Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters

Publication year range
1.
J Headache Pain ; 25(1): 102, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890563

ABSTRACT

BACKGROUND: Large conductance  calcium-activated potassium (BKCa) channels have been implicated in the neurobiological underpinnings of migraine. Considering the clinical similarities between migraine and persistent post-traumatic headache (PPTH), we aimed to examine whether MaxiPost (a BKCa channel opener) could induce migraine-like headache in persons with PPTH. METHODS: This is a randomized double-blind, placebo-controlled, two-way crossover study from September 2023 to December 2023. Eligible participants were adults with PPTH after mild traumatic brain injury who reported having no personal history of migraine. The randomized participants received a single dose of either MaxiPost (0.05 mg/min) or placebo (isotonic saline) that was infused intravenously over 20 minutes. The two experiment sessions were scheduled at least one week apart to avoid potential carryover effects. The primary endpoint was the induction of migraine-like headache after MaxiPost as compared to placebo within 12 hours of drug administration. The secondary endpoint was the area under the curve (AUC) values for headache intensity scores between MaxiPost and placebo over the same 12-hour observation period. RESULTS: Twenty-one adult participants (comprising 14 females and 7 males) with PPTH were enrolled and completed both experiment sessions. The proportion of participants who developed migraine-like headache was 11 (52%) of 21 participants after MaxiPost infusion, in contrast to four (19%) participants following placebo (P = .02). Furthermore, the median headache intensity scores, represented by AUC values, were higher following MaxiPost than after placebo (P < .001). CONCLUSIONS: Our results indicate that BKCa channel opening can elicit migraine-like headache in persons with PPTH. Thus, pharmacologic blockade of BKCa channels might present a novel avenue for drug discovery. Additional investigations are nonetheless needed to confirm these insights and explore the therapeutic prospects of BKCa channel blockers in managing PPTH. GOV IDENTIFIER: NCT05378074.


Subject(s)
Cross-Over Studies , Post-Traumatic Headache , Humans , Female , Male , Adult , Double-Blind Method , Post-Traumatic Headache/drug therapy , Post-Traumatic Headache/etiology , Migraine Disorders/drug therapy , Middle Aged , Brain Concussion/complications , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Young Adult , Large-Conductance Calcium-Activated Potassium Channels
2.
J Biol Chem ; 298(9): 102326, 2022 09.
Article in English | MEDLINE | ID: mdl-35933015

ABSTRACT

Atrial fibrillation is the most common sustained cardiac arrhythmia in humans. Current atrial fibrillation antiarrhythmic drugs have limited efficacy and carry the risk of ventricular proarrhythmia. GsMTx4, a mechanosensitive channel-selective inhibitor, has been shown to suppress arrhythmias through the inhibition of stretch-activated channels (SACs) in the heart. The cost of synthesizing this peptide is a major obstacle to clinical use. Here, we studied two types of short peptides derived from GsMTx4 for their effects on a stretch-activated big potassium channel (SAKcaC) from the heart. Type I, a 17-residue peptide (referred to as Pept 01), showed comparable efficacy, whereas type II (i.e., Pept 02), a 10-residue peptide, exerted even more potent inhibitory efficacy on SAKcaC compared with GsMTx4. We identified through mutagenesis important sequences required for peptide functions. In addition, molecular dynamics simulations revealed common structural features with a hydrophobic head followed by a positively charged protrusion that may be involved in peptide channel-lipid interactions. Furthermore, we suggest that these short peptides may inhibit SAKcaC through a specific modification to the mechanogate, as the inhibitory effects for both types of peptides were mostly abolished when tested with a mechano-insensitive channel variant (STREX-del) and a nonmechanosensitive big potassium (mouse Slo1) channel. These findings may offer an opportunity for the development of a new class of drugs in the treatment of cardiac arrhythmia generated by excitatory SACs in the heart.


Subject(s)
Anti-Arrhythmia Agents , Intercellular Signaling Peptides and Proteins , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Neurotoxins , Peptides , Spider Venoms , Animals , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/therapeutic use , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Lipids , Mice , Neurotoxins/chemistry , Neurotoxins/pharmacology , Peptides/chemistry , Peptides/pharmacology , Spider Venoms/chemistry , Spider Venoms/pharmacology , Spider Venoms/therapeutic use
3.
Proc Natl Acad Sci U S A ; 117(11): 6023-6034, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32132200

ABSTRACT

Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the gene KCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) in KCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354S channel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354S cells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354S channel, but not the BKWT channel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.


Subject(s)
Cerebellum/pathology , Chlorzoxazone/administration & dosage , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Mitochondria/pathology , Spinocerebellar Degenerations/genetics , Adolescent , Animals , Animals, Newborn , Cell Line , Cerebellum/cytology , DNA Mutational Analysis , Dependovirus/genetics , Disease Models, Animal , Female , Gene Knockdown Techniques , Genetic Vectors/genetics , Humans , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Loss of Function Mutation , Mice , Oocytes , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spinocerebellar Degenerations/diagnosis , Spinocerebellar Degenerations/drug therapy , Spinocerebellar Degenerations/pathology , Transfection , Exome Sequencing , Xenopus
4.
Mol Pharmacol ; 101(3): 132-143, 2022 03.
Article in English | MEDLINE | ID: mdl-34969832

ABSTRACT

Calcium- and voltage-gated K+ channels of large conductance (BKs) are expressed in the cell membranes of all excitable tissues. Currents mediated by BK channel-forming slo1 homotetramers are consistently inhibited by increases in membrane cholesterol (CLR). The molecular mechanisms leading to this CLR action, however, remain unknown. Slo1 channels are activated by increases in calcium (Ca2+) nearby Ca2+-recognition sites in the slo1 cytosolic tail: one high-affinity and one low-affinity site locate to the regulator of conductance for K+ (RCK) 1 domain, whereas another high-affinity site locates within the RCK2 domain. Here, we first evaluated the crosstalking between Ca2+ and CLR on the function of slo1 (cbv1 isoform) channels reconstituted into planar lipid bilayers. CLR robustly reduced channel open probability while barely decreasing unitary current amplitude, with CLR maximal effects being observed at 10-30 µM internal Ca2+ CLR actions were not only modulated by internal Ca2+ levels but also disappeared in absence of this divalent. Moreover, in absence of Ca2+, BK channel-activating concentrations of magnesium (10 mM) did not support CLR action. Next, we evaluated CLR actions on channels where the different Ca2+-sensing sites present in the slo1 cytosolic domain became nonfunctional via mutagenesis. CLR still reduced the activity of low-affinity Ca2+ (RCK1:E379A, E404A) mutants. In contrast, CLR became inefficacious when both high-affinity Ca2+ sites were mutated (RCK1:D367A,D372A and RCK2:D899N,D900N,D901N,D902N,D903N), yet still was able to decrease the activity of each high-affinity site mutant. Therefore, BK channel inhibition by CLR selectively requires optimal levels of Ca2+ being recognized by either of the slo1 high-affinity Ca2+-sensing sites. SIGNIFICANCE STATEMENT: Results reveal that inhibition of calcium/voltage-gated K+ channel of large conductance (BK) (slo1) channels by membrane cholesterol requires a physiologically range of internal calcium (Ca2+) and is selectively linked to the two high-affinity Ca2+-sensing sites located in the cytosolic tail domain, which underscores that Ca2+ and cholesterol actions are allosterically coupled to the channel gate. Cholesterol modification of BK channel activity likely contributes to disruption of normal physiology by common health conditions that are triggered by disruption of cholesterol homeostasis.


Subject(s)
Calcium/metabolism , Cholesterol/metabolism , Cytosol/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Animals , Calcium Channel Blockers/pharmacology , Cytosol/drug effects , HEK293 Cells , Humans , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , Protein Structure, Secondary , Rats
5.
Biol Reprod ; 106(3): 441-448, 2022 03 19.
Article in English | MEDLINE | ID: mdl-34791046

ABSTRACT

Nuclear factor kappa B (NF-κB) transcriptionally regulates several genes involved in initiating uterine contractions. A key factor controlling NF-κB activity is its translocation to the nucleus. In myometrial smooth muscle cells (MSMCs), this translocation can be stimulated by the inflammatory molecule lipopolysaccharide (LPS) or by blocking the potassium calcium-activated channel subfamily M alpha 1 (KCNMA1 or BKCa) with paxilline (PAX). Here, we sought to determine the mechanism by which blocking BKCa causes NF-κB-p65 translocation to the nucleus in MSMCs. We show that LPS- and PAX-induced NF-κB-p65 translocation are similar in that neither depends on several mitogen-activated protein kinase pathways, but both require increased intracellular calcium (Ca2+). However, the nuclear transport inhibitor wheat germ agglutinin prevented NF-κB-p65 nuclear translocation in response to LPS but not in response to PAX. Blocking BKCa located on the plasma membrane resulted in a transient NF-κB-p65 nuclear translocation that was not sufficient to induce expression of its transcriptional target, suggesting a role for intracellular BKCa. We report that BKCa also localizes to the nucleus and that blocking nuclear BKCa results in an increase in nuclear Ca2+ in MSMCs. Together, these data suggest that BKCa localized on the nuclear membrane plays a key role in regulating nuclear Ca2+ and NF-κB-p65 nuclear translocation in MSMCs.


Subject(s)
Active Transport, Cell Nucleus , Calcium , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Transcription Factor RelA , Calcium/metabolism , Female , Humans , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Lipopolysaccharides , Pregnancy , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
6.
J Mol Cell Cardiol ; 158: 49-62, 2021 09.
Article in English | MEDLINE | ID: mdl-33974928

ABSTRACT

AIMS: Atrial Fibrillation (AF) is an arrhythmia of increasing prevalence in the aging populations of developed countries. One of the important indicators of AF is sustained atrial dilatation, highlighting the importance of mechanical overload in the pathophysiology of AF. The mechanisms by which atrial cells, including fibroblasts, sense and react to changing mechanical forces, are not fully elucidated. Here, we characterise stretch-activated ion channels (SAC) in human atrial fibroblasts and changes in SAC- presence and activity associated with AF. METHODS AND RESULTS: Using primary cultures of human atrial fibroblasts, isolated from patients in sinus rhythm or sustained AF, we combine electrophysiological, molecular and pharmacological tools to identify SAC. Two electrophysiological SAC- signatures were detected, indicative of cation-nonselective and potassium-selective channels. Using siRNA-mediated knockdown, we identified the cation-nonselective SAC as Piezo1. Biophysical properties of the potassium-selective channel, its sensitivity to calcium, paxilline or iberiotoxin (blockers), and NS11021 (activator), indicated presence of calcium-dependent 'big potassium channels' (BKCa). In cells from AF patients, Piezo1 activity and mRNA expression levels were higher than in cells from sinus rhythm patients, while BKCa activity (but not expression) was downregulated. Both Piezo1-knockdown and removal of extracellular calcium from the patch pipette resulted in a significant reduction of BKCa current during stretch. No co-immunoprecipitation of Piezo1 and BKCa was detected. CONCLUSIONS: Human atrial fibroblasts contain at least two types of ion channels that are activated during stretch: Piezo1 and BKCa. While Piezo1 is directly stretch-activated, the increase in BKCa activity during mechanical stimulation appears to be mainly secondary to calcium influx via SAC such as Piezo1. During sustained AF, Piezo1 is increased, while BKCa activity is reduced, highlighting differential regulation of both channels. Our data support the presence and interplay of Piezo1 and BKCa in human atrial fibroblasts in the absence of physical links between the two channel proteins.


Subject(s)
Arrhythmia, Sinus/metabolism , Atrial Fibrillation/metabolism , Atrial Remodeling/genetics , Heart Atria/metabolism , Ion Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Myofibroblasts/metabolism , Signal Transduction/genetics , Adult , Aged , Aged, 80 and over , Arrhythmia, Sinus/pathology , Arrhythmia, Sinus/surgery , Atrial Fibrillation/pathology , Atrial Fibrillation/surgery , Atrial Remodeling/drug effects , Calcium/metabolism , Cells, Cultured , Female , Gene Knockdown Techniques , Heart Atria/pathology , Humans , Indoles/pharmacology , Ion Channels/genetics , Ion Transport/drug effects , Ion Transport/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/agonists , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Male , Middle Aged , Peptides/pharmacology , Signal Transduction/drug effects , Tetrazoles/pharmacology , Thiourea/analogs & derivatives , Thiourea/pharmacology , Transfection
7.
Cancer Sci ; 112(9): 3769-3783, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34181803

ABSTRACT

The large-conductance Ca2+ -activated K+ channel KCa 1.1 plays a pivotal role in tumor development and progression in several solid cancers. The three-dimensional (3D) in vitro cell culture system is a powerful tool for cancer spheroid formation, and mimics in vivo solid tumor resistance to chemotherapy in the tumor microenvironment (TME). KCa 1.1 is functionally expressed in osteosarcoma and chondrosarcoma cell lines. KCa 1.1 activator-induced hyperpolarizing responses were significantly larger in human osteosarcoma MG-63 cells isolated from 3D spheroid models compared with in those from adherent 2D monolayer cells. The present study investigated the mechanisms underlying the upregulation of KCa 1.1 and its role in chemoresistance using a 3D spheroid model. KCa 1.1 protein expression levels were significantly elevated in the lipid-raft-enriched compartments of MG-63 spheroids without changes in its transcriptional level. 3D spheroid formation downregulated the expression of the ubiquitin E3 ligase FBXW7, which is an essential contributor to KCa 1.1 protein degradation in breast cancer. The siRNA-mediated inhibition of FBXW7 in MG-63 cells from 2D monolayers upregulated KCa 1.1 protein expression. Furthermore, a treatment with a potent and selective KCa 1.1 inhibitor overcame the chemoresistance of the MG-63 and human chondrosarcoma SW-1353 spheroid models to paclitaxel, doxorubicin, and cisplatin. Among several multidrug resistance ATP-binding cassette transporters, the expression of the multidrug resistance-associated protein MRP1 was upregulated in both spheroids and restored by the inhibition of KCa 1.1. Therefore, the pharmacological inhibition of KCa 1.1 may be an attractive new strategy for acquiring resistance to chemotherapeutic drugs in the TME of KCa 1.1-positive sarcomas.


Subject(s)
Bone Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Osteosarcoma/metabolism , Spheroids, Cellular/metabolism , Up-Regulation/genetics , Antineoplastic Agents/pharmacology , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , Doxorubicin/pharmacology , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Humans , Indoles/pharmacology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Osteosarcoma/pathology , Paclitaxel/pharmacology , Potassium Channel Blockers/pharmacology , RNA, Small Interfering/genetics , Transfection , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
8.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34948357

ABSTRACT

Several types of K+ channels play crucial roles in tumorigenicity, stemness, invasiveness, and drug resistance in cancer. Spheroid formation of human prostate cancer (PC) LNCaP cells with ultra-low attachment surface cultureware induced the up-regulation of cancer stem cell markers, such as NANOG, and decreased the protein degradation of the Ca2+-activated K+ channel KCa1.1 by down-regulating the E3 ubiquitin ligase, FBXW7, compared with LNCaP monolayers. Accordingly, KCa1.1 activator-induced hyperpolarizing responses were larger in isolated cells from LNCaP spheroids. The pharmacological inhibition of KCa1.1 overcame the resistance of LNCaP spheroids to antiandrogens and doxorubicin (DOX). The protein expression of androgen receptors (AR) was significantly decreased by LNCaP spheroid formation and reversed by KCa1.1 inhibition. The pharmacological and genetic inhibition of MDM2, which may be related to AR protein degradation in PC stem cells, revealed that MDM2 was responsible for the acquisition of antiandrogen resistance in LNCaP spheroids, which was overcome by KCa1.1 inhibition. Furthermore, a member of the multidrug resistance-associated protein subfamily of ABC transporters, MRP5 was responsible for the acquisition of DOX resistance in LNCaP spheroids, which was also overcome by KCa1.1 inhibition. Collectively, the present results suggest the potential of KCa1.1 in LNCaP spheroids, which mimic PC stem cells, as a therapeutic target for overcoming antiandrogen- and DOX-resistance in PC cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Prostatic Neoplasms/physiopathology , Androgen Antagonists/therapeutic use , Cell Line, Tumor , Doxorubicin/therapeutic use , Gene Expression Regulation, Neoplastic , Humans , Male , Multidrug Resistance-Associated Proteins , Neoplastic Stem Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Spheroids, Cellular
10.
Bioorg Chem ; 105: 104404, 2020 12.
Article in English | MEDLINE | ID: mdl-33142229

ABSTRACT

Quercetin represents one of the most studied dietary flavonoids; it exerts a panel of pharmacological activities particularly on the cardiovascular system. Stimulation of vascular KCa1.1 channels contributes to its vasorelaxant activity, which is, however, counteracted in part by its concomitant stimulation of CaV1.2 channels. Therefore, several quercetin hybrid derivatives were designed and synthesized to produce a more selective KCa1.1 channel stimulator, then assessed both in silico and in vitro. All the derivatives interacted with the KCa1.1 channel with similar binding energy values. Among the selected derivatives, 1E was a weak vasodilator, though displaying an interesting CaV1.2 channel blocking activity. The lipoyl derivatives 1F and 3F, though showing pharmacological and electrophysiological features similar to those of quercetin, seemed to be more effective as KCa1.1 channel stimulators as compared to the parent compound. The strategy pursued demonstrated how different chemical substituents on the quercetin core can change/invert its effect on CaV1.2 channels or enhance its KCa1.1 channel stimulatory activity, thus opening new avenues for the synthesis of efficacious vasorelaxant quercetin hybrids.


Subject(s)
Drug Design , Esters/pharmacology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Quercetin/pharmacology , Animals , Dose-Response Relationship, Drug , Esters/chemical synthesis , Esters/chemistry , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Male , Molecular Structure , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Quercetin/chemical synthesis , Quercetin/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship
11.
Glia ; 66(7): 1507-1519, 2018 07.
Article in English | MEDLINE | ID: mdl-29508439

ABSTRACT

Müller cell gliosis is a common response in many retinal pathological conditions. We previously demonstrated that downregulation of Kir channels contributes to Müller cell gliosis in a rat chronic ocular hypertension (COH) model. Here, the possible involvement of outward K+ currents in Müller cell gliosis was investigated. Outward K+ current densities in Müller cells isolated from COH rats, as compared with those in normal rats, showed a significant increase, which was mainly contributed by large-conductance Ca2+ -activated K+ (BKCa ) channels. The involvement of BKCa channels in Müller cell gliosis is suggested by the fact that glial fibrillary acidic protein (GFAP) levels were augmented in COH retinas when these channels were suppressed by intravitreal injections of iberiotoxin. In COH retinas an increase in dopamine (DA) D1 receptor (D1R) expression in Müller cells was revealed by both immunohistochemistry and Western blotting. Moreover, protein levels of tyrosine hydroxylase were also increased, and consistent to this, retinal DA contents were elevated. SKF81297, a selective D1R agonist, enhanced BKCa currents of normal Müller cells through intracellular cAMP-PKA signaling pathway. Furthermore, GFAP levels were increased by the D1R antagonist SCH23390 injected intravitreally through eliminating the BKCa current upregulation in COH retinas, but partially reduced by SKF81297. All these results strongly suggest that the DA-D1R system may be activated to a stronger extent in COH rat retinas, thus increasing BKCa currents of Müller cells. The upregulation of BKCa channels may antagonize the Kir channel inhibition-induced depolarization of Müller cells, thereby attenuating the gliosis of these cells.


Subject(s)
Ependymoglial Cells/metabolism , Gliosis/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Ocular Hypertension/metabolism , Receptors, Dopamine D1/metabolism , Animals , Disease Models, Animal , Ependymoglial Cells/pathology , Glial Fibrillary Acidic Protein/metabolism , Gliosis/pathology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Male , Membrane Potentials/physiology , Ocular Hypertension/pathology , Rats, Sprague-Dawley , Receptors, Dopamine D1/antagonists & inhibitors , Tyrosine 3-Monooxygenase/metabolism , Vitreous Body/metabolism , Vitreous Body/pathology
12.
J Pharmacol Exp Ther ; 365(2): 227-236, 2018 05.
Article in English | MEDLINE | ID: mdl-29453198

ABSTRACT

Fibroblast-like synoviocytes (FLSs) are a key cell type involved in rheumatoid arthritis (RA) progression. We previously identified the KCa1.1 potassium channel (Maxi-K, BK, Slo 1, KCNMA1) as a regulator of FLSs and found that KCa1.1 inhibition reduces disease severity in RA animal models. However, systemic KCa1.1 block causes multiple side effects. In this study, we aimed to determine whether the KCa1.1 ß1-3-specific venom peptide blocker iberiotoxin (IbTX) reduces disease severity in animal models of RA without inducing major side effects. We used immunohistochemistry to identify IbTX-sensitive KCa1.1 subunits in joints of rats with a model of RA. Patch-clamp and functional assays were used to determine whether IbTX can regulate FLSs through targeting KCa1.1. We then tested the efficacy of IbTX in ameliorating disease in two rat models of RA. Finally, we determined whether IbTX causes side effects including incontinence or tremors in rats, compared with those treated with the small-molecule KCa1.1 blocker paxilline. IbTX-sensitive subunits of KCa1.1 were expressed by FLSs in joints of rats with experimental arthritis. IbTX inhibited KCa1.1 channels expressed by FLSs from patients with RA and by FLSs from rat models of RA and reduced FLS invasiveness. IbTX significantly reduced disease severity in two rat models of RA. Unlike paxilline, IbTX did not induce tremors or incontinence in rats. Overall, IbTX inhibited KCa1.1 channels on FLSs and treated rat models of RA without inducing side effects associated with nonspecific KCa1.1 blockade and could become the basis for the development of a new treatment of RA.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Molecular Targeted Therapy , Peptides/pharmacology , Potassium Channel Blockers/pharmacology , Scorpion Venoms/chemistry , Animals , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Peptides/therapeutic use , Potassium Channel Blockers/therapeutic use , Rats , Synoviocytes/drug effects , Synoviocytes/metabolism
13.
Biol Pharm Bull ; 41(2): 272-276, 2018.
Article in English | MEDLINE | ID: mdl-29386487

ABSTRACT

Methylglyoxal, a highly reactive dicarbonyl compound, is formed as a by-product of glycolysis and plays an important role in the pathogenesis of diabetic complications, including diabetic retinopathy. However, it remains to be determined how methylglyoxal affects the regulatory mechanisms of retinal blood flow. In this study, we examined the effects of methylglyoxal on ß2-adrenoceptor-mediated vasodilatory mechanisms in rat retinal arterioles. The retinal vasodilator responses were assessed by measuring the diameter of retinal arterioles in the fundus images. Intravitreal injection of methylglyoxal significantly diminished the vasodilation of retinal arterioles induced by the ß2-adrenoceptor agonist salbutamol. The vasodilator effect of BMS-191011, a large-conductance Ca2+-activated K+ (BKCa) channel opener, on retinal arterioles was also attenuated by methylglyoxal. In contrast, methylglyoxal had no significant effect on retinal vasodilator response to forskolin. Methylglyoxal attenuated retinal vasodilator response to salbutamol under blockade of BKCa channels with iberiotoxin, an inhibitor of the channels. These results suggest that methylglyoxal attenuates ß2-adrenoceptor-mediated retinal vasodilation by impairing the coupling of the ß2-adrenoceptor to the guanine nucleotide-binding protein (Gs protein) and the function of the BKCa channel. Increased methylglyoxal in the eyes may contribute to the impairment of regulatory mechanisms of retinal blood flow in patients with diabetic retinopathy.


Subject(s)
Adrenergic beta-2 Receptor Antagonists/metabolism , Arterioles/metabolism , Pyruvaldehyde/metabolism , Receptors, Adrenergic, beta-2/metabolism , Retina/metabolism , Retinal Vessels/metabolism , Vasodilation , Adrenergic beta-2 Receptor Agonists/administration & dosage , Adrenergic beta-2 Receptor Agonists/pharmacology , Adrenergic beta-2 Receptor Antagonists/administration & dosage , Albuterol/administration & dosage , Albuterol/pharmacology , Animals , Arterioles/drug effects , Calcium Channel Agonists/administration & dosage , Calcium Channel Agonists/pharmacology , Calcium Channel Blockers/pharmacology , Colforsin/administration & dosage , Colforsin/pharmacology , Dose-Response Relationship, Drug , GTP-Binding Protein alpha Subunits, Gs/antagonists & inhibitors , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , Injections, Intravenous , Intravitreal Injections , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/agonists , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Male , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacology , Peptides/pharmacology , Pyruvaldehyde/administration & dosage , Rats, Sprague-Dawley , Receptors, Adrenergic, beta-2/chemistry , Retina/drug effects , Retinal Vessels/drug effects , Vasodilation/drug effects , Vasodilator Agents/administration & dosage , Vasodilator Agents/pharmacology
14.
Biochem J ; 474(12): 2067-2094, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28600454

ABSTRACT

Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.


Subject(s)
Allostasis , Mitochondria, Heart/metabolism , Models, Biological , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Potassium Channels/metabolism , Animals , Cardiotonic Agents/pharmacology , Humans , Ion Channel Gating/drug effects , Ischemic Preconditioning, Myocardial , KATP Channels/agonists , KATP Channels/antagonists & inhibitors , KATP Channels/genetics , KATP Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/agonists , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Membrane Transport Modulators/pharmacology , Mitochondria, Heart/drug effects , Myocardial Ischemia/therapy , Myocardial Reperfusion Injury/prevention & control , Potassium Channel Blockers/pharmacology , Potassium Channels/agonists , Potassium Channels/chemistry , Potassium Channels/genetics , Potassium Channels, Sodium-Activated , Protein Isoforms/agonists , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Terminology as Topic
15.
Acta Biochim Biophys Sin (Shanghai) ; 50(6): 560-566, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29697782

ABSTRACT

Autoantibodies against angiotensin II Type 1 receptor (AT1-AA) are routinely detected in the serum of preeclampsia patients, which results in an increase in vascular tone and an elevation in intracellular calcium concentration of rat vascular smooth muscle (VSM). The big conductance calcium-activated potassium channels (BKCa channels) account for the dominant outward currents in VSMCs, contributing to membrane hyperpolarization and vasodilation. In the present study, we investigated the effect of AT1-AA on BKCa channels. A preeclampsia model was established by passively immunizing healthy pregnant BALB/c mice with AT1-AA extracted from hybridoma culture supernatant. Blood pressure, serum AT1-AA levels, and urinary protein were measured in the immunized mice. BKCa channel expression was detected using qRT-PCR and immunohistochemical technique. The patch-clamp technique was used to record the single currents of BKCa channels in the HEK293T cells that had been transfected. AT1-AA immunized mice exhibited elevated AT1-AA and urinary protein levels compared with mice of the vehicle group. Systolic blood pressure was also increased in the immunized group. BKCa channel ß1-subunit expression was reduced in the mesenteric arteries of immunized mice. AT1-AA could inhibit the BKCa currents and the inhibitory effects were not completely reversed following the application of valsartan, an inhibitor of AT1 receptor. In conclusion, AT1-AA could decrease BKCa expression and inhibit BKCa activity independent of AT1R. These inhibitory effects are likely to be contributory factors in the promotion of increased vascular tone caused by AT1-AA in preeclampsia.


Subject(s)
Autoantibodies/pharmacology , Ion Channel Gating/drug effects , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Receptor, Angiotensin, Type 1/immunology , Animals , Autoantibodies/administration & dosage , Autoantibodies/immunology , Blood Pressure/drug effects , Blood Pressure/immunology , Female , HEK293 Cells , Humans , Immunization , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiology , Mice, Inbred BALB C , Pre-Eclampsia/genetics , Pre-Eclampsia/immunology , Pre-Eclampsia/metabolism , Pregnancy , Receptor, Angiotensin, Type 1/metabolism
16.
J Biol Chem ; 291(14): 7347-56, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26823461

ABSTRACT

Two members of the family of high conductance K(+)channels SLO1 and SLO2 are both activated by intracellular cations. However, SLO1 is activated by Ca(2+)and other divalent cations, while SLO2 (Slack or SLO2.2 from rat) is activated by Na(+) Curiously though, we found that SLO2.2 is inhibited by all divalent cations that activate SLO1, with Zn(2+)being the most effective inhibitor with an IC50of ∼8 µmin contrast to Mg(2+), the least effective, with an IC50of ∼ 1.5 mm Our results suggest that divalent cations are not SLO2 pore blockers, but rather inhibit channel activity by an allosteric modification of channel gating. By site-directed mutagenesis we show that a histidine residue (His-347) downstream of S6 reduces inhibition by divalent cations. An analogous His residue present in some CNG channels is an inhibitory cation binding site. To investigate whether inhibition by divalent cations is conserved in an invertebrate SLO2 channel we cloned the SLO2 channel fromDrosophila(dSLO2) and compared its properties to those of rat SLO2.2. We found that, like rat SLO2.2, dSLO2 was also activated by Na(+)and inhibited by divalent cations. Inhibition of SLO2 channels in mammals andDrosophilaby divalent cations that have second messenger functions may reflect the physiological regulation of these channels by one or more of these ions.


Subject(s)
Cations, Divalent/pharmacology , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Magnesium/pharmacology , Zinc/pharmacology , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Rats , Species Specificity , Xenopus laevis
17.
Am J Physiol Renal Physiol ; 312(6): F1081-F1089, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28274924

ABSTRACT

The large-conductance Ca2+-activated K+ channel, BK (KCNMA1), is expressed along the connecting tubule (CNT) and cortical collecting duct (CCD) where it underlies flow- and Ca2+-dependent K+ secretion. Its activity is partially under the control of the mechanosensitive transient receptor potential vanilloid type 4 (TRPV4) Ca2+-permeable channel. Recently, we identified three small-/intermediate-conductance Ca2+-activated K+ channels, SK1 (KCNN1), SK3 (KCNN3), and IK1 (KCNN4), with notably high Ca2+-binding affinities, that are expressed in CNT/CCD and may be regulated by TRPV4-mediated Ca2+ influx. The K+-secreting CCD mCCDcl1 cells, which express these channels, were used to determine whether SK1/3 and IK1 are activated on TRPV4 stimulation and whether they contribute to Ca2+ influx and activation of BK. Activation of TRPV4 (GSK1016790A) modestly depolarized the membrane potential and robustly increased intracellular Ca2+, [Ca2+]i Inhibition of both SK1/3 and IK1 by application of apamin and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), respectively, further depolarized the membrane potential and markedly suppressed the TRPV4-mediated rise in [Ca2+]i Application of BK inhibitor iberiotoxin after activation of TRPV4 without apamin/TRAM-34 also reduced [Ca2+]i and further intensified membrane depolarization, demonstrating BK involvement. However, the BK-dependent effects on [Ca2+]i and membrane potential were largely abolished by pretreatment with apamin and TRAM-34, identical to that observed by separately suppressing TRPV4-mediated Ca2+ influx, demonstrating that SK1/3-IK1 channels potently contribute to TRPV4-mediated BK activation. Our data indicate a direct correlation between TRPV4-mediated Ca2+ signal and BK activation but where early activation of SK1/3 and IK1 channels are critical to sufficiently enhanced Ca2+ entry and [Ca2+]i levels required for activation of BK.


Subject(s)
Calcium/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Kidney Tubules, Collecting/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Potassium/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , TRPV Cation Channels/metabolism , Animals , Calcium Channel Agonists/pharmacology , Calcium Signaling , Cells, Cultured , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Kidney Tubules, Collecting/drug effects , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Membrane Potentials , Mice , Potassium Channel Blockers/pharmacology , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , TRPV Cation Channels/agonists
18.
J Cardiovasc Pharmacol ; 69(4): 228-235, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28375904

ABSTRACT

The alpha-2 receptor agonist Dexmedetomidine (Dex) protects the heart against ischemia-reperfusion injury. We investigated the signaling cascade underlying Dex-induced acute cardioprotection, with special emphasis on large-conductance Ca2+-sensitive potassium (BKCa) channels. Rats were anesthetized with pentobarbital. Hearts were isolated, mounted on a Langendorff system and perfused with Krebs-Henseleit buffer. Hearts underwent 33 minutes of ischemia followed by 60 minutes of reperfusion. Before the beginning of ischemia, Dex was administered at different doses (0.1-30 nM) for characterization of a dose-effect relationship. In another set of experiments, Dex (3 nM) was administered together with the BKCa channel inhibitor paxilline and the connexin-43 inhibitor peptide Gap27. Also, the BKCa channel opener NS1619 was administered. In control animals, infarct size was 49% ± 5%. Dex at 3-30 nM reduced infarct size to ∼22%, whereas lower (0.1-1 nM) doses reduced infarct size to ∼38%. Paxilline (1 µM) and GAP27 (6 µM) blocked the Dex-induced cardioprotection. NS1619 (10 µM) reduced infarct size to about the same magnitude as did the higher doses of Dex. Functional heart parameters and coronary flow were not different between the study groups. In male rats, the Dex-induced protection against ischemia-reperfusion injury involves connexin-43 and activation of BKCa channels.


Subject(s)
Cardiotonic Agents/therapeutic use , Dexmedetomidine/therapeutic use , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/physiology , Myocardial Infarction/prevention & control , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Animals , Cardiotonic Agents/pharmacology , Dexmedetomidine/pharmacology , Dose-Response Relationship, Drug , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/agonists , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Male , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Organ Culture Techniques , Rats , Rats, Wistar , Treatment Outcome
19.
Int J Mol Sci ; 17(12)2016 Dec 11.
Article in English | MEDLINE | ID: mdl-27973439

ABSTRACT

Vitamin D (VD) reduces the risk of breast cancer and improves disease prognoses. Potential VD analogs are being developed as therapeutic agents for breast cancer treatments. The large-conductance Ca2+-activated K⁺ channel KCa1.1 regulates intracellular Ca2+ signaling pathways and is associated with high grade tumors and poor prognoses. In the present study, we examined the effects of treatments with VD receptor (VDR) agonists on the expression and activity of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, flow cytometry, and voltage-sensitive dye imaging. Treatments with VDR agonists for 72 h markedly decreased the expression levels of KCa1.1 transcripts and proteins in MDA-MB-453 cells, resulting in the significant inhibition of depolarization responses induced by paxilline, a specific KCa1.1 blocker. The specific proteasome inhibitor MG132 suppressed VDR agonist-induced decreases in KCa1.1 protein expression. These results suggest that KCa1.1 is a new downstream target of VDR signaling and the down-regulation of KCa1.1 through the transcriptional repression of KCa1.1 and enhancement of KCa1.1 protein degradation contribute, at least partly, to the antiproliferative effects of VDR agonists in breast cancer cells.


Subject(s)
Breast Neoplasms/genetics , Down-Regulation , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Receptors, Calcitriol/agonists , Breast Neoplasms/pathology , Calcitriol/analogs & derivatives , Calcitriol/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Down-Regulation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Leupeptins/pharmacology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Proteasome Inhibitors/pharmacology , Proteolysis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Receptors, Calcitriol/metabolism
20.
Bull Exp Biol Med ; 160(5): 643-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27021102

ABSTRACT

We studied the contribution of large conductance Ca(2+)-activated potassium channels (BKCa) in the mechanisms of neuromodulatory effects of anti-inflammatory cytokine IL-10 on hypoxiainduced changes in activity of CA1 pyramidal neurons in rat hippocampus. We used the method of registration of population spikes from CA1 pyramidal neurons in hippocampal slices before, during, and after exposure to short-term episodes of hypoxia. Selective blocker (iberiotoxin) and selective activator of BKCa (BMS-191011) were used to evaluate the contribution of these channels in the mechanisms of suppressive effects of IL-10 on changes in neuronal activity during hypoxia and development of post-hypoxic hyperexcitability. It was shown that BKCa are involved in the modulatory effects of IL-10 on hypoxia-induced suppression of activity of CA1 pyramidal neurons in the hippocampus and development of post-hypoxic hyperexcitability in these neurons.


Subject(s)
Cell Hypoxia/drug effects , Hippocampus/metabolism , Interleukin-10/pharmacology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Pyramidal Cells/metabolism , Animals , Hippocampus/cytology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/agonists , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Oxadiazoles/pharmacology , Peptides/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL