Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Cell Dev Biol ; 30: 465-502, 2014.
Article in English | MEDLINE | ID: mdl-25000993

ABSTRACT

Neural stem and progenitor cells have a central role in the development and evolution of the mammalian neocortex. In this review, we first provide a set of criteria to classify the various types of cortical stem and progenitor cells. We then discuss the issue of cell polarity, as well as specific subcellular features of these cells that are relevant for their modes of division and daughter cell fate. In addition, cortical stem and progenitor cell behavior is placed into a tissue context, with consideration of extracellular signals and cell-cell interactions. Finally, the differences across species regarding cortical stem and progenitor cells are dissected to gain insight into key developmental and evolutionary mechanisms underlying neocortex expansion.


Subject(s)
Neocortex/growth & development , Neurogenesis/physiology , Animals , Asymmetric Cell Division , Cell Compartmentation , Cell Lineage , Cell Membrane/physiology , Cell Nucleus/physiology , Cell Polarity , Cerebrospinal Fluid/physiology , Humans , Intercellular Junctions/physiology , Lateral Ventricles/embryology , Membrane Lipids/metabolism , Microglia/physiology , Mitosis , Neocortex/cytology , Neocortex/embryology , Neural Stem Cells/classification , Neural Stem Cells/physiology , Neuroepithelial Cells/cytology , Neuroepithelial Cells/physiology , Neurons/physiology , Organelles/physiology , Species Specificity
2.
Development ; 149(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35132995

ABSTRACT

Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.


Subject(s)
Interneurons/metabolism , Lateral Ventricles/growth & development , Lateral Ventricles/metabolism , Neural Stem Cells/metabolism , Olfactory Bulb/growth & development , Olfactory Bulb/metabolism , Oligodendrocyte Transcription Factor 2/metabolism , Animals , Cell Cycle/genetics , Cell Lineage/genetics , Cells, Cultured , Female , Gene Knockout Techniques , Lateral Ventricles/embryology , Male , Mice , Mice, Knockout , Neurogenesis/genetics , Olfactory Bulb/embryology , Oligodendrocyte Transcription Factor 2/genetics , Signal Transduction/genetics , Transcriptome/genetics
3.
Nature ; 567(7746): 113-117, 2019 03.
Article in English | MEDLINE | ID: mdl-30787442

ABSTRACT

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Subject(s)
Centrosome/metabolism , DNA-Binding Proteins/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/embryology , Microtubules/metabolism , Neurogenesis , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Movement , Cells, Cultured , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Humans , Intercellular Junctions/metabolism , Interphase , Lateral Ventricles/anatomy & histology , Mammary Glands, Animal/cytology , Mice , Organ Size , Organoids/cytology
4.
Development ; 147(10)2020 05 26.
Article in English | MEDLINE | ID: mdl-32253238

ABSTRACT

The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.


Subject(s)
Lateral Ventricles/embryology , Lateral Ventricles/growth & development , Neurogenesis/genetics , Olfactory Bulb/embryology , Olfactory Bulb/growth & development , Zinc Finger E-box Binding Homeobox 2/metabolism , Animals , Apoptosis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Knockout Techniques , Interneurons/metabolism , Lateral Ventricles/metabolism , Mice , Mice, Knockout , Neural Stem Cells/metabolism , Olfactory Bulb/metabolism , SOXD Transcription Factors/metabolism , Signal Transduction/immunology , Zinc Finger E-box Binding Homeobox 2/genetics
5.
Development ; 146(4)2019 02 18.
Article in English | MEDLINE | ID: mdl-30777863

ABSTRACT

In the adult rodent brain, neural stem cells (NSCs) persist in the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), which are specialized niches in which young neurons for the olfactory bulb (OB) and hippocampus, respectively, are generated. Recent studies have significantly modified earlier views on the mechanisms of NSC self-renewal and neurogenesis in the adult brain. Here, we discuss the molecular control, heterogeneity, regional specification and cell division modes of V-SVZ NSCs, and draw comparisons with NSCs in the SGZ. We highlight how V-SVZ NSCs are regulated by local signals from their immediate neighbors, as well as by neurotransmitters and factors that are secreted by distant neurons, the choroid plexus and vasculature. We also review recent advances in single cell RNA analyses that reveal the complexity of adult neurogenesis. These findings set the stage for a better understanding of adult neurogenesis, a process that one day may inspire new approaches to brain repair.


Subject(s)
Adult Stem Cells/physiology , Hippocampus/physiology , Lateral Ventricles/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Olfactory Bulb/physiology , Animals , Cell Communication , Cell Differentiation , Cell Lineage , Embryonic Stem Cells/physiology , Hippocampus/embryology , Humans , Interneurons/physiology , Lateral Ventricles/embryology , Mice , Neurons/physiology , Olfactory Bulb/embryology , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis , Transcriptome
6.
Cereb Cortex ; 31(7): 3536-3550, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33704445

ABSTRACT

The purpose of the study was to investigate the interrelation of the signal intensities and thicknesses of the transient developmental zones in the cingulate and neocortical telencephalic wall, using T2-weighted 3 T-magnetic resonance imaging (MRI) and histological scans from the same brain hemisphere. The study encompassed 24 postmortem fetal brains (15-35 postconceptional weeks, PCW). The measurements were performed using Fiji and NDP.view2. We found that T2w MR signal-intensity curves show a specific regional and developmental stage profile already at 15 PCW. The MRI-histological correlation reveals that the subventricular-intermediate zone (SVZ-IZ) contributes the most to the regional differences in the MRI-profile and zone thicknesses, growing by a factor of 2.01 in the cingulate, and 1.78 in the neocortical wall. The interrelations of zone or wall thicknesses, obtained by both methods, disclose a different rate and extent of shrinkage per region (highest in neocortical subplate and SVZ-IZ) and stage (highest in the early second half of fetal development), distorting the zones' proportion in histological sections. This intrasubject, slice-matched, 3 T correlative MRI-histological study provides important information about regional development of the cortical wall, critical for the design of MRI criteria for prenatal brain monitoring and early detection of cortical or other brain pathologies in human fetuses.


Subject(s)
Fetus/embryology , Limbic Lobe/embryology , Neocortex/embryology , Telencephalon/embryology , Brain/diagnostic imaging , Brain/embryology , Brain/pathology , Fetus/diagnostic imaging , Fetus/pathology , Gestational Age , Humans , Lateral Ventricles/diagnostic imaging , Lateral Ventricles/embryology , Lateral Ventricles/pathology , Limbic Lobe/diagnostic imaging , Limbic Lobe/pathology , Magnetic Resonance Imaging , Neocortex/diagnostic imaging , Neocortex/pathology , Organ Size , Telencephalon/diagnostic imaging , Telencephalon/pathology
7.
Proc Natl Acad Sci U S A ; 116(14): 7089-7094, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30894491

ABSTRACT

The primate cerebrum is characterized by a large expansion of cortical surface area, the formation of convolutions, and extraordinarily voluminous subcortical white matter. It was recently proposed that this expansion is primarily driven by increased production of superficial neurons in the dramatically enlarged outer subventricular zone (oSVZ). Here, we examined the development of the parietal cerebrum in macaque monkey and found that, indeed, the oSVZ initially adds neurons to the superficial layers II and III, increasing their thickness. However, as the oSVZ grows in size, its output changes to production of astrocytes and oligodendrocytes, which in primates outnumber cerebral neurons by a factor of three. After the completion of neurogenesis around embryonic day (E) 90, when the cerebrum is still lissencephalic, the oSVZ enlarges and contains Pax6+/Hopx+ outer (basal) radial glial cells producing astrocytes and oligodendrocytes until after E125. Our data indicate that oSVZ gliogenesis, rather than neurogenesis, correlates with rapid enlargement of the cerebrum and development of convolutions, which occur concomitantly with the formation of cortical connections via the underlying white matter, in addition to neuronal growth, elaboration of dendrites, and amplification of neuropil in the cortex, which are primary factors in the formation of cerebral convolutions in primates.


Subject(s)
Cerebrum/growth & development , Cerebrum/metabolism , Lateral Ventricles/growth & development , Lateral Ventricles/metabolism , Neurogenesis/physiology , Neurons/metabolism , Animals , Astrocytes/metabolism , Cerebrum/cytology , Cerebrum/embryology , Embryo, Mammalian , Homeodomain Proteins/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/embryology , Macaca , Oligodendroglia/cytology , Oligodendroglia/metabolism , PAX6 Transcription Factor/metabolism , Primates , Tumor Suppressor Proteins/metabolism
8.
Development ; 145(20)2018 10 26.
Article in English | MEDLINE | ID: mdl-30237244

ABSTRACT

Human brain development proceeds via a sequentially transforming stem cell population in the ventricular-subventricular zone (V-SVZ). An essential, but understudied, contributor to V-SVZ stem cell niche health is the multi-ciliated ependymal epithelium, which replaces stem cells at the ventricular surface during development. However, reorganization of the V-SVZ stem cell niche and its relationship to ependymogenesis has not been characterized in the human brain. Based on comprehensive comparative spatiotemporal analyses of cytoarchitectural changes along the mouse and human ventricle surface, we uncovered a distinctive stem cell retention pattern in humans as ependymal cells populate the surface of the ventricle in an occipital-to-frontal wave. During perinatal development, ventricle-contacting stem cells are reduced. By 7 months few stem cells are detected, paralleling the decline in neurogenesis. In adolescence and adulthood, stem cells and neurogenesis are not observed along the lateral wall. Volume, surface area and curvature of the lateral ventricles all significantly change during fetal development but stabilize after 1 year, corresponding with the wave of ependymogenesis and stem cell reduction. These findings reveal normal human V-SVZ development, highlighting the consequences of disease pathologies such as congenital hydrocephalus.


Subject(s)
Lateral Ventricles/cytology , Lateral Ventricles/embryology , Stem Cell Niche , Adult , Animals , Child , Ependyma/embryology , Female , Fetus/cytology , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Mice , Neural Stem Cells/cytology , Neurogenesis , Organ Size , Organogenesis
9.
Development ; 145(20)2018 10 18.
Article in English | MEDLINE | ID: mdl-30266827

ABSTRACT

A specific subpopulation of neural progenitor cells, the basal radial glial cells (bRGCs) of the outer subventricular zone (OSVZ), are thought to have a key role in the evolutionary expansion of the mammalian neocortex. In the developing lissencephalic mouse neocortex, bRGCs exist at low abundance and show significant molecular differences from bRGCs in developing gyrencephalic species. Here, we demonstrate that the developing mouse medial neocortex (medNcx), in contrast to the canonically studied lateral neocortex (latNcx), exhibits an OSVZ and an abundance of bRGCs similar to that in developing gyrencephalic neocortex. Unlike bRGCs in developing mouse latNcx, the bRGCs in medNcx exhibit human bRGC-like gene expression, including expression of Hopx, a human bRGC marker. Disruption of Hopx expression in mouse embryonic medNcx and forced Hopx expression in mouse embryonic latNcx demonstrate that Hopx is required and sufficient, respectively, for bRGC abundance as found in the developing gyrencephalic neocortex. Taken together, our data identify a novel bRGC subpopulation in developing mouse medNcx that is highly related to bRGCs of developing gyrencephalic neocortex.


Subject(s)
Ependymoglial Cells/metabolism , Homeodomain Proteins/metabolism , Neocortex/cytology , Neocortex/embryology , Animals , CRISPR-Cas Systems/genetics , Cell Proliferation , Embryo, Mammalian/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Lateral Ventricles/embryology , Mice, Inbred C57BL , Neocortex/metabolism , PAX6 Transcription Factor/metabolism , Stem Cells/cytology
10.
Cereb Cortex ; 29(5): 2115-2124, 2019 05 01.
Article in English | MEDLINE | ID: mdl-29688344

ABSTRACT

DACH1 is the human homolog of the Drosophila dachshund gene, which is involved in the development of the eye, nervous system, and limbs in the fly. Here, we systematically investigate DACH1 expression patterns during human neurodevelopment, from 5 to 21 postconceptional weeks. By immunodetection analysis, we found that DACH1 is highly expressed in the proliferating neuroprogenitors of the developing cortical ventricular and subventricular regions, while it is absent in the more differentiated cortical plate. Single-cell global transcriptional analysis revealed that DACH1 is specifically enriched in neuroepithelial and ventricular radial glia cells of the developing human neocortex. Moreover, we describe a previously unreported DACH1 expression in the human striatum, in particular in the striatal medium spiny neurons. This finding qualifies DACH1 as a new striatal projection neuron marker, together with PPP1R1B, BCL11B, and EBF1. We finally compared DACH1 expression profile in human and mouse forebrain, where we observed spatio-temporal similarities in its expression pattern thus providing a precise developmental description of DACH1 in the 2 mammalian species.


Subject(s)
Corpus Striatum/embryology , Corpus Striatum/metabolism , Eye Proteins/metabolism , Neocortex/embryology , Neocortex/metabolism , Neuroglia/metabolism , Neurons/metabolism , Transcription Factors/metabolism , Aborted Fetus/embryology , Aborted Fetus/metabolism , Ependymoglial Cells/metabolism , Gestational Age , Humans , Lateral Ventricles/embryology , Lateral Ventricles/metabolism , Neural Stem Cells/metabolism , Neuroepithelial Cells/metabolism , Prosencephalon/embryology , Prosencephalon/metabolism , Species Specificity
11.
Development ; 142(17): 2904-15, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26329599

ABSTRACT

The mammalian neocortex shows a conserved six-layered structure that differs between species in the total number of cortical neurons produced owing to differences in the relative abundance of distinct progenitor populations. Recent studies have identified a new class of proliferative neurogenic cells in the outer subventricular zone (OSVZ) in gyrencephalic species such as primates and ferrets. Lissencephalic brains of mice possess fewer OSVZ-like progenitor cells and these do not constitute a distinct layer. Most in vitro and in vivo studies have shown that oxygen regulates the maintenance, proliferation and differentiation of neural progenitor cells. Here we dissect the effects of fetal brain oxygen tension on neural progenitor cell activity using a novel mouse model that allows oxygen tension to be controlled within the hypoxic microenvironment in the neurogenic niche of the fetal brain in vivo. Indeed, maternal oxygen treatment of 10%, 21% and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal brain oxygenation. Increased oxygen tension in fetal mouse forebrain in vivo leads to a marked expansion of a distinct proliferative cell population, basal to the SVZ. These cells constitute a novel neurogenic cell layer, similar to the OSVZ, and contribute to corticogenesis by heading for deeper cortical layers as a part of the cortical plate.


Subject(s)
Lateral Ventricles/embryology , Lateral Ventricles/pathology , Oxygen/pharmacology , Stem Cells/pathology , Animals , Cell Count , Cell Proliferation/drug effects , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Fetus/drug effects , Fetus/metabolism , Hyperoxia/embryology , Hyperoxia/pathology , Lateral Ventricles/blood supply , Lateral Ventricles/drug effects , Mice, Inbred C57BL , Mitosis/drug effects , Models, Biological , Neurons/drug effects , Neurons/metabolism , Organ Size/drug effects , Prosencephalon/drug effects , Prosencephalon/embryology , Prosencephalon/metabolism , Prosencephalon/pathology , SOXB1 Transcription Factors/metabolism , Stem Cells/drug effects , T-Box Domain Proteins/metabolism
12.
Cereb Cortex ; 26(5): 2242-2256, 2016 May.
Article in English | MEDLINE | ID: mdl-25882040

ABSTRACT

In humans, the developmental origins of interneurons in the third trimester of pregnancy and the timing of completion of interneuron neurogenesis have remained unknown. Here, we show that the total and cycling Nkx2.1(+)and Dlx2(+)interneuron progenitors as well as Sox2(+)precursor cells were higher in density in the medial ganglionic eminence (MGE) compared with the lateral ganglionic eminence and cortical ventricular/subventricular zone (VZ/SVZ) of 16-35 gw subjects. The proliferation of these progenitors reduced as a function of gestational age, almost terminating by 35 gw. Proliferating Dlx2(+)cells were higher in density in the caudal ganglionic eminence (CGE) compared with the MGE, and persisted beyond 35 gw. Consistent with these findings, Sox2, Nkx2.1, Dlx2, and Mash1 protein levels were higher in the ganglionic eminences relative to the cortical VZ/SVZ. The density of gamma-aminobutyric acid-positive (GABA(+)) interneurons was higher in the cortical VZ/SVZ relative to MGE, but Nkx2.1 or Dlx2-expressing GABA(+)cells were more dense in the MGE compared with the cortical VZ/SVZ. The data suggest that the MGE and CGE are the primary source of cortical interneurons. Moreover, their generation continues nearly to the end of pregnancy, which may predispose premature infants to neurobehavioral disorders.


Subject(s)
Brain/embryology , Brain/physiology , Fetal Development , GABAergic Neurons/physiology , Interneurons/physiology , Neural Stem Cells/physiology , Brain/metabolism , Cell Count , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Female , GABAergic Neurons/metabolism , Gestational Age , Homeodomain Proteins/metabolism , Humans , Interneurons/metabolism , Lateral Ventricles/embryology , Lateral Ventricles/metabolism , Lateral Ventricles/physiology , Male , Median Eminence/embryology , Median Eminence/physiology , Neural Stem Cells/metabolism , Neurogenesis , Nuclear Proteins/metabolism , Pregnancy , Pregnancy Trimester, Third , Thyroid Nuclear Factor 1 , Transcription Factors/metabolism
13.
J Neurosci ; 35(17): 6836-48, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25926459

ABSTRACT

The ERK/MAPK pathway is an important developmental signaling pathway. Mutations in upstream elements of this pathway result in neuro-cardio-facial cutaneous (NCFC) syndromes, which are typified by impaired neurocognitive abilities that are reliant upon hippocampal function. The role of ERK signaling during hippocampal development has not been examined and may provide critical insight into the cause of hippocampal dysfunction in NCFC syndromes. In this study, we have generated ERK1 and conditional ERK2 compound knock-out mice to determine the role of ERK signaling during development of the hippocampal dentate gyrus. We found that loss of both ERK1 and ERK2 resulted in 60% fewer granule cells and near complete absence of neural progenitor pools in the postnatal dentate gyrus. Loss of ERK1/2 impaired maintenance of neural progenitors as they migrate from the dentate ventricular zone to the dentate gyrus proper, resulting in premature depletion of neural progenitor cells beginning at E16.5, which prevented generation of granule cells later in development. Finally, loss of ERK2 alone does not impair development of the dentate gyrus as animals expressing only ERK1 developed a normal hippocampus. These findings establish that ERK signaling regulates maintenance of progenitor cells required for development of the dentate gyrus.


Subject(s)
Dentate Gyrus , Feedback, Physiological/physiology , Gene Expression Regulation, Developmental/physiology , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase 1/metabolism , Stem Cells/physiology , Animals , Animals, Newborn , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Dentate Gyrus/embryology , Dentate Gyrus/enzymology , Dentate Gyrus/growth & development , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/genetics , Lateral Ventricles/cytology , Lateral Ventricles/embryology , Lateral Ventricles/growth & development , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitogen-Activated Protein Kinase 1/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurogenesis/genetics , Neurons/metabolism , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/metabolism
14.
Cell Tissue Res ; 364(2): 369-84, 2016 May.
Article in English | MEDLINE | ID: mdl-26714727

ABSTRACT

Gas1 is a pleiotropic protein that inhibits cell growth when overexpressed in tumors but during development, it acts as a co-receptor for sonic hedgehog to promote the proliferation and survival of various growing organs and systems. This protein has been extensively studied during development in the cerebellum. However, in other structures of the central nervous system, information concerning Gas1 is limited to in situ hybridization studies. We investigate the pattern of Gas1 expression during various developmental stages of the cortex and dentate gyrus of the mouse brain. The levels of Gas1 decrease in the developing brain and the protein is mainly found in progenitor cells during the development of the cortex and dentate gyrus.


Subject(s)
Cell Cycle Proteins/metabolism , Dentate Gyrus/embryology , Dentate Gyrus/metabolism , Hippocampus/embryology , Hippocampus/metabolism , Stem Cells/metabolism , Animals , Cell Proliferation , Enzyme-Linked Immunosorbent Assay , Female , GPI-Linked Proteins/metabolism , Gene Expression Regulation, Developmental , Lateral Ventricles/embryology , Lateral Ventricles/metabolism , Male , Mice , Organogenesis/physiology
15.
Cereb Cortex ; 25(10): 3758-78, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25331604

ABSTRACT

Transcription factors of the nuclear factor one (NFI) family play a pivotal role in the development of the nervous system. One member, NFIX, regulates the development of the neocortex, hippocampus, and cerebellum. Postnatal Nfix(-/-) mice also display abnormalities within the subventricular zone (SVZ) lining the lateral ventricles, a region of the brain comprising a neurogenic niche that provides ongoing neurogenesis throughout life. Specifically, Nfix(-/-) mice exhibit more PAX6-expressing progenitor cells within the SVZ. However, the mechanism underlying the development of this phenotype remains undefined. Here, we reveal that NFIX contributes to multiple facets of SVZ development. Postnatal Nfix(-/-) mice exhibit increased levels of proliferation within the SVZ, both in vivo and in vitro as assessed by a neurosphere assay. Furthermore, we show that the migration of SVZ-derived neuroblasts to the olfactory bulb is impaired, and that the olfactory bulbs of postnatal Nfix(-/-) mice are smaller. We also demonstrate that gliogenesis within the rostral migratory stream is delayed in the absence of Nfix, and reveal that Gdnf (glial-derived neurotrophic factor), a known attractant for SVZ-derived neuroblasts, is a target for transcriptional activation by NFIX. Collectively, these findings suggest that NFIX regulates both proliferation and migration during the development of the SVZ neurogenic niche.


Subject(s)
Cell Movement , Cell Proliferation , Lateral Ventricles/embryology , NFI Transcription Factors/physiology , Neural Stem Cells/physiology , Neurogenesis , Animals , Female , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Interneurons/physiology , Lateral Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , Neuroglia/physiology , Olfactory Bulb/embryology , Olfactory Bulb/metabolism , Stem Cell Niche
16.
Cereb Cortex ; 25(10): 3977-93, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25452572

ABSTRACT

Ranbp1, a Ran GTPase-binding protein implicated in nuclear/cytoplasmic trafficking, is included within the DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS) critical region associated with behavioral impairments including autism and schizophrenia. Ranbp1 is highly expressed in the developing forebrain ventricular/subventricular zone but has no known obligate function during brain development. We assessed the role of Ranbp1 in a targeted mouse mutant. Ranbp1(-/-) mice are not recovered live at birth, and over 60% of Ranbp1(-/-) embryos are exencephalic. Non-exencephalic Ranbp1(-/-) embryos are microcephalic, and proliferation of cortical progenitors is altered. At E10.5, radial progenitors divide more slowly in the Ranpb1(-/-) dorsal pallium. At E14.5, basal, but not apical/radial glial progenitors, are compromised in the cortex. In both E10.5 apical and E14.5 basal progenitors, M phase of the cell cycle appears selectively retarded by loss of Ranpb1 function. Ranbp1(-/-)-dependent proliferative deficits substantially diminish the frequency of layer 2/3, but not layer 5/6 cortical projection neurons. Ranbp1(-/-) cortical phenotypes parallel less severe alterations in LgDel mice that carry a deletion parallel to many (but not all) 22q11.2 DS patients. Thus, Ranbp1 emerges as a microcephaly gene within the 22q11.2 deleted region that may contribute to altered cortical precursor proliferation and neurogenesis associated with broader 22q11.2 deletion.


Subject(s)
Cerebral Cortex/embryology , DiGeorge Syndrome/embryology , DiGeorge Syndrome/genetics , Microcephaly/genetics , Neural Stem Cells/physiology , Neurogenesis/genetics , Nuclear Proteins/physiology , Animals , Cell Polarity , Cell Proliferation/genetics , Cerebral Cortex/physiopathology , DiGeorge Syndrome/physiopathology , Lateral Ventricles/embryology , Lateral Ventricles/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroepithelial Cells/physiology , Nuclear Proteins/genetics
17.
BMC Pregnancy Childbirth ; 16: 3, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26755350

ABSTRACT

BACKGROUND: The aim of the study was to report the prevalence and associated findings of fetal ventriculomegaly between 11 + 0 and 13 + 6 gestational weeks and to evaluate a sonographic approach to classify first trimester ventriculomegaly in the standard axial plane used for biparietal diameter (BPD) measurement. METHODS: The ratio between choroid plexus and lateral ventricle diameter (PDVDR), between the choroid plexus and lateral ventricle length (PLVLR) and between the choroid plexus and lateral ventricle area (PAVAR) were calculated from stored 2D images of the axial head plane in 100 normal fetuses and 17 fetuses with ventriculomegaly. RESULTS: The PDVDR, the PLVLR and the PAVAR were below the 5(th) percentile in 82.4%, 94.1% and 94.1% of the cases with ventriculomegaly. Ventriculomegaly was isolated in 29.4% and associated with further anomalies in 70.6% at the initial evaluation. The mean PLVLR in euploid compared to aneuploid fetuses was significantly lower (0.40 versus 0.53 (p = 0.0332)). CONCLUSIONS: The measurements of PDVDR, PLVLR and PAVAR are helpful to objectify ventriculomegaly at 11-14 gestational weeks. The PLVLR and PAVAR were superior to PDVDR, since there seems to be rather shrinkage of the choroid plexus than an increased width of the lateral ventricles in the first trimester.


Subject(s)
Hydrocephalus/diagnostic imaging , Pregnancy Trimester, First , Ultrasonography, Prenatal/methods , Choroid Plexus/diagnostic imaging , Choroid Plexus/embryology , Female , Gestational Age , Head/diagnostic imaging , Head/embryology , Humans , Lateral Ventricles/diagnostic imaging , Lateral Ventricles/embryology , Pregnancy
18.
Acta Anaesthesiol Scand ; 60(5): 579-87, 2016 May.
Article in English | MEDLINE | ID: mdl-26822861

ABSTRACT

BACKGROUND: Developmental neurotoxicity of ketamine, an N-methyl-D-aspartate receptor antagonist, must be considered due to its widespread uses for sedation/analgesia/anesthesia in pediatric and obstetric settings. Dose-dependent effects of ketamine on cellular proliferation in the neurogenic regions of rat fetal cortex [ventricular zone (VZ) and subventricular zone (SVZ)] were investigated in this in vivo study. METHODS: Timed-pregnant Sprague-Dawley rats at embryonic day 17 (E17) were given with different doses of ketamine intraperitoneally (0, 1, 2, 10, 20, 40, and 100 mg/kg). Proliferating cells in the rat fetal brains were labeled by injecting 100 mg/kg of 5-bromo-2'-deoxyuridine (BrdU) intraperitoneally. BrdU-labeled cells were detected by immunostaining methods. The numbers of BrdU-positive cells in VZ and SVZ of rat fetal cortex were employed to quantify proliferation in the developing rat cortex. RESULTS: Ketamine dose-dependently reduced the number of BrdU-positive cells in VZ (P < 0.001) and SVZ (P < 0.001) of the rat fetal cortex. SVZ showed greater susceptibility to ketamine-induced reduction of proliferation in rat fetal cortex, occurring even at clinically relevant doses (2 mg/kg). CONCLUSION: These data suggest that exposure to ketamine during embryogenesis can dose-dependently inhibit the cellular proliferation in neurogenic regions of the rat fetal cortex.


Subject(s)
Anesthetics, Dissociative/toxicity , Cell Proliferation/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/embryology , Embryonic Development/drug effects , Ketamine/toxicity , Neurogenesis/drug effects , Animals , Brain/drug effects , Brain/embryology , Cell Count , Cerebral Ventricles/cytology , Cerebral Ventricles/drug effects , Cerebral Ventricles/embryology , Dose-Response Relationship, Drug , Female , Lateral Ventricles/cytology , Lateral Ventricles/drug effects , Lateral Ventricles/embryology , Pregnancy , Rats , Rats, Sprague-Dawley
20.
Scott Med J ; 60(1): e19-23, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25468365

ABSTRACT

Colpocephaly is a rare abnormality of the brain, described as persistence of primitive foetal configuration of lateral ventricles. It has been found in association with several abnormalities of the brain. Herein we report a case of colpocephaly with absent corpus callosum, confirmed antenatally with foetal MRI following diagnostic suspicion based on absent septum pellucidum at prenatal sonography.


Subject(s)
Agenesis of Corpus Callosum/diagnosis , Brain Diseases/diagnosis , Genetic Counseling/methods , Lateral Ventricles/abnormalities , Magnetic Resonance Imaging , Parents/psychology , Prenatal Diagnosis/methods , Agenesis of Corpus Callosum/embryology , Agenesis of Corpus Callosum/pathology , Brain Diseases/embryology , Brain Diseases/pathology , Female , Humans , Infant, Newborn , Lateral Ventricles/embryology , Lateral Ventricles/pathology , Male , Pregnancy , Pregnancy Outcome
SELECTION OF CITATIONS
SEARCH DETAIL