) under three concentrations of Cd toxicity (0, 2.5, and 5 mg L- 1). RESULTS: The results showed that along with increasing concentrations of zinc in the nutrient solution, growth traits such as plant performance, chlorophyll index (SPAD), minimum fluorescence (F0), leaf zinc content (Zn), leaf and root iron (Fe) content, manganese (Mn), copper (Cu), and cadmium increased as well. The maximum amounts of chlorophyll a (33.9 mg g- 1FW), chlorophyll b (17.3 mg g- 1FW), carotenoids (10.7 mg g- 1FW), maximum fluorescence (Fm) (7.1), and variable fluorescence (Fv) (3.47) were observed in the treatment with Zn without Cd. Along with an increase in Cd concentration in the nutrient solution, the maximum amounts of leaf proline (5.93 mmol g- 1FW), malondialdehyde (MDA) (0.96 µm g- 1FW), hydrogen peroxide (H2O2) (22.1 µm g- 1FW), and superoxide dismutase (SOD) (90.3 Unit mg- 1 protein) were recorded in lettuce treated with 5 mg L- 1 of Cd without Zn. Additionally, the maximum activity of leaf guaiacol peroxidase (6.46 Unit mg- 1 protein) was obtained with the application of Cd at a 5 mg L- 1 concentration. CONCLUSIONS: In general, an increase in Zn concentration in the nutrient solution decreased the absorption and toxicity of Cd in lettuce leaves, as demonstrated in most of the measured traits. These findings suggest that supplementing hydroponic nutrient solutions with zinc can mitigate the detrimental effects of cadmium toxicity on lettuce growth and physiological processes, offering a promising strategy to enhance crop productivity and food safety in cadmium-contaminated environments.


Subject(s)
Cadmium , Chlorophyll , Hydroponics , Lactuca , Zinc , Lactuca/drug effects , Lactuca/growth & development , Lactuca/metabolism , Cadmium/toxicity , Zinc/metabolism , Chlorophyll/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Photosynthesis/drug effects
3.
Metabolomics ; 20(5): 106, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39306645

ABSTRACT

INTRODUCTION: Bisphenol A (BPA), an organic compound used to produce polycarbonate plastics and epoxy resins, has become a ubiquitous contaminant due to its high-volume production and constant release to the environment. Plant metabolomics can trace the stress effects induced by environmental contaminants to the variation of specific metabolites, making it an alternative way to study pollutants toxicity to plants. Nevertheless, there is an important knowledge gap in metabolomics applications in this area. OBJECTIVE: Evaluate the influence of BPA in French lettuce (Lactuca Sativa L. var capitata) leaves metabolic profile by gas chromatography coupled to mass spectrometry (GC-MS) using a hydroponic system. METHODS: Lettuces were cultivated in the laboratory to minimize biological variation and were analyzed 55 days after sowing (considered the plant's adult stage). Hexanoic and methanolic extracts with and without derivatization were prepared for each sample and analyzed by GC-MS. RESULTS: The highest number of metabolites was obtained from the hexanoic extract, followed by the derivatized methanolic extract. Although no physical differences were observed between control and contaminated lettuce leaves, the multivariate analysis determined a statistically significant difference between their metabolic profiles. Pathway analysis of the most affected metabolites showed that galactose metabolism, starch and fructose metabolism and steroid biosynthesis were significantly affected by BPA exposure. CONCLUSIONS: The preparation of different extracts from the same sample permitted the determination of metabolites with different physicochemical properties. BPA alters the leaves energy and membrane metabolism, plant growth could be affected at higher concentrations and exposition times.


Subject(s)
Benzhydryl Compounds , Gas Chromatography-Mass Spectrometry , Hydroponics , Lactuca , Metabolomics , Phenols , Plant Leaves , Benzhydryl Compounds/analysis , Lactuca/metabolism , Lactuca/drug effects , Lactuca/growth & development , Lactuca/chemistry , Gas Chromatography-Mass Spectrometry/methods , Plant Leaves/metabolism , Plant Leaves/drug effects , Phenols/metabolism , Phenols/analysis , Metabolomics/methods , Hydroponics/methods , Metabolome/drug effects
4.
Physiol Plant ; 176(3): e14357, 2024.
Article in English | MEDLINE | ID: mdl-38775128

ABSTRACT

The application of protein hydrolysates (PH) biostimulants is considered a promising approach to promote crop growth and resilience against abiotic stresses. Nevertheless, PHs bioactivity depends on both the raw material used for their preparation and the molecular fraction applied. The present research aimed at investigating the molecular mechanisms triggered by applying a PH and its fractions on plants subjected to nitrogen limitations. To this objective, an integrated transcriptomic-metabolomic approach was used to assess lettuce plants grown under different nitrogen levels and treated with either the commercial PH Vegamin® or its molecular fractions PH1(>10 kDa), PH2 (1-10 kDa) and PH3 (<1 kDa). Regardless of nitrogen provision, biostimulant application enhanced lettuce biomass, likely through a hormone-like activity. This was confirmed by the modulation of genes involved in auxin and cytokinin synthesis, mirrored by an increase in the metabolic levels of these hormones. Consistently, PH and PH3 upregulated genes involved in cell wall growth and plasticity. Furthermore, the accumulation of specific metabolites suggested the activation of a multifaceted antioxidant machinery. Notwithstanding, the modulation of stress-response transcription factors and genes involved in detoxification processes was observed. The coordinated action of these molecular entities might underpin the increased resilience of lettuce plants against nitrogen-limiting conditions. In conclusion, integrating omics techniques allowed the elucidation of mechanistic aspects underlying PH bioactivity in crops. Most importantly, the comparison of PH with its fraction PH3 showed that, except for a few peculiarities, the effects induced were equivalent, suggesting that the highest bioactivity was ascribable to the lightest molecular fraction.


Subject(s)
Lactuca , Nitrogen , Protein Hydrolysates , Lactuca/metabolism , Lactuca/genetics , Lactuca/drug effects , Lactuca/growth & development , Nitrogen/metabolism , Protein Hydrolysates/metabolism , Protein Hydrolysates/pharmacology , Gene Expression Regulation, Plant/drug effects , Metabolomics , Plant Growth Regulators/metabolism , Transcriptome/genetics , Multiomics
5.
Environ Sci Technol ; 58(39): 17441-17453, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39298521

ABSTRACT

This study provides a comprehensive investigation into the structure-dependent uptake, distribution, biotransformation, and potential toxicity effects of alkyl organophosphate esters (OPEs) in hydroponic lettuce (Lactuca sativa L.). Trimethyl, triethyl, and tripropyl phosphates were readily absorbed and acropetally translocated, while tributyl, tripentyl, and trihexyl phosphates accumulated mainly in lateral roots. The acropetal translocation potential was negatively associated with log Kow values. Trimethyl and triethyl phosphates are less prone to biotransformation, while a total of 14 novel hydrolysis, hydroxylated, and conjugated metabolites were identified for other OPEs using nontarget analysis. The extent of hydroxylation decreases from tripropyl phosphate to trihexyl phosphate, but multiple hydroxylations occurred more frequently on longer chain OPEs. Further comparative toxicity test revealed that hydrolyzed and hydroxylated metabolites have stronger toxic effects on Ca2+-dependent protein kinases (CDPK) than their parent OPEs. Dibutyl 3-hydroxybutyl phosphate particularly induces upregulation of CDPK in lateral roots of lettuce, probably associated with adenine reduction that may play an important role in the self-defense and detoxification processes. This study contributes to understanding the uptake and transformation behaviors of alkyl OPEs as well as their associations with a toxic effect on lettuce. This emphasizes the necessary evaluation of the environmental risk of the use of OPEs, particularly focusing on their hydroxylated metabolites.


Subject(s)
Esters , Lactuca , Organophosphates , Lactuca/drug effects , Lactuca/metabolism , Esters/metabolism , Organophosphates/toxicity , Plant Roots/metabolism , Plant Roots/drug effects
6.
J Toxicol Environ Health A ; 87(14): 579-591, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38708983

ABSTRACT

Natural products are usually considered harmless; however, these substances need to be consumed with caution. Biological assays with plant models are a suitable alternative for prospective studies to assess natural product-initiated toxicity. The aim of this study was to examine the toxic potential of leaf and flower extracts derived from Tropaeolum majus L. a widely used plant in traditional medicine. Seeds of Lactuca sativa L. were exposed to T. majus extracts and based upon the seedling growth curve values, the 50% Inhibition Concentration (IC50) was calculated and applied for cell cycle analysis exposure. Both extracts contained organic acids, proteins, amino acids, and terpene steroids. Sesquiterpene lactones and depside were detected in leaf extracts. The higher concentration tested exhibited a marked phytotoxic effect. The extracts induced clastogenic, aneugenic cytotoxic, and potential mutagenic effects. The possible relationships between the classes of compounds found in the extracts and effects on cells and DNA were determined.


Subject(s)
Cell Cycle , Germination , Lactuca , Plant Extracts , Tropaeolum , Plant Extracts/pharmacology , Plant Extracts/toxicity , Lactuca/drug effects , Lactuca/growth & development , Cell Cycle/drug effects , Germination/drug effects , Tropaeolum/chemistry , Plant Leaves/chemistry , Flowers/chemistry , Seeds/chemistry
7.
J Toxicol Environ Health A ; 87(18): 719-729, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38884257

ABSTRACT

Corn is the second most cultivated crop in Brazil, the number-one country in pesticide consumption. Chemical control of weeds is performed using herbicides such as S-metolachlor with pre- and post-emergence action and thus the toxicity of herbicides constitutes a matter of great concern. The present investigation aimed to examine the effects of an S-metolachlor-based herbicide on Lactuca sativa L. (lettuce) and Zea mays L. (maize) utilizing various bioassays. The test solutions were prepared from commercial products containing the active ingredient. Seeds from the plant models were exposed in petri dishes and maintained under biochemical oxygen demand (BOD) at 24°C. Distilled water was negative and aluminium positive control. Macroscopic analyses (germination and growth) were conducted for both plant species, and microscopic analysis (cell cycle and chromosomal alterations) were performed for L. sativa root tip cells. Detrimental interference of S-metolachlor-based herbicide was noted with lettuce for all parameters tested reducing plant germination by over 50% and the germination speed by over 45% and showing a significant decrease in mitotic index, from 16.25% to 9,28% even on the lowest concentration tested. In maize, there was no significant interference in plant germination; however, speed of germination was significantly hampered, reaching a 51.22% reduction for the highest concentration tested. Data demonstrated that the herbicide was toxic as evidenced by its phyto- and cytotoxicity in L. sativa L. and Z. mays L.


Subject(s)
Acetamides , Herbicides , Lactuca , Zea mays , Zea mays/drug effects , Herbicides/toxicity , Lactuca/drug effects , Lactuca/growth & development , Acetamides/toxicity , Germination/drug effects , Seeds/drug effects , Seeds/growth & development
8.
J Toxicol Environ Health A ; 87(22): 895-909, 2024 Nov 16.
Article in English | MEDLINE | ID: mdl-39225403

ABSTRACT

Humans have been using plants in the treatment of various diseases for millennia. Currently, even with allopathic medicines available, numerous populations globally still use plants for therapeutic purposes. Although plants constitute a safer alternative compared to synthetic agents, it is well established that medicinal plants might also exert adverse effects. Thus, the present investigation aimed to assess the phytotoxic, cytotoxic, and genotoxic potential of two plants from the Brazilian Cerrado used in popular medicine, Davilla nitida (Vahl) Kubitzki, and Davilla elliptica (A. St.-Hil.). To this end, germination, growth, and cell cycle analyses were conducted using the plant model Lactuca sativa. Seeds and roots were treated with 0.0625 to 1 g/L for 48 hr under controlled conditions. The germination test demonstrated significant phytotoxic effects for both species at the highest concentrations tested, while none of the extracts produced significant effects in the lettuce growth test. In the microscopic analyses, the aneugenic and cytotoxic action of D. elliptica was evident. In the case of D. nitida greater clastogenic action and induction of micronuclei, (MN) were noted suggesting that the damage initiated by exposure to these extracts was not repaired or led to apoptosis. These findings indicated that the observed plant damage was transmitted to the next generation of cells by way of MN. These differences in the action of the two species may not be attributed to qualitative variations in the composition of the extracts as both are similar, but to quantitative differences associated with synergistic and antagonistic interactions between the compounds present in these extracts.


Subject(s)
Dilleniaceae , Lactuca , Plant Extracts , Plants, Medicinal , Plants, Medicinal/toxicity , Plants, Medicinal/chemistry , Plant Extracts/toxicity , Lactuca/drug effects , Lactuca/growth & development , Dilleniaceae/chemistry , Germination/drug effects , Seeds/drug effects , Brazil , Cell Cycle/drug effects , Plant Roots/drug effects
9.
Ecotoxicol Environ Saf ; 282: 116761, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39047370

ABSTRACT

The widespread use of nanomaterials in agriculture may introduce multiple engineered nanoparticles (ENPs) into the environment, posing a combined risk to crops. However, the precise molecular mechanisms explaining how plant tissues respond to mixtures of individual ENPs remain unclear, despite indications that their combined toxicity differs from the summed toxicity of the individual ENPs. Here, we used a variety of methods including physicochemical, biochemical, and transcriptional analyses to examine the combined effects of graphene nanoplatelets (GNPs) and titanium dioxide nanoparticles (TiO2 NPs) on hydroponically exposed lettuce (Lactuca sativa) seedlings. Results indicated that the presence of GNPs facilitated the accumulation of Ti as TiO2 NPs in the seedling roots. Combined exposure to GNPs and TiO2 NPs caused less severe oxidative damage in the roots compared to individual exposures. Yet, GNPs and TiO2 NPs alone and in combination did not cause oxidative damage in the shoots. RNA sequencing data showed that the mixture of GNPs and TiO2 NPs led to a higher number of differentially expressed genes (DEGs) in the seedlings compared to exposure to the individual ENPs. Moreover, the majority of the DEGs encoding superoxide dismutase displayed heightened expression levels in the seedlings exposed to the combination of GNPs and TiO2 NPs. The level of gene ontology (GO) enrichment in the seedlings exposed to the mixture of GNPs and TiO2 NPs was found to be greater than the level of GO enrichment observed after exposure to isolated GNPs or TiO2 NPs. Furthermore, the signaling pathways, specifically the "MAPK signaling pathway-plant" and "phenylpropanoid biosynthesis," exhibited a close association with oxidative stress. This study has provided valuable insights into the molecular mechanisms underlying plant resistance against multiple ENPs.


Subject(s)
Graphite , Lactuca , Seedlings , Titanium , Titanium/toxicity , Lactuca/drug effects , Lactuca/genetics , Lactuca/growth & development , Graphite/toxicity , Seedlings/drug effects , Seedlings/genetics , Nanoparticles/toxicity , Oxidative Stress/drug effects , Plant Roots/drug effects , Gene Expression Regulation, Plant/drug effects , Metal Nanoparticles/toxicity , Superoxide Dismutase/metabolism
10.
Ecotoxicol Environ Saf ; 278: 116422, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705040

ABSTRACT

Although more attention has been paid to microplastics (MPs) pollution in environment, research on the synthetic influence of microplastic and heavy metals remains limited. To help fill this information gap, we investigated the adsorption behavior of virgin polyvinyl chloride microplastics (PVCMPs) (≤450 µm white spherical powder) on cadmium (II). The effects on seed germination, seedling growth, photosynthetic system, oxidative stress indicators of lettuce, and changes in Cd bioavailability were evaluated under Cd2+ (25 µmol/L), PVCMPs (200 mg/L), and PVCMP-Cd combined (200 mg/L + 25 µmol/L) exposures in hydroponic system. The results demonstrated that the PVCMPs effectively adsorbed Cd ions, which validated by the pseudo-second-order kinetic and the Langmuir isotherm models, indicating the sorption of Cd2+ on the PVCMPs was primary chemisorption and approximates monomolecular layer sorption. Compared to MPs, Cd significantly inhibits plant seed germination and seedling growth and development. However, Surprising improvement in seed germination under PVCMPs-Cd exposure was observed. Moreover, Cd2+ and MPs alone or combined stress caused oxidative stress with reactive oxygen species (ROS) including H2O2, O2- and Malondialdehyde (MDA) accumulation in plants, and substantially damaged to photosynthesis. With the addition of PVCMPs, the content of Cd in the leaves significantly (P<0.01) decreased by 1.76-fold, and the translocation factor and Cd2+removal rate in the water substantially (P<0.01) decreased by 6.73-fold and 1.67-fold, respectively in contrast to Cd2+ stress alone. Therefore, it is concluded the PVCMP was capable of reducing Cd contents in leaves, alleviating Cd toxicity in lettuce. Notably, this study provides a scientific foundation and reference for comprehending the toxicological interactions between microplastics and heavy metals in the environment.


Subject(s)
Cadmium , Germination , Hydroponics , Lactuca , Microplastics , Oxidative Stress , Water Pollutants, Chemical , Lactuca/drug effects , Lactuca/growth & development , Lactuca/metabolism , Cadmium/toxicity , Microplastics/toxicity , Germination/drug effects , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Photosynthesis/drug effects , Adsorption , Polyvinyl Chloride , Reactive Oxygen Species/metabolism
11.
Ecotoxicology ; 33(8): 893-904, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39031252

ABSTRACT

The majority of allelopathic studies on invasive plants have focused primarily on their leaf-mediated allelopathy, with relatively little attention paid to their root-mediated allelopathy, especially co-allelopathy mediated by both leaves and roots. It is conceivable that the diversified composition of acid rain may influence the allelopathy of invasive plants. This study aimed to evaluate the leaf and root-mediated co-allelopathy of the invasive plant Solidago canadensis L. under acid rain with different nitrogen-sulfur ratios (N/S) on Lactuca sativa L. via a hydroponic incubation. The root-mediated allelopathy of S. canadensis was found to be more pronounced than the leaf-mediated allelopathy of S. canadensis with nitric acid at pH 4.5, but the leaf-mediated allelopathy of S. canadensis was observed to be more pronounced than the root-mediated allelopathy of S. canadensis with sulfuric-rich acid at pH 4.5. The leaf and root-mediated co-allelopathy of S. canadensis was more pronounced than that of either part alone with sulfuric acid at pH 5.6 and nitric acid at pH 4.5, but not with nitric-rich acid at pH 4.5 and sulfuric-rich acid at pH 4.5. Sulfuric acid and sulfuric-rich acid with stronger acidity intensified the leaf-mediated allelopathy of S. canadensis. Nitric acid and nitric-rich acid attenuated the leaf-mediated allelopathy of S. canadensis, and most types of acid rain (especially nitric acid and nitric-rich acid) also attenuated the root-mediated allelopathy of S. canadensis and the leaf and root-mediated co-allelopathy of S. canadensis. Sulfuric acid and sulfuric-rich acid produced a more pronounced effect than nitric acid and nitric-rich acid. Hence, the N/S ratio of acid rain influenced the allelopathy of S. canadensis under acid rain with multiple N/S ratios.


Subject(s)
Acid Rain , Allelopathy , Nitrogen , Plant Leaves , Plant Roots , Solidago , Sulfur , Solidago/physiology , Acid Rain/toxicity , Introduced Species , Lactuca/drug effects
12.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001005

ABSTRACT

Salinity stress is a common challenge in plant growth, impacting seed quality, germination, and general plant health. Sodium chloride (NaCl) ions disrupt membranes, causing ion leakage and reducing seed viability. Gibberellic acid (GA3) treatments have been found to promote germination and mitigate salinity stress on germination and plant growth. 'Bauer' and 'Muir' lettuce (Lactuca sativa) seeds were soaked in distilled water (control), 100 mM NaCl, 100 mM NaCl + 50 mg/L GA3, and 100 mM NaCl + 150 mg/L GA3 in Petri dishes and kept in a dark growth chamber at 25 °C for 24 h. After germination, seedlings were monitored using embedded cameras, capturing red, green, and blue (RGB) images from seeding to final harvest. Despite consistent germination rates, 'Bauer' seeds treated with NaCl showed reduced germination. Surprisingly, the 'Muir' cultivar's final dry weight differed across treatments, with the NaCl and high GA3 concentration combination yielding the poorest results (p < 0.05). This study highlights the efficacy of GA3 applications in improving germination rates. However, at elevated concentrations, it induced excessive hypocotyl elongation and pale seedlings, posing challenges for two-dimensional imaging. Nonetheless, a sigmoidal regression model using projected canopy size accurately predicted dry weight across growth stages and cultivars, emphasizing its reliability despite treatment variations (R2 = 0.96, RMSE = 0.11, p < 0.001).


Subject(s)
Germination , Gibberellins , Lactuca , Seedlings , Seeds , Gibberellins/pharmacology , Lactuca/growth & development , Lactuca/drug effects , Seedlings/drug effects , Seedlings/growth & development , Germination/drug effects , Germination/physiology , Seeds/drug effects , Seeds/growth & development , Salt Stress/drug effects , Sodium Chloride/pharmacology
13.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273249

ABSTRACT

Indoor farming systems enable plant production in precisely controlled environments. However, implementing stable growth conditions and the absence of stress stimulants can weaken plants' defense responses and limit the accumulation of bioactive, health-beneficial phytochemicals. A potential solution is the controlled application of stressors, such as supplemental ultraviolet (UV) light. To this end, we analyzed the efficiency of short-term pre-harvest supplementation of the red-green-blue (RGB, LED) spectrum with ultraviolet B (UV-B) or C (UV-C) light to boost phytochemical synthesis. Additionally, given the biological harm of UV radiation due to high-energy photons, we monitored plants' photosynthetic activity during treatment and their morphology as well as sensory attributes after the treatment. Our analyses showed that UV-B radiation did not negatively impact photosynthetic activity while significantly increasing the overall antioxidant potential of lettuce through enhanced levels of secondary metabolites (total phenolics, flavonoids, anthocyanins), carotenoids, and ascorbic acid. On the contrary, UV-C radiation-induced anthocyanin accumulation in the green leaf cultivar significantly harmed the photosynthetic apparatus and limited plant growth. Taken together, we showed that short-term UV-B light supplementation is an efficient method for lettuce biofortification with healthy phytochemicals, while UV-C treatment is not recommended due to the negative impact on the quality (morphology, sensory properties) of the obtained leafy products. These results are crucial for understanding the potential of UV light supplementation for producing functional plants.


Subject(s)
Antioxidants , Lactuca , Photosynthesis , Ultraviolet Rays , Lactuca/metabolism , Lactuca/radiation effects , Lactuca/drug effects , Lactuca/growth & development , Photosynthesis/drug effects , Photosynthesis/radiation effects , Antioxidants/metabolism , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/drug effects , Flavonoids/metabolism , Phytochemicals/metabolism , Carotenoids/metabolism , Anthocyanins/metabolism , Ascorbic Acid/metabolism , Phenols/metabolism
14.
Environ Geochem Health ; 46(10): 371, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167279

ABSTRACT

Copper-based nanoparticles (NPs) are gradually being introduced as sustainable agricultural nanopesticides. However, the effects of NPs on plants requires carefully evaluation to ensure their safe utilization. In this study, leaves of 2-week-old lettuce (Lactuca sativa L.) were exposed to copper oxide nanoparticles (CuO-NPs, 0 [CK], 100 [T1], and 1000 [T2] mg/L) for 15 days. A significant Cu accumulation (up to 1966 mg/kg) was detected in lettuce leaves. The metabolomics revealed a total of 474 metabolites in lettuce leaves, and clear differences were observed in the metabolite profiles of control and CuO-NPs treated leaves. Generally, phenolic acids and alkaloids, which are important antioxidants, were significantly increased (1.26-4.53 folds) under foliar exposure to NPs; meanwhile, all the significantly affected flavonoids were down-regulated after CuO-NP exposure, indicating these flavonoids were consumed under oxidative stress. Succinic and citric acids, which are key components of the tricarboxylic acid cycle, were especially increased under T2, suggesting the energy and carbohydrate metabolisms were enhanced under high-concentration CuO-NP treatment. There was also both up- and down-regulation of fatty acids, suggesting cell membrane fluidity and function responded to CuO-NPs. Galactinol, which is related to galactose metabolism, and xanthosine, which is crucial in purine and caffeine metabolism, were down-regulated under T2, indicating decreased stress resistance and disturbed nucleotide metabolism under the high CuO-NP dose. Moreover, the differentially accumulated metabolites were significantly associated with plant growth and its antioxidant ability. Future work should focus on controlling the overuse or excessive release of NPs into agricultural ecosystems to limit their adverse effects.


Subject(s)
Antioxidants , Carbon , Copper , Lactuca , Plant Leaves , Lactuca/metabolism , Lactuca/drug effects , Antioxidants/metabolism , Copper/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Carbon/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Metabolomics
15.
Photochem Photobiol Sci ; 20(6): 761-771, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34048001

ABSTRACT

Photodynamic inactivation (PDI) is a fast and effective non-heat sterilization technology. This study established an efficient blue light-emitting diode (LED) PDI with the photosensitizer sodium magnesium chlorophyllin (SMC) to eradicate Staphylococcus aureus in food. The antibacterial mechanisms were determined by evaluating DNA integrity, protein changes, morphological alteration, and the potency of PDI to eradicate S. aureus on lettuce was evaluated. Results showed that planktonic S. aureus could not be clearly observed on the medium after treatment with 5.0 µmol/L SMC for 10 min (1.14 J/cm2). Bacterial cell DNA and protein were susceptible to SMC-mediated PDI, and cell membranes were found to be disrupted. Moreover, SMC-mediated PDI effectively reduced 8.31 log CFU/mL of S. aureus on lettuce under 6.84 J/cm2 radiant exposure (30 min) with 100 µmol/L SMC, and PDI displayed a potent ability to restrain the weight loss as well as retard the changes of color difference of the lettuce during 7 day storage. The study will enrich our understanding of the inactivation of S. aureus by PDI, allowing for the development of improved strategies to eliminate bacteria in the food industry.


Subject(s)
Anti-Bacterial Agents/pharmacology , Lactuca/drug effects , Photosensitizing Agents/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Chlorophyllides/chemistry , Chlorophyllides/pharmacology , Lactuca/metabolism , Lactuca/microbiology , Magnesium/chemistry , Magnesium/pharmacology , Microbial Sensitivity Tests , Photosensitizing Agents/chemistry , Sodium/chemistry , Sodium/pharmacology
16.
J Nat Prod ; 84(11): 2904-2913, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34670365

ABSTRACT

A dereplication strategy using UPLC-QTOF/MSE, the HMAI method, and NMR spectroscopy led to the identification of five main steroidal saponins (1-5), including three previously unknown compounds named macroacanthosides A-C (3-5), in a bioactive fraction of Agave macroacantha. The major saponins were isolated, and some of them together with the saponin-rich fraction were then evaluated for phytotoxicity on a standard target species, Lactuca sativa. The inhibition values exhibited by the pure compounds were confirmed to be in agreement with the phytotoxicity of the saponin-rich fraction, which suggests that the saponin fraction could be applied successfully as an agrochemical without undergoing any further costly and/or time-consuming purification processes. The NMR data of the pure compounds as well as of those corresponding to the same compounds in the fraction were comparable, which indicated that the main saponins could be identified by means of this replication workflow and that no standards are required.


Subject(s)
Agave/chemistry , Saponins/isolation & purification , Lactuca/drug effects , Lactuca/growth & development , Magnetic Resonance Spectroscopy , Saponins/chemistry , Saponins/toxicity
17.
Biosci Biotechnol Biochem ; 85(6): 1364-1370, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33851984

ABSTRACT

Mushrooms of the Omphalotus genus are known to be rich in secondary metabolites. In the quest for new bioactive compounds, we analyzed the compounds isolated from the mycelium of the poisonous mushroom Omphalotus japonicus. As a result, a new polyisoprenepolyol, which was named omphaloprenol A, was identified, along with known substances such as hypsiziprenol A10 and A11, illudin S, and ergosterol. The chemical structure of omphaloprenol A was elucidated by nuclear magnetic resonance and infrared spectroscopies and mass spectrometry, and its bioactivity was investigated. Omphaloprenol A showed growth promoting activity against the root of lettuce seeds and cytotoxicity against HL60 cells. To the best of our knowledge, this is the first report on the isolation of a polyisoprenepolyol compound from Omphalotaceae mushrooms.


Subject(s)
Agaricales/chemistry , Mycelium/chemistry , HL-60 Cells , Humans , Lactuca/drug effects
18.
Ecotoxicol Environ Saf ; 207: 111379, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33017691

ABSTRACT

The use of irrigation water containing arsenic (As) had led to large areas of As-contaminated farmland, and as a result, plants and food have become severely poisoned. Humic acid (HA) can be complexed with metals, which in turn affects the metals' behavior. Herein, we explored the accumulation of arsenate in lettuce treated with different concentrations of arsenate and studied the effects of HA on the accumulation and toxicity of arsenate. The addition of HA did not cause significant changes in the arsenate content in lettuce but had a significant effect on the activity of antioxidant enzymes, which improved the antioxidant capability of the lettuce plants. Furthermore, HA promoted the accumulation of nutrients, such as magnesium (Mg), calcium (Ca), molybdenum (Mo) and manganese (Mn), in the leaves. Arsenate disrupted metabolic pathways, such as amino acid metabolism, carbohydrate metabolism, and aminoacyl-tRNA biosynthesis. The addition of HA increased the contents of amino acids and sugars, thereby improving lettuce growth. The present study explored the effects of HA on As accumulation and related physiological changes (antioxidant enzyme activities, absorption of nutrients and metabolic mechanisms) and provided insights into the regulation of As contamination by HA, which is relatively inexpensive.


Subject(s)
Arsenates/toxicity , Humic Substances/analysis , Antioxidants/metabolism , Arsenates/metabolism , Arsenic/metabolism , Lactuca/drug effects , Manganese/metabolism , Minerals/metabolism , Plant Leaves/metabolism
19.
Ecotoxicol Environ Saf ; 208: 111675, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396007

ABSTRACT

Metal bioavailability controls its behaviors in soil-plant system, especially involved in biochar amendment. This study compared a rhizospheric pore-water extraction against a BCR sequential extraction method to understand cadmium (Cd) bioavailability in two typical Chinese soils. Soils were spiked with five levels of Cd (CdCl2) and remediated with 3% corn-straw derived biochar. After 60 days of lettuce growth, Cd accumulation and enzyme activities in tissues were analyzed. Results showed that biochar increased soil properties (pH, CEC and SOM) compared to un-amended soils, but decreased contents of bioavailable Cd in soil pore-water (Cdpore-water) and BCR extracted Cd (CdFi+Fii). Contents of Cdpore-water were lower in yellow-brown soils than that in red soils. Pearson analysis showed that bioavailable Cd is negatively correlated with soil pH and CEC (p < 0.05). Cd accumulation in lettuce roots and leaves both were decreased by biochar addition, and the established linear equations proved that soil Cdpore-water is the best predictor for Cd accumulation in lettuce roots (r2 = 0.964) and in leaves (r2 = 0.953), followed by CdFi+Fii. Transfer factor (TF) values of Cd from roots to leaves were lower than 1, and slightly better correlated with soil Cdpore-water (r = -0.674, p < 0.01) than CdFi+Fii (r = -0.615, p < 0.01). Aggregated boosted tree (ABT) analyses indicated that soil properties together with Cdpore-water contribute more than 50% to root enzyme activities. Collectively, soil Cdpore-water is a promising predictor of Cd bioavailability, accumulation and toxicity in soil-plant system with biochar addition.


Subject(s)
Bioaccumulation/drug effects , Cadmium/toxicity , Charcoal/chemistry , Lactuca/drug effects , Soil Pollutants/toxicity , Biological Availability , Biological Transport , Cadmium/metabolism , Lactuca/metabolism , Models, Theoretical , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Stems/chemistry , Rhizosphere , Soil/chemistry , Soil Pollutants/metabolism , Water/chemistry , Zea mays/chemistry
20.
Chem Biodivers ; 18(3): e2000928, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33555653

ABSTRACT

Nine new ß-resorcylic acid derivatives, (15S)-de-O-methyllasiodiplodin (1), (13S,15S)-13-hydroxy-de-O-methyllasiodiplodin (2), (14S,15S)-14-hydroxy-de-O-methyllasiodiplodin (3), (13R,14S,15S)-13,14-dihydroxy-de-O-methyllasiodiplodin (4), ethyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate (5), ethyl 2,4-dihydroxy-6-(8-hydroxyheptyl)benzoate (6), ethyl 2,4-dihydroxy-6-(4-methoxycarbonylbutyl)benzoate (7), 3-(2-ethoxycarbonyl-3,5-dihydroxyphenyl)propionic acid (8), and isobutyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate (9), together with a known ethyl 2,4-dihydroxy-6-(8-oxononyl)benzoate (10) were obtained from Lasiodiplodia theobromae GC-22. The structures of these compounds were elucidated by extensive spectroscopic analyses. Compounds 1, 3, and 6 showed growth inhibitory effects against Digitaria ciliaris. Conversely, treatment with compounds 5, 6, 7, 9, and 10 stimulated elongation activity toward the root of Lactuca sativa. These data expand the repertoire of new ß-resorcylic acid derivatives that may function as lead compounds in the synthesis of new agrochemical agents.


Subject(s)
Agrochemicals/pharmacology , Ascomycota/chemistry , Digitaria/drug effects , Hydroxybenzoates/pharmacology , Lactuca/drug effects , Agrochemicals/chemistry , Agrochemicals/isolation & purification , Digitaria/growth & development , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Lactuca/growth & development , Molecular Structure , Plant Roots/drug effects , Plant Roots/growth & development , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL