Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.777
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 20(7): e1012336, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39018347

ABSTRACT

Cullin-1-RING ubiquitin ligases (CRL1) or SCF1 (SKP1-CUL1-RBX1) E3 ubiquitin ligases are the largest and most extensively investigated class of E3 ligases in mammals that regulate fundamental processes, such as the cell cycle and proliferation. These enzymes are multiprotein complexes comprising SKP1, CUL1, RBX1, and an F-box protein that acts as a specificity factor by interacting with SKP1 through its F-box domain and recruiting substrates via other domains. E3 ligases are important players in the ubiquitination process, recognizing and transferring ubiquitin to substrates destined for degradation by proteasomes or processing by deubiquitinating enzymes. The ubiquitin-proteasome system (UPS) is the main regulator of intracellular proteolysis in eukaryotes and is required for parasites to alternate hosts in their life cycles, resulting in successful parasitism. Leishmania UPS is poorly investigated, and CRL1 in L. infantum, the causative agent of visceral leishmaniasis in Latin America, is yet to be described. Here, we show that the L. infantum genes LINF_110018100 (SKP1-like protein), LINF_240029100 (cullin-like protein-like protein), and LINF_210005300 (ring-box protein 1 -putative) form a LinfCRL1 complex structurally similar to the H. sapiens CRL1. Mass spectrometry analysis of the LinfSkp1 and LinfCul1 interactomes revealed proteins involved in several intracellular processes, including six F-box proteins known as F-box-like proteins (Flp) (data are available via ProteomeXchange with identifier PXD051961). The interaction of LinfFlp 1-6 with LinfSkp1 was confirmed, and using in vitro ubiquitination assays, we demonstrated the function of the LinfCRL1(Flp1) complex to transfer ubiquitin. We also found that LinfSKP1 and LinfRBX1 knockouts resulted in nonviable L. infantum lineages, whereas LinfCUL1 was involved in parasite growth and rosette formation. Finally, our results suggest that LinfCul1 regulates the S phase progression and possibly the transition between the late S to G2 phase in L. infantum. Thus, a new class of E3 ubiquitin ligases has been described in L. infantum with functions related to various parasitic processes that may serve as prospective targets for leishmaniasis treatment.


Subject(s)
Cullin Proteins , Leishmania infantum , Leishmania infantum/metabolism , Leishmania infantum/enzymology , Cullin Proteins/metabolism , Cullin Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Ubiquitination , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/metabolism , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proteasome Endopeptidase Complex/metabolism
2.
PLoS Pathog ; 20(4): e1012181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656959

ABSTRACT

Addressing the challenges of quiescence and post-treatment relapse is of utmost importance in the microbiology field. This study shows that Leishmania infantum and L. donovani parasites rapidly enter into quiescence after an estimated 2-3 divisions in both human and mouse bone marrow stem cells. Interestingly, this behavior is not observed in macrophages, which are the primary host cells of the Leishmania parasite. Transcriptional comparison of the quiescent and non-quiescent metabolic states confirmed the overall decrease of gene expression as a hallmark of quiescence. Quiescent amastigotes display a reduced size and signs of a rapid evolutionary adaptation response with genetic alterations. Our study provides further evidence that this quiescent state significantly enhances resistance to treatment. Moreover, transitioning through quiescence is highly compatible with sand fly transmission and increases the potential of parasites to infect cells. Collectively, this work identified stem cells in the bone marrow as a niche where Leishmania quiescence occurs, with important implications for antiparasitic treatment and acquisition of virulence traits.


Subject(s)
Hematopoietic Stem Cells , Leishmania infantum , Animals , Hematopoietic Stem Cells/parasitology , Hematopoietic Stem Cells/metabolism , Mice , Humans , Leishmania donovani/physiology , Macrophages/parasitology , Macrophages/metabolism , Leishmaniasis, Visceral/parasitology , Mice, Inbred C57BL , Mice, Inbred BALB C
3.
PLoS Pathog ; 20(7): e1012382, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38991025

ABSTRACT

Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.


Subject(s)
Drug Resistance , Leishmania donovani , Leishmaniasis, Visceral , Sterol 14-Demethylase , Leishmania donovani/enzymology , Sterol 14-Demethylase/metabolism , Sterol 14-Demethylase/genetics , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/drug therapy , Amphotericin B/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , NADPH-Ferrihemoprotein Reductase/genetics , Antiprotozoal Agents/pharmacology , Humans , Ergosterol/metabolism
4.
J Biol Chem ; 300(6): 107366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750790

ABSTRACT

Host anti-inflammatory responses are critical for the progression of visceral leishmaniasis, and the pleiotropic cytokine interleukin (IL)-33 was found to be upregulated in infection. Here, we documented that IL-33 induction is a consequence of elevated cAMP-mediated exchange protein activated by cAMP (EPAC)/calcineurin-dependent signaling and essential for the sustenance of infection. Leishmania donovani-infected macrophages showed upregulation of IL-33 and its neutralization resulted in decreased parasite survival and increased inflammatory responses. Infection-induced cAMP was involved in IL-33 production and of its downstream effectors PKA and EPAC, only the latter was responsible for elevated IL-33 level. EPAC initiated Rap-dependent phospholipase C activation, which triggered the release of intracellular calcium followed by calcium/calmodulin complex formation. Screening of calmodulin-dependent enzymes affirmed involvement of the phosphatase calcineurin in cAMP/EPAC/calcium/calmodulin signaling-induced IL-33 production and parasite survival. Activated calcineurin ensured nuclear localization of the transcription factors, nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha required for IL-33 transcription, and we further confirmed this by chromatin immunoprecipitation assay. Administering specific inhibitors of nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha in BALB/c mouse model of visceral leishmaniasis decreased liver and spleen parasite burden along with reduction in IL-33 level. Splenocyte supernatants of inhibitor-treated infected mice further documented an increase in tumor necrosis factor alpha and IL-12 level with simultaneous decrease of IL-10, thereby indicating an overall disease-escalating effect of IL-33. Thus, this study demonstrates that cAMP/EPAC/calcineurin signaling is crucial for the activation of IL-33 and in effect creates anti-inflammatory responses, essential for infection.


Subject(s)
Calcineurin , Cyclic AMP , Interleukin-33 , Leishmania donovani , Leishmaniasis, Visceral , Mice, Inbred BALB C , Signal Transduction , Animals , Mice , Calcineurin/metabolism , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Interleukin-33/metabolism , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/parasitology , Macrophages/metabolism , Macrophages/parasitology
5.
FASEB J ; 38(16): e23893, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39177943

ABSTRACT

Visceral leishmaniasis (VL) is characterized by an uncontrolled infection of internal organs such as the spleen, liver and bone marrow (BM) and can be lethal when left untreated. No effective vaccination is currently available for humans. The importance of B cells in infection and VL protective immunity has been controversial, with both detrimental and protective effects described. VL infection was found in this study to increase not only all analyzed B cell subsets in the spleen but also the B cell progenitors in the BM. The enhanced B lymphopoiesis aligns with the clinical manifestation of polyclonal hypergammaglobulinemia and the occurrence of autoantibodies. In line with earlier reports, flow cytometric and microscopic examination identified parasite attachment to B cells of the BM and spleen without internalization, and transformation of promastigotes into amastigote morphotypes. The interaction appears independent of IgM expression and is associated with an increased detection of activated lysosomes. Furthermore, the extracellularly attached amastigotes could be efficiently transferred to infect macrophages. The observed interaction underscores the potentially crucial role of B cells during VL infection. Additionally, using immunization against a fluorescent heterologous antigen, it was shown that the infection does not impair immune memory, which is reassuring for vaccination campaigns in VL endemic areas.


Subject(s)
B-Lymphocytes , Bone Marrow , Immunologic Memory , Leishmania infantum , Leishmaniasis, Visceral , Lymphopoiesis , Spleen , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Animals , Spleen/immunology , Spleen/parasitology , Leishmania infantum/immunology , Leishmania infantum/physiology , Mice , Bone Marrow/parasitology , Bone Marrow/immunology , B-Lymphocytes/immunology , Female , Mice, Inbred BALB C
6.
J Infect Dis ; 230(1): 183-187, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052713

ABSTRACT

Accurate detection of viable Leishmania parasites is critical for evaluating visceral leishmaniasis (VL) treatment response at an early timepoint. We compared the decay of kinetoplast DNA (kDNA) and spliced-leader RNA (SL-RNA) in vitro, in vivo, and in a VL patient cohort. An optimized combination of blood preservation and nucleic acid extraction improved efficiency for both targets. SL-RNA degraded more rapidly during treatment than kDNA, and correlated better with microscopic examination. SL-RNA quantitative polymerase chain reaction emerges as a superior method for dynamic monitoring of viable Leishmania parasites. It enables individualized treatment monitoring for improved prognoses and has potential as an early surrogate endpoint in clinical trials.


Subject(s)
DNA, Kinetoplast , Leishmaniasis, Visceral , RNA, Spliced Leader , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , DNA, Kinetoplast/genetics , RNA, Spliced Leader/genetics , RNA, Spliced Leader/metabolism , RNA, Protozoan/genetics , RNA, Protozoan/analysis , Animals , Leishmania/genetics , Antiprotozoal Agents/therapeutic use , Biomarkers
7.
J Infect Dis ; 230(1): 172-182, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052704

ABSTRACT

Concerns regarding toxicity and resistance of current drugs in visceral leishmaniasis have been reported. Antimicrobial peptides are considered to be promising candidates and among them human cathelicidin hCAP18/LL-37 showed significant parasite killing on drug-sensitive and resistant Leishmania promastigotes, in addition to its apoptosis-inducing role. Administration of hCAP18/LL-37 to infected macrophages also decreased parasite survival and increased the host favorable cytokine interleukin 12. However, 1,25-dihydroxyvitamin D3 (vitamin D3)-induced endogenous hCAP18/LL-37 production was hampered in infected THP-1 cells. Infection also suppressed the vitamin D3 receptor (VDR), transcription factor of hCAP18/LL-37. cAMP response element modulator (CREM), the repressor of VDR, was induced in infection, resulting in suppression of both VDR and cathelicidin expression. PGE2/cAMP/PKA axis was found to regulate CREM induction during infection and silencing CREM in infected cells and BALB/c mice led to decreased parasite survival. This study documents the antileishmanial potential of cathelicidin and further identifies CREM as a repressor of cathelicidin in Leishmania infection.


Subject(s)
Antimicrobial Cationic Peptides , Cathelicidins , Cyclic AMP Response Element Modulator , Leishmania donovani , Leishmaniasis, Visceral , Macrophages , Mice, Inbred BALB C , Leishmania donovani/drug effects , Animals , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Humans , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/drug therapy , Mice , Macrophages/parasitology , Macrophages/metabolism , THP-1 Cells , Cyclic AMP Response Element Modulator/metabolism , Cyclic AMP Response Element Modulator/genetics , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Antiprotozoal Agents/pharmacology , Female
8.
Infect Immun ; 92(2): e0050423, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38193711

ABSTRACT

The intracellular protozoan parasite Leishmania donovani causes debilitating human diseases that involve visceral and dermal manifestations. Type 3 interferons (IFNs), also referred to as lambda IFNs (IFNL, IFN-L, or IFN-λ), are known to play protective roles against intracellular pathogens at the epithelial surfaces. Herein, we show that L. donovani induces IFN-λ3 in human as well as mouse cell line-derived macrophages. Interestingly, IFN-λ3 treatment significantly decreased parasite load in infected cells, mainly by increasing reactive oxygen species production. Microscopic examination showed that IFN-λ3 inhibited uptake but not replication, while the phagocytic ability of the cells was not affected. This was confirmed by experiments that showed that IFN-λ3 could decrease parasite load only when added to the medium at earlier time points, either during or soon after parasite uptake, but had no effect on parasite load when added at 24 h post-infection, suggesting that an early event during parasite uptake was targeted. Furthermore, the parasites could overcome the inhibitory effect of IFN-λ3, which was added at earlier time points, within 2-3 days post-infection. BALB/c mice treated with IFN-λ3 before infection led to a significant increase in expression of IL-4 and ARG1 post-infection in the spleen and liver, respectively, and to different pathological changes, especially in the liver, but not to changes in parasite load. Treatment with IFN-λ3 during infection did not decrease the parasite load in the spleen either. However, IFN-λ3 was significantly increased in the sera of visceral leishmaniasis patients, and the IFNL genetic variant rs12979860 was significantly associated with susceptibility to leishmaniasis.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Parasites , Animals , Humans , Mice , Cell Line , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Macrophages/parasitology , Mice, Inbred BALB C
9.
J Clin Microbiol ; 62(6): e0010424, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38661386

ABSTRACT

Leishmaniasis is a vector-borne disease caused by many Leishmania spp. which infect humans and other mammalian hosts. Leishmania infantum is the main agent of canine leishmaniasis (CanL) whose diagnosis is usually confirmed by serological and molecular tests. This study aimed to evaluate the clinical and analytical sensitivities of a lab-on-chip (LOC) real-time PCR applied on the portable Q3-Plus V2 platform (Q3 qPCR) in the detection of L. infantum. The Q3 qPCR performance was assessed by comparing the quantification cycle (Cq) values with those obtained using the qPCR run on a CFX96 Real-Time System (CFX96 qPCR). A total of 173 DNA samples (extracted from bone marrow, lymph node, blood, buffy coat, conjunctival swab, and skin) as well as 93 non-extracted samples (NES) (bone marrow, lymph node, blood, and buffy coat) collected from dogs were tested with both systems. Serial dilutions of each representative DNA and NES sample were used to assess the analytical sensitivity of the Q3 qPCR system. Overlapping Cq values were obtained with the Q3 qPCR and CFX96 qPCR, both using DNA extracted from L. infantum promastigotes (limit of detection, <1 promastigote per milliliter) and from biological samples as well as with NES. However, the Q3 qPCR system showed a higher sensitivity in detecting L. infantum in NES as compared with the CFX96 qPCR. Our data indicate that the Q3 qPCR system could be a reliable tool for detecting L. infantum DNA in biological samples, bypassing the DNA extraction step, which represents an advance in the point-of-care diagnostic of CanL.


Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Dogs , Animals , Leishmania infantum/genetics , Leishmania infantum/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Dog Diseases/diagnosis , Dog Diseases/parasitology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/parasitology , Lab-On-A-Chip Devices , Molecular Diagnostic Techniques/methods , DNA, Protozoan/genetics
10.
PLoS Pathog ; 18(3): e1010375, 2022 03.
Article in English | MEDLINE | ID: mdl-35294501

ABSTRACT

The protozoan parasite Leishmania donovani causes fatal human visceral leishmaniasis in absence of treatment. Genome instability has been recognized as a driver in Leishmania fitness gain in response to environmental change or chemotherapy. How genome instability generates beneficial phenotypes despite potential deleterious gene dosage effects is unknown. Here we address this important open question applying experimental evolution and integrative systems approaches on parasites adapting to in vitro culture. Phenotypic analyses of parasites from early and late stages of culture adaptation revealed an important fitness tradeoff, with selection for accelerated growth in promastigote culture (fitness gain) impairing infectivity (fitness costs). Comparative genomics, transcriptomics and proteomics analyses revealed a complex regulatory network associated with parasite fitness gain, with genome instability causing highly reproducible, gene dosage-independent and -dependent changes. Reduction of flagellar transcripts and increase in coding and non-coding RNAs implicated in ribosomal biogenesis and protein translation were not correlated to dosage changes of the corresponding genes, revealing a gene dosage-independent, post-transcriptional mechanism of regulation. In contrast, abundance of gene products implicated in post-transcriptional regulation itself correlated to corresponding gene dosage changes. Thus, RNA abundance during parasite adaptation is controled by direct and indirect gene dosage changes. We correlated differential expression of small nucleolar RNAs (snoRNAs) with changes in rRNA modification, providing first evidence that Leishmania fitness gain in culture may be controlled by post-transcriptional and epitranscriptomic regulation. Our findings propose a novel model for Leishmania fitness gain in culture, where differential regulation of mRNA stability and the generation of modified ribosomes may potentially filter deleterious from beneficial gene dosage effects and provide proteomic robustness to genetically heterogenous, adapting parasite populations. This model challenges the current, genome-centric approach to Leishmania epidemiology and identifies the Leishmania transcriptome and non-coding small RNome as potential novel sources for the discovery of biomarkers that may be associated with parasite phenotypic adaptation in clinical settings.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Gene Expression Regulation , Genomic Instability , Humans , Leishmania donovani/genetics , Leishmaniasis, Visceral/parasitology , Proteomics
11.
Cytokine ; 179: 156627, 2024 07.
Article in English | MEDLINE | ID: mdl-38703436

ABSTRACT

Leishmaniasis, a major globally re-emerging neglected tropical disease, has a restricted repertoire of chemotherapeutic options due to a narrow therapeutic index, drug resistance, or patient non-compliance due to toxicity. The disease is caused by the parasite Leishmania that resides in two different forms in two different environments: as sessile intracellular amastigotes within mammalian macrophages and as motile promastigotes in sandfly gut. As mitogen-activated protein kinases (MAPKs) play important roles in cellular differentiation and survival, we studied the expression of Leishmania donovani MAPKs (LdMAPKs). The homology studies by multiple sequence alignment show that excepting LdMAPK1 and LdMAPK2, all thirteen other LdMAPKs share homology with human ERK and p38 isoforms. Expression of LdMAPK4 and LdMAPK5 is less in avirulent promastigotes and amastigotes. Compared to miltefosine-sensitive L. donovani parasites, miltefosine-resistant parasites have higher LdMAPK1, LdMAPK3-5, LdMAPK7-11, LdMAPK13, and LdMAPK14 expression. IL-4-treatment of macrophages down-regulated LdMAPK11, in virulent amastigotes whereas up-regulated LdMAPK5, but down-regulated LdMAPK6, LdMAPK12-15, expression in avirulent amastigotes. IL-4 up-regulated LdMAPK1 expression in both virulent and avirulent amastigotes. IFN-γ-treatment down-regulated LdMAPK6, LdMAPK13, and LdMAPK15 in avirulent amastigotes but up-regulated in virulent amastigotes. This complex profile of LdMAPKs expression among virulent and avirulent parasites, drug-resistant parasites, and in amastigotes within IL-4 or IFN-γ-treated macrophages suggests that LdMAPKs are differentially controlled at the host-parasite interface regulating parasite survival and differentiation, and in the course of IL-4 or IFN-γ dominated immune response.


Subject(s)
Host-Parasite Interactions , Leishmania donovani , Macrophages , Mitogen-Activated Protein Kinases , Leishmania donovani/enzymology , Animals , Mitogen-Activated Protein Kinases/metabolism , Mice , Macrophages/parasitology , Macrophages/metabolism , Humans , Mice, Inbred BALB C , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/immunology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Interferon-gamma/metabolism , Drug Resistance
12.
Cytokine ; 183: 156757, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39288647

ABSTRACT

OBJECTIVE: Visceral leishmaniasis is a neglected tropical disease that can be lethal if not treated. The available medicines have severe side effects, such as toxicity and drug resistance. Various investigations are looking into new anti-leishmanial compounds from natural products that have little impact on host cells. Lupeol, a triterpenoid present in the flora of many edible plants, has been shown to have antimicrobial properties. The present study investigated the immunomodulatory effects of lupeol on U937 macrophages infected with Leishmania donovani, focusing on the expression of key cytokines and enzymes involved in the immune response. METHODS: U937 macrophages were infected with Leishmania donovani amastigotes and treated with varying concentrations of lupeol throughout three days. The expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), and interleukin-10 (IL-10) were measured using real-time polymerase chain reaction (RT-PCR). A positive simulation of gene expression was estimated using ΔΔCT to assess relative expression. RESULTS: The results demonstrated that lupeol significantly upregulated iNOS and TNF-α expression, especially at higher concentrations, indicating enhanced pro-inflammatory and anti-leishmanial activity. Interestingly, IL-10 expression also increased, suggesting a complex immunomodulatory role of lupeol that involves both pro-inflammatory and anti-inflammatory pathways. Pearson correlation analysis revealed a strong association between iNOS and TNF-α (0.97692), as well as a moderate correlation between iNOS and IL-10 (0.51603). CONCLUSION: These findings suggest that lupeol may promote a balanced immune response, enhancing the body's ability to combat L. donovani while potentially mitigating excessive inflammation. Lupeol can potentially serve as a novel therapeutic agent against visceral leishmaniasis.


Subject(s)
Interleukin-10 , Leishmania donovani , Macrophages , Nitric Oxide Synthase Type II , Pentacyclic Triterpenes , Tumor Necrosis Factor-alpha , Leishmania donovani/drug effects , Pentacyclic Triterpenes/pharmacology , Humans , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide Synthase Type II/metabolism , U937 Cells , Interleukin-10/metabolism , Macrophages/metabolism , Macrophages/drug effects , Macrophages/parasitology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/metabolism , Lupanes
13.
Parasite Immunol ; 46(8-9): e13066, 2024.
Article in English | MEDLINE | ID: mdl-39310969

ABSTRACT

Obligate intracellular protozoan parasite, Leishmania donovani, causative agent of visceral leishmaniasis, led to impaired macrophage functions. It is well documented that many of these changes were induced by parasite-mediated reduction in macrophage cholesterol content. Leishmania-mediated alteration in the other lipids has not been explored in detail yet. Here, we found that the expression of key cholesterol biosynthetic genes and total cellular cholesterol were reduced during L. donovani infection. Further, we have also identified that this reduction in the cholesterol led to increased membrane fluidity and inhibition of antigen-presenting potential of macrophages. In addition to this, we studied the relative changes in different lipids in THP-1-derived macrophages during L. donovani infection through liquid chromatography-mass spectrometry. We found that Sphingomyelin (16:0) and ceramide (20:1, 26:0 and 26:1) were significantly reduced in infected macrophages. We further observed that the majority of different sub-classes of phospholipids were downregulated significantly. Overall ratio of phosphatidylcholine versus phosphotidylethanolamine was decreased which indicated the compensatory mechanism of cell in response to cholesterol reduction. The observed Leishmania-mediated alteration in macrophage-lipidome provided the novel insights into mechanism of host-pathogen interactions.


Subject(s)
Cholesterol , Leishmania donovani , Leishmaniasis, Visceral , Lipidomics , Macrophages , Leishmania donovani/immunology , Macrophages/immunology , Macrophages/parasitology , Macrophages/metabolism , Humans , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/metabolism , Cholesterol/metabolism , THP-1 Cells , Host-Pathogen Interactions/immunology , Lipid Metabolism , Membrane Fluidity
14.
Parasite Immunol ; 46(5): e13036, 2024 May.
Article in English | MEDLINE | ID: mdl-38720445

ABSTRACT

Apolipoprotein E (ApoE) has been associated with several diseases including Parkinson's disease, Alzheimer's and multiple sclerosis. ApoE also has documented immunomodulatory functions. We investigated gene expression in circulating monocytes and in bone marrows of patients with visceral leishmaniasis (VL) living in an endemic area in Bihar, India, and contrasted these with control healthy subjects or other diagnostic bone marrows from individuals in the same region. Samples from VL patients were obtained prior to initiating treatment. Our study revealed significant upregulated expression of the apoE transcript in patients with VL. Furthermore, the levels of ApoE protein were elevated in serum samples of subjects with VL compared with healthy endemic controls. These observations may provide clues regarding the complex interactions between lipid metabolism and immunoregulation of infectious and inflammatory diseases.


Subject(s)
Apolipoproteins E , Leishmaniasis, Visceral , Monocytes , Up-Regulation , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult , Apolipoproteins E/genetics , Bone Marrow , India/epidemiology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Monocytes/immunology
15.
Parasite Immunol ; 46(10): e13063, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39360782

ABSTRACT

Interleukin 27 (IL-27) is a cytokine that regulates susceptibility to Leishmania infantum infection in humans and experimental models. This cytokine has not yet been described in canine leishmaniasis (CanL). Therefore, we investigated whether IL-27 has a regulatory role in CanL. The EBI3 and p28 subunits of IL-27 were measured in splenic leukocytes culture supernatant from dogs with CanL and compared to control dogs. We also correlated EBI3 and p28 levels with IL-21, anti-L. infantum antibodies and parasite loads. We performed functional assays followed by IL-27 blockade and measured parasite loads, production of cytokines in splenic leukocytes culture supernatant, and the expression of PD-1, CTLA-4, phospho-Stat-1/3, T-bet, GATA3 and nitric oxide production (NO). Both IL-27 subunits increased in the supernatant of dogs with CanL compared to control dogs. EBI3 and p28 levels showed a moderate positive correlation with IL-21 (r = 0.67, p < 0.0001 and r = 0.45, p < 0.012, respectively), and the EBI3 subunit was positively associated with anti-L. infantum IgG antibodies (r = 0.38, p < 0.040) and parasite load (r = 0.47, p < 0.009). IL-27 and IL-21 participate of immune responses in CanL. IL-27 may be associated with the failure of immunity to control parasite replication via upregulation of the expression of PD-1, CTLA-4, T-bet and NO in splenic leukocytes from dogs with CanL. These findings suggest that the pathways regulated by IL-27 are involved in CanL pathogenesis in the host, and may be targets for new therapies.


Subject(s)
Dog Diseases , Interleukin-27 , Leishmania infantum , Leishmaniasis, Visceral , Parasite Load , Animals , Dogs , Dog Diseases/immunology , Dog Diseases/parasitology , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/parasitology , Interleukin-27/metabolism , Adaptive Immunity , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Male , Spleen/immunology , Spleen/parasitology , Interleukins/metabolism , Interleukins/immunology , Female , Cytokines/metabolism , Leukocytes/immunology , Leukocytes/parasitology
16.
Infection ; 52(4): 1315-1324, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38353873

ABSTRACT

PURPOSE: Leishmaniasis, caused by the parasite of the genus Leishmania, is a neglected tropical disease which is endemic in more than 60 countries. In South-East Asia, Brazil, and East Africa, it mainly occurs as kala-azar (visceral leishmaniasis, VL), and subsequently as post kala-azar dermal leishmaniasis (PKDL) in a smaller portion of cases. As stated per WHO roadmap, accessibility to accurate diagnostic methods is an essential step to achieve elimination. This study aimed to test the accuracy of a portable minoo device, a small battery-driven, multi-use fluorimeter operating with isothermal technology for molecular diagnosis of VL and PKDL. METHODS: Fluorescence data measured by the device within 20 min are reported back to the mobile application (or app) via Bluetooth and onward via the internet to a backend. This allows anonymous analysis and storage of the test data. The test result is immediately returned to the app displaying it to the user. RESULTS: The limit of detection was 11.2 genome copies (95% CI) as determined by screening a tenfold dilution range of whole Leishmania donovani genomes using isothermal recombinase polymerase amplification (RPA). Pathogens considered for differential diagnosis were tested and no cross-reactivity was observed. For its diagnostic performance, DNA extracted from 170 VL and PKDL cases, comprising peripheral blood samples (VL, n = 96) and skin biopsies (PKDL, n = 74) from India (n = 108) and Bangladesh (n = 62), was screened. Clinical sensitivity and specificity were 88% and 91%, respectively. CONCLUSION: Minoo devices can offer a convenient, cheaper alternative to other molecular diagnostics. Its easy handling makes it ideal for use in low-resource settings to identify parasite burden.


Subject(s)
Molecular Diagnostic Techniques , Smartphone , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/instrumentation , Sensitivity and Specificity , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Leishmania/isolation & purification , Leishmania/genetics , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/instrumentation , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Leishmania donovani/genetics , Leishmania donovani/isolation & purification
17.
Mol Biol Rep ; 51(1): 716, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824237

ABSTRACT

BACKGROUND: Post kala-azar dermal leishmaniasis (PKDL) is a consequential dermal manifestation of visceral leishmaniasis (VL), serving as a parasite reservoir. The traditional diagnostic approach, which requires an invasive skin biopsy is associated with inherent risks and necessitates skilled healthcare practitioners in sterile settings. There is a critical need for a rapid, less invasive method for Leishmania detection. The main objective of this study was to evaluate and compare the diagnostic efficacy of PCR and qPCR in detecting PKDL, utilizing both skin and blood samples and to assess the utility of blood samples for molecular diagnosis. METHODS AND RESULTS: 73 individuals exhibiting clinical symptoms of PKDL and who had tested positive for rK39 rapid diagnostic test (RDT) were enrolled in this study. For the diagnosis of PKDL, both PCR and real-time quantitative PCR (qPCR), employing SYBR Green and TaqMan assays, were performed on blood and skin matched samples. qPCR results using both TaqMan and SYBR Green assay, indicated higher parasite loads in the skin compared to blood, as evident by the Ct values. Importantly, when blood samples were used for PKDL diagnosis by qPCR, an encouraging sensitivity of 69.35% (TaqMan assay) and 79.36% (SYBR Green) were obtained, compared to 8.2% with conventional PCR. CONCLUSION: The findings of the study suggest the potential utility of blood for molecular diagnosis by qPCR, offering a less invasive alternative to skin biopsies in field setting for the early detection of parasitaemia in PKDL patients and effective management and control of the disease.


Subject(s)
Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Real-Time Polymerase Chain Reaction , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/blood , Leishmaniasis, Cutaneous/genetics , Real-Time Polymerase Chain Reaction/methods , Male , Female , Adult , Adolescent , Skin/parasitology , Skin/pathology , Sensitivity and Specificity , Middle Aged , Parasite Load/methods , Molecular Diagnostic Techniques/methods , Young Adult , Child , DNA, Protozoan/genetics , DNA, Protozoan/blood
18.
Nature ; 560(7717): 192-197, 2018 08.
Article in English | MEDLINE | ID: mdl-30046105

ABSTRACT

Visceral leishmaniasis causes considerable mortality and morbidity in many parts of the world. There is an urgent need for the development of new, effective treatments for this disease. Here we describe the development of an anti-leishmanial drug-like chemical series based on a pyrazolopyrimidine scaffold. The leading compound from this series (7, DDD853651/GSK3186899) is efficacious in a mouse model of visceral leishmaniasis, has suitable physicochemical, pharmacokinetic and toxicological properties for further development, and has been declared a preclinical candidate. Detailed mode-of-action studies indicate that compounds from this series act principally by inhibiting the parasite cdc-2-related kinase 12 (CRK12), thus defining a druggable target for visceral leishmaniasis.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Leishmania donovani/drug effects , Leishmania donovani/enzymology , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Molecular Targeted Therapy , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Animals , Cyclin-Dependent Kinase 9/chemistry , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/metabolism , Disease Models, Animal , Humans , Mice , Molecular Docking Simulation , Proteome/drug effects , Proteomics , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Reproducibility of Results , Substrate Specificity
19.
BMC Vet Res ; 20(1): 448, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363300

ABSTRACT

BACKGROUND: Dogs may be infected with species of Leishmania parasites that are disseminated through blood circulation and invade the internal organs. In this study, we aim to detect the parasite in the blood of dogs using the PCR technique. The present work was performed from February 2022 to May 2023 in Fars Province, southern Iran, where the disease is endemic. RESULTS: In total, 7(5.1%) out of 135 blood samples, six were identified as Leishmania tropica and one as Leishmania major. We found no trace of Leishmania infantum, which is always known for visceral infection. In addition, no sign of cutaneous lesions or a significant disease was seen in the animals infected with both species. Of 48 dogs with anemia, two were Leishmania positive. The mean value of hematological parameters in the infected dogs was within the normal range except for a significant reduction in the platelet measures (p < 0.05). CONCLUSIONS: Our data revealed that both Leishmania species, tropica and major, may manifest as viscerotropic leishmaniasis. More investigations are needed to understand the conditions under which these species choose the type of infection. Moreover, our data emphasize the role of asymptomatic dogs in carrying these parasites, a crucial factor in spreading the disease.


Subject(s)
Dog Diseases , Leishmania major , Leishmania tropica , Animals , Leishmania tropica/isolation & purification , Dogs , Dog Diseases/parasitology , Dog Diseases/blood , Leishmania major/isolation & purification , Iran/epidemiology , Male , Female , Polymerase Chain Reaction/veterinary , Leishmaniasis, Cutaneous/veterinary , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/blood , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology
20.
Exp Parasitol ; 259: 108710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350521

ABSTRACT

Sri Lanka reports a large focus of Leishmania donovani caused cutaneous leishmaniasis (CL). Subsequent emergence of visceral leishmaniasis (VL) was also reported recently. Expansion of the on-going disease outbreak and many complexities indicate urgent need to enhance early case detection methods. In vitro cultivation (IVC) of parasites causing visceral leishmaniasis (VL) is important for disease confirmation and to obtain sufficient quantities of parasites required in many scientific studies. IVC is carried out as a useful second line investigation for direct microscopy negative patients with CL in this setting. Along with the emergence of VL, current study was carried out to evaluate in vitro growth of local VL parasites and to identify their differences associated with in vitro growth characteristics. Routine parasitological diagnostic methods, i.e., light microscopy (LM), polymerase chain reaction (PCR) were used for confirmation of suspected cases. Lesion samples from 125 suspected CL cases and bone marrow or splenic aspirations from 125 suspected VL patients were used to inoculate IVCs. Media M199 (about 70 µl) supplemented with 15-20% of heat inactivated fetal bovine serum was used for initial culturing procedures in capillaries. Capillary cultures were monitored daily. Total of 44 different compositions/conditions were used for evaluating in vitro growth of VL causing parasite. Daily records on parasite counts, morphological appearance (size, shape, and wriggly movements) were maintained. In vitro transformation of Leishmania promastigotes to amastigotes and outcome of the attempts on recovery of live Leishmania from culture stabilates was also compared between CL and VL parasites. Proportion of cultures showing a transformation of promastigotes were 40/45 (88.9%) and 4/10 (40.0%) for CL and VL respectively. In the transformed cultures, parasites showing typical shape, size and movement patterns were less in VL (1/4, 25.0%) compared to CL (28/40, 70.0%). CL cultures showed a growth up to mass culturing level with mean duration of two weeks while it was about five weeks for VL cultures. Proportion of cultures that reached a parasite density of 1 × 106 cells/ml (proceeded to mass cultures) was significantly low in VL (4/10, 40%) as compared to CL (28/40, 70.0%). None of media compositions/conditions were successful for mass culturing of VL parasites while all of them were shown to be useful for growing CL strains. Also in vitro transformation to amastigote form and recovering of culture stabilates were not successful compared to CL. There were clear differences between in vitro growth of Leishmania parasites causing local CL and VL. Further studies are recommended for optimization of in vitro culturing of VL parasite which will be invaluable to enhance case detection in future.


Subject(s)
Leishmania donovani , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Parasites , Animals , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Sri Lanka/epidemiology , Leishmaniasis, Cutaneous/parasitology , Biopsy
SELECTION OF CITATIONS
SEARCH DETAIL