Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters

Publication year range
1.
Toxicol Mech Methods ; 34(8): 908-919, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38847585

ABSTRACT

In this work, we have analyzed the neuroprotective activity of marrubiin against MPTP-induced Parkinson's disease (PD) in rat brains. MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) a neurotoxin was administered intraperitoneally (i.p.,) to rats and then treated using marrubiin. After marrubiin treatment, rats were trained, and tested for behavioral analyses like cognitive performance, open field test, rotarod test, grip strength test, beam walking test, the status of body weight, and striatal levels of neurotransmitters like dopamine, norepinephrine, serotonin, DOPAC, homovanillic acid, 5-hydroxy indole acetic acid, the status of oxidative stress markers like LPO, protein carbonyl content (PCC), Xanthine oxidase (XO), and status of antioxidant enzyme levels like SOD, CAT, GPX in the striatum and hippocampal tissues, status of neuroinflammatory markers like TNF-α, IL1ß, IL-6, and status of histological architecture in brain striatum were also analyzed. All these parameters were significantly (p < 0.05) abnormal in MPTP-induced rats. Marrubiin (MB) treated shows significant (p < 0.05) near normal behavioral restoration in cognitive performance, open field, rotarod, grip strength, and beam walking tests. Furthermore, the status of body weight, and levels of neurotransmitters, were also significantly (p < 0.05) reversed to near normalcy in marrubiin-treated rats. Similarly, oxidative stress, antioxidant enzyme levels in the striatum and hippocampal tissues, TNF-α, IL1ß, IL-6 levels, and histological architecture were noted to be restored to near normalcy in marrubiin-treated rats. Collectively, our preliminary results highlight the neuroprotective ability of marrubiin. However, the cellular and biochemical mechanisms of marrubiin's neuroprotective ability have to be studied in detail.


Subject(s)
Neuroprotective Agents , Oxidative Stress , Rats, Wistar , Animals , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Rats , Behavior, Animal/drug effects , MPTP Poisoning/drug therapy , MPTP Poisoning/pathology , MPTP Poisoning/prevention & control , MPTP Poisoning/metabolism
2.
Neurochem Res ; 48(6): 1707-1715, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36602724

ABSTRACT

Various pharmacological blockers targeting K+ channel have been identified to be related to the treatment of Parkinson's disease (PD). Previous studies showed that 4-Aminopyridine (4-AP), a wide-spectrum K+ channel blocker, was able to attenuate apomorphine-induced rotation in parkinsonism rats, indicating the possible beneficial effects in attenuation of PD motor symptoms. However, it is unclear whether 4-AP exhibits neuroprotective effects against the neurodegeneration of substantia nigra (SN)-striatum system in PD. In this study, the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model was employed to evaluate the neuroprotective effects of 4-AP. Results showed that 4-AP inhibited MPTP-induced dopaminergic neuronal loss in the SN as well as dopamine depletion in the striatum. Behavior indexes of open field test and rotarod test confirmed that 4-AP attenuated MPTP-induced motor deficits. We also showed that 4-AP treatment could significantly attenuate the MPTP-induced increase in malonaldehyde (MDA) levels and decrease in superoxide dismutase (SOD) levels. Additionally, MPTP significantly reduced the Bcl-2 expression and promoted the Caspase-3 activation; 4-AP protected dopaminergic neurons against MPTP-induced neurotoxicity by reversing these changes. These results indicate that 4-AP exerts a neuroprotective effect on dopaminergic neurons against MPTP by decreasing oxidative stress and apoptosis. This provides a promising therapeutic target for the treatment of PD.


Subject(s)
MPTP Poisoning , Neuroprotective Agents , Parkinson Disease , Animals , Mice , Rats , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons , Mice, Inbred C57BL , MPTP Poisoning/drug therapy , MPTP Poisoning/prevention & control , MPTP Poisoning/chemically induced , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Substantia Nigra , 4-Aminopyridine/pharmacology
3.
Can J Physiol Pharmacol ; 100(7): 594-611, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35413210

ABSTRACT

1,2,3,4-tetrahydroisoquinoline (TIQ) is endogenously present in the human brain, and some of its derivatives are thought to contribute to the induction of Parkinson's disease (PD)-like signs in rodents and primates. In contrast, the endogenous TIQ derivative 1-methyl-TIQ (1-MeTIQ) is reported to be neuroprotective. In the present study, we compared the effects of artificially modified 1-MeTIQ derivatives (loading an N-propyl, N-propenyl, N-propargyl, or N-butynyl group) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD-like signs in mice. In a behavioral study, MPTP-induced bradykinesia was significantly decreased by all compounds. However, only 1-Me-N-propargyl-TIQ showed an inhibitory effect by blocking the MPTP-induced reduction in striatal dopamine content and the number of nigral tyrosine hydroxylase-positive cells. Western blot analysis showed that 1-Me-N-propargyl-TIQ and 1-Me-N-butynyl-TIQ potently prevented the MPTP-induced decrease in dopamine transporter expression, whereas 1-MeTIQ and 1-Me-N-propyl-TIQ did not. These results suggest that although loading an N-propargyl group on 1-MeTIQ clearly enhanced neuroprotective effects, other N-functional groups showed distinct pharmacological properties characteristic of their functional groups. Thus, the number of bonds and length of the N-functional group may contribute to the observed differences in effect.


Subject(s)
MPTP Poisoning , Neuroprotective Agents , Parkinsonian Disorders , Tetrahydroisoquinolines , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Humans , MPTP Poisoning/drug therapy , MPTP Poisoning/prevention & control , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/prevention & control
4.
Drug Chem Toxicol ; 45(6): 2439-2447, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34340603

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative diseases due to the loss of dopaminergic neurons in the midbrain in the substantia nigra. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxic agent causing disruptions in mitochondria of dopaminergic neurons leading to impaired oxidant-antioxidant balance. Both zebrafish and zebrafish embryos are sensitive to MPTP. In zebrafish embryos, MPTP decreases the dopaminergic cells in the diencephalon by damaging dopaminergic neurons. Morphine is an opioid pain killer and a strong analgesic that is used to treat chronic pain. Until today morphine has been shown to regulate the survival or death of neurons and both protective and destructive effects of morphine have been reported in the central nervous system. This study aimed to evaluate the effects of morphine in MPTP-exposed zebrafish embryos. Developmental parameters were monitored and documented daily during embryonic development. Locomotor activity of zebrafish embryos at 96 h postfertilization (hpf) was determined. Acetylcholinesterase (AChE) activity and oxidant-antioxidant parameters were analyzed by biochemical methods. RT-PCR was used to evaluate bdnf, dj1, lrrk and pink1 expressions. Morphine treatment improved mortality and hatching rates, locomotor activity, AChE, and antioxidant enzyme activities as well as the expressions of bdnf, dj1, lrrk and pink1 in a dose-dependent manner that were altered by MPTP. Increased lipid peroxidation supports the role of morphine to induce autophagy to prevent PD-related pathologies. Our study provided important data on the possible molecular mechanism of the therapeutic effects of morphine in PD.


Subject(s)
MPTP Poisoning , Neuroprotective Agents , Neurotoxicity Syndromes , Animals , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Acetylcholinesterase/metabolism , Analgesics, Opioid/metabolism , Analgesics, Opioid/therapeutic use , Antioxidants/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Morphine/pharmacology , MPTP Poisoning/drug therapy , MPTP Poisoning/prevention & control , MPTP Poisoning/metabolism , Neuroprotective Agents/pharmacology , Oxidants/metabolism , Protein Kinases/metabolism , Zebrafish
5.
Int J Mol Sci ; 23(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35216146

ABSTRACT

Chicoric acid (CA), a polyphenolic acid compound extracted from chicory and echinacea, possesses antiviral, antioxidative and anti-inflammatory activities. Growing evidence supports the pivotal roles of brain-spleen and brain-gut axes in neurodegenerative diseases, including Parkinson's disease (PD), and the immune response of the spleen and colon is always the active participant in the pathogenesis and development of PD. In this study, we observe that CA prevented dopaminergic neuronal lesions, motor deficits and glial activation in PD mice, along with the increment in striatal brain-derived neurotrophic factor (BDNF), dopamine (DA) and 5-hydroxyindoleacetic acid (5-HT). Furthermore, CA reversed the level of interleukin-17(IL-17), interferon-gamma (IFN-γ) and transforming growth factor-beta (TGF-ß) of PD mice, implicating its regulatory effect on the immunological response of spleen and colon. Transcriptome analysis revealed that 22 genes in the spleen (21 upregulated and 1 downregulated) and 306 genes (190 upregulated and 116 downregulated) in the colon were significantly differentially expressed in CA-pretreated mice. These genes were functionally annotated with GSEA, GO and KEGG pathway enrichment, providing the potential target genes and molecular biological mechanisms for the modulation of CA on the spleen and gut in PD. Remarkably, CA restored some gene expressions to normal level. Our results highlighted that the neuroprotection of CA might be associated with the manipulation of CA on brain-spleen and brain-gut axes in PD.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Caffeic Acids/therapeutic use , MPTP Poisoning/metabolism , Neuroprotective Agents/therapeutic use , Succinates/therapeutic use , Transcriptome , Animals , Anti-Inflammatory Agents/pharmacology , Caffeic Acids/pharmacology , Colon/drug effects , Colon/metabolism , Cytokines/genetics , Cytokines/metabolism , MPTP Poisoning/drug therapy , MPTP Poisoning/prevention & control , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Spleen/drug effects , Spleen/metabolism , Succinates/pharmacology
6.
Biochem Biophys Res Commun ; 556: 16-22, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33836343

ABSTRACT

Evidence suggests constipation precedes motor dysfunction and is the most common gastrointestinal symptom in Parkinson's disease (PD). 5-HT4 receptor (5-HT4R) agonist prucalopride has been approved to treat chronic constipation. Here, we reported intraperitoneal injection of prucalopride for 7 days increased dopamine and decreased dopamine turnover. Prucalopride administration improved motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mouse models. Prucalopride treatment also ameliorated intestinal barrier impairment and increased IL-6 release in PD model mice. However, prucalopride treatment exerted no impact on JAK2/STAT3 pathway, suggesting that prucalopride may stimulate IL-6 via JAK2/STAT3-independent pathway. In conclusion, prucalopride exerted beneficial effects in MPTP-induced Parkinson's disease mice by attenuating the loss of dopamine, improving motor dysfunction and intestinal barrier.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Benzofurans/pharmacology , Benzofurans/therapeutic use , Intestinal Mucosa/drug effects , Motor Skills/drug effects , Parkinson Disease/prevention & control , Parkinson Disease/physiopathology , Animals , Body Weight/drug effects , Disease Models, Animal , Dopamine/metabolism , Eating/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Intestinal Mucosa/metabolism , Janus Kinase 2/metabolism , MPTP Poisoning/drug therapy , MPTP Poisoning/physiopathology , MPTP Poisoning/prevention & control , Male , Mice , Mice, Inbred C57BL , Neostriatum/metabolism , Parkinson Disease/drug therapy , Parkinson Disease, Secondary/physiopathology , Parkinson Disease, Secondary/prevention & control , STAT3 Transcription Factor/metabolism
7.
J Biochem Mol Toxicol ; 35(1): e22631, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32926752

ABSTRACT

Parkinson's disease (PD) is a complex neurodegenerative illness associated with the loss or damage to neurons of the dopaminergic system in the brain. Few therapeutic approaches and considerable side effects of conventional drugs necessitate a new therapeutic agent to treat patients with PD. Rhaponticin is a natural hydroxystilbene, found in herbal plants such as Rheum rhaponticum, and known to have desirable biological activity including anti-inflammatory properties. However, the neuroinflammation on rhaponticin levels has only been investigated partially so far. So, the current study explored whether rhaponticin could ameliorate the pathophysiology observed in both the in vitro microglial BV-2 cells and the in vivo (1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine [MPTP])-mediated PD model. The results show rhaponticin significantly attenuated lipopolysaccharide (LPS)-mediated microglial activation by suppressing nitric oxide synthase in conjunction with abridged reactive oxygen species production together with proinflammatory mediator reduction. In vivo rhaponticin treatment improves motor impairments as well as the loss of dopaminergic neurons in MPTP-treated mice possibly through suppression via mediators of inflammation. Taken together, these results offer evidence that rhaponticin exerts anti-inflammatory effects and neuroprotection in an LPS-induced microglial model and the MPTP-induced mouse models of PD.


Subject(s)
Dopaminergic Neurons/metabolism , MPTP Poisoning/prevention & control , Neuroprotective Agents/pharmacology , Stilbenes/pharmacology , Animals , Cell Line, Transformed , Dopaminergic Neurons/pathology , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Male , Mice
8.
Am J Physiol Endocrinol Metab ; 319(4): E734-E743, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32865008

ABSTRACT

Autophagy dysfunctions are involved in the pathogenesis of Parkinson's disease (PD). In the present study, we aimed to evaluate the involvement of G protein-coupled estrogen receptor (GPER) in the inhibitory effect of insulin-like growth factor-1 (IGF-1) against excessive autophagy in PD animal and cellular models. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment significantly induced mouse movement disorder and decreased the protein level of tyrosine hydroxylase (TH) in the substantia nigra (SN) and dopamine (DA) content in striatum. Along with the dopamine neuron injury, we observed significant upregulations of microtubule-associated light chain-3 II (LC3-II) and α-synuclein as well as a downregulation of P62 in MPTP-treated mice. These changes could be restored by IGF-1 pretreatment. Cotreatment with IGF-1R antagonist JB-1 or GPER antagonist G15 could block the neuroprotective effects of IGF-1. 1-Methy-4-phenylpyridinium (MPP+) treatment could also excessively activate autophagy along with the reduction of cell viability in SH-SY5Y cells. IGF-1 could inhibit the neurotoxicity through promoting the phosphorylation of Akt and mammalian target of rapamycin (mTOR), which could also be antagonized by JB-1 or G15. These data suggest that IGF-1 inhibits MPTP/MPP+-induced autophagy on dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and GPER.


Subject(s)
Autophagy/drug effects , Dopaminergic Neurons/drug effects , Insulin-Like Growth Factor I/pharmacology , MPTP Poisoning/prevention & control , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Animals , Humans , MPTP Poisoning/psychology , Male , Mice , Mice, Inbred C57BL , Neostriatum/drug effects , Neostriatum/metabolism , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Postural Balance/drug effects , Receptor, IGF Type 1 , TOR Serine-Threonine Kinases/metabolism
9.
Neurochem Res ; 45(7): 1700-1710, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32356199

ABSTRACT

Parkinson's disease (PD) is a prevalent age-related neurodegenerative disease which is modulated by various molecules, including long non-coding RNAs (lncRNAs). LncRNA H19 has been shown to be associated with PD progression, but the mechanism is still unclear. This research aims to investigate the role of H19 in PD development and the detailed mechanisms. Our results showed that H19 was down-regulated in brain tissue of MPTP-induced PD mice (in vivo) and in MPP+ treated human neuroblastoma cells. miR-585-3p was verified to be a target of lncRNA H19 and was negatively regulated by H19. In addition, H19 could increase the expression of PIK3R3 through miR-585-3p. In vitro results indicated that H19 inhibited the apoptosis of MPP+ treated neuroblastoma cells by regulating of miR-585-3p. Moreover, in PD model mice, overexpression of H19 attenuated MPTP-induced neuronal apoptosis. In summary, our present research demonstrated that LncRNA H19 could attenuate neurons apoptosis in MPTP-induced PD mice as well as MPP+ treated neuroblastoma cells through regulating miR-585-3p/PIK3R3. The results may provide a potential theoretical experimental data for the clinical treatment of PD through targeting lncRNAs or miRNAs.


Subject(s)
Apoptosis/physiology , MPTP Poisoning/metabolism , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/biosynthesis , RNA, Long Noncoding/biosynthesis , Animals , Cell Line, Tumor , HEK293 Cells , Humans , MPTP Poisoning/chemically induced , MPTP Poisoning/prevention & control , Male , Mice , Mice, Inbred C57BL
10.
Proc Natl Acad Sci U S A ; 114(23): E4676-E4685, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28533375

ABSTRACT

The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.


Subject(s)
Huntington Disease/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Adult , Aged , Animals , Brain/drug effects , Brain/metabolism , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Female , HEK293 Cells , Humans , Huntington Disease/genetics , Kelch-Like ECH-Associated Protein 1/chemistry , MPTP Poisoning/metabolism , MPTP Poisoning/prevention & control , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Middle Aged , NF-E2-Related Factor 2/chemistry , Neural Stem Cells/metabolism , Neuroprotective Agents/pharmacology , Protein Conformation/drug effects , Rats , Signal Transduction
11.
Neurochem Res ; 44(4): 751-762, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30612307

ABSTRACT

Parkinson's disease (PD) is the second most common devastating human neurodegenerative disorder and despite intense investigation, no effective therapy is available for PD. Cinnamic acid, a naturally occurring aromatic fatty acid of low toxicity, is a precursor for the synthesis of a huge number of plant substances. This study highlights the neuroprotective effect of cinnamic acid in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Oral administration of cinnamic acid protected tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra pars compacta (SNpc) and TH fibers in the striatum of MPTP-insulted mice. Accordingly, oral cinnamic acid also normalized striatal neurotransmitters and improved locomotor activities in MPTP-intoxicated mice. While investigating mechanisms, we found that cinnamic acid induced the activation of peroxisome proliferator-activated receptor α (PPARα), but not PPARß, in primary mouse astrocytes. Cinnamic acid mediated protection of the nigrostriatal system and locomotor activities in WT and PPARß (-/-), but not PPARα (-/-) mice from MPTP intoxication suggests that cinnamic acid requires the involvement of PPARα in protecting dopaminergic neurons in this model of PD. This study delineates a new function of cinnamic acid in protecting dopaminergic neurons via PPARα that could be beneficial for PD.


Subject(s)
Cinnamates/therapeutic use , Corpus Striatum/metabolism , MPTP Poisoning/metabolism , Neuroprotective Agents/therapeutic use , PPAR alpha/deficiency , Substantia Nigra/metabolism , Animals , Cinnamates/pharmacology , Corpus Striatum/drug effects , Corpus Striatum/pathology , Disease Models, Animal , MPTP Poisoning/pathology , MPTP Poisoning/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroprotective Agents/pharmacology , PPAR alpha/agonists , PPAR alpha/metabolism , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/prevention & control , Substantia Nigra/drug effects , Substantia Nigra/pathology
12.
Biotechnol Appl Biochem ; 66(2): 247-253, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30548933

ABSTRACT

The present study aimed to investigate the protective effects of salidroside (SAL) on 1-methyl-4-phenylpyridinium (MPP+ )-induced PC12 cell model for Parkinson's disease. PC12 cells were pretreated with SAL in different concentrations and then exposed to MPP+ . To evaluate the effects of SAL on cytotoxicity, the survival rate was tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyltetrazolium bromide (MTT) assay and the apoptosis was tested via flow cytometry and Western blot. Reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA) were detected to analyze the effects of SAL on oxidative stress. The mRNA and protein levels of inflammatory factors TNF-α and IL-1ß were also determined by real-time quantitative polymerase chain reaction and Western blot. Pretreatment with SAL effectively relieved the MPP+ cytotoxic effects and decreased the release of ROS production and inflammatory cytokines. SAL also inhibited apoptosis, suppressed MDA activity, and increased GSH levels in MPP+ -treated PC12 cells. Moreover, the expression levels of caspase-9, caspase-3, and Bax were significantly decreased in the SAL treatment groups compared with the MPP+ group, whereas Bcl-2 expression was significantly increased in the SAL treatment groups. In summary, the overall results suggested that SAL have neuroprotective effects on the MPP+ -induced PC12 cell model by inhibiting inflammation, oxidative stress, and cell apoptosis. SAL may be a potential active product to protect against Parkinson's disease.


Subject(s)
Apoptosis/drug effects , Glucosides/pharmacology , MPTP Poisoning/prevention & control , Oxidative Stress/drug effects , Phenols/pharmacology , Animals , Caspase 3/metabolism , Caspase 9/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , PC12 Cells , Rats , bcl-2-Associated X Protein/metabolism
13.
J Neurochem ; 147(5): 678-691, 2018 12.
Article in English | MEDLINE | ID: mdl-30152864

ABSTRACT

Parkinson's disease (PD) is characterized by the loss of midbrain dopaminergic neurons and aggregates of α-synuclein termed Lewy bodies. Fingolimod (FTY720) is an agonist of sphingosine-1 phosphate receptors and an approved oral treatment for multiple sclerosis. Fingolimod elevates brain-derived neurotrophic factor (BDNF), an important neurotrophic factor for dopaminergic neurons. BDNF and fingolimod are beneficial in several animal models of PD. In order to validate the therapeutic potential of fingolimod for the treatment of PD, we tested its effect in the subacute MPTP mouse model of PD. MPTP or vehicle was applied i.p. in doses of 30 mg/kg MPTP on five consecutive days. In order to recapitulate the combination of dopamine loss and α-synuclein aggregates found in PD, MPTP was first administered in Thy1-A30P-α-synuclein transgenic mice. Fingolimod was administered i.p. at a dose of 0.1 mg/kg every second day. Nigrostriatal degeneration was assayed by stereologically counting the number of dopaminergic neurons in the substantia nigra pars compacta, by analysing the concentration of catecholamines and the density of dopaminergic fibres in the striatum. MPTP administration produced a robust nigrostriatal degeneration, comparable to previous studies. Unexpectedly, we found no difference between mice with and without fingolimod treatment, neither at baseline, nor at 14 or 90 days after MPTP. Also, we found no effect of fingolimod in the subacute MPTP mouse model when we used wildtype mice instead of α-synuclein transgenic mice, and no effect with an increased dose of 1 mg/kg fingolimod administered every day. In order to explain these findings, we analysed BDNF regulation by fingolimod. We did find an increase of BDNF protein after a single injection of fingolimod 0.1 or 1.0 mg/kg, but not after multiple injections, indicating that the BDNF response to fingolimod is unsustainable over time. Taken together we did not observe a neuroprotective effect of fingolimod in the subacute MPTP mouse model of PD. We discuss possible explanations for this discrepancy with previous findings and conclude fingolimod might be beneficial for the nonmotor symptoms of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/6xgfn/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Subject(s)
Antiparkinson Agents/therapeutic use , Brain-Derived Neurotrophic Factor/biosynthesis , Fingolimod Hydrochloride/therapeutic use , MPTP Poisoning/prevention & control , Neuroprotective Agents/therapeutic use , Parkinson Disease, Secondary/prevention & control , Animals , Dopamine/metabolism , Dopaminergic Neurons/pathology , Humans , Immunohistochemistry , MPTP Poisoning/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Negative Results , Parkinson Disease, Secondary/pathology , Substantia Nigra/pathology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
14.
J Neurochem ; 144(4): 483-497, 2018 02.
Article in English | MEDLINE | ID: mdl-29265365

ABSTRACT

Intracellular protein trafficking is tightly regulated, and improper trafficking might be the fundamental provocateur for human diseases including neurodegeneration. In neurons, protein trafficking to and from the plasma membrane affects synaptic plasticity. Voltage-gated potassium channel 2.1 (Kv2.1) is a predominant delayed rectifier potassium (K+ ) current, and electrical activity patterns of dopamine (DA) neurons within the substantia nigra are generated and modulated by the orchestrated function of different ion channels. The pathological hallmark of Parkinson's disease (PD) is the progressive loss of these DA neurons, resulting in the degeneration of striatal dopaminergic terminals. However, whether trafficking of Kv2.1 channels contributes to PD remains unclear. In this study, we demonstrated that MPTP/MPP+ increases the surface expression of the Kv2.1 channel and causes nigrostriatal degeneration by using a subchronic MPTP mouse model. The inhibition of the Kv2.1 channel by using a specific blocker, guangxitoxin-1E, protected nigrostriatal projections against MPTP/MPP+ insult and thus facilitated the recovery of motor coordination. These findings highlight the importance of trafficking of Kv2.1 channels in the pathogenesis of PD.


Subject(s)
MPTP Poisoning/metabolism , Neostriatum/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Shab Potassium Channels/metabolism , Substantia Nigra/pathology , Animals , Arthropod Proteins/pharmacology , Biotinylation , Cell Line, Tumor , Dopaminergic Neurons/metabolism , MPTP Poisoning/pathology , MPTP Poisoning/prevention & control , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Nerve Degeneration/chemically induced , Neuroprotective Agents/pharmacology , Postural Balance/drug effects , Shab Potassium Channels/antagonists & inhibitors , Spider Venoms/pharmacology
15.
J Neurosci ; 36(10): 3049-63, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26961958

ABSTRACT

Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKß1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Caloric Restriction , Ghrelin/metabolism , MPTP Poisoning/pathology , MPTP Poisoning/prevention & control , Parkinson Disease/physiopathology , Signal Transduction/physiology , AMP-Activated Protein Kinases/genetics , Animals , Calcium-Binding Proteins/metabolism , Cell Count , Corpus Striatum/pathology , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Ghrelin/genetics , Ghrelin/pharmacology , Glial Fibrillary Acidic Protein/metabolism , MPTP Poisoning/chemically induced , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Motor Activity/drug effects , Motor Activity/genetics , Neurons/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Tyrosine 3-Monooxygenase/metabolism
16.
J Cell Biochem ; 118(10): 3495-3510, 2017 10.
Article in English | MEDLINE | ID: mdl-28338241

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease, involving resting tremor and bradykinesia, for which no recognized therapies or drugs are available to halt or slow progression. In recent years, natural botanic products have been considered relatively safe, with limited side effects, and are expected to become an important source for clinical mediation of PD in the future. Our study focuses on the ability of loganin, a compound derived from fruits of cornus, to mediate neuroprotection in a mouse model of PD. Mice were administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) with a dosage of 30 mg/kg daily for 5 days to establish a subacute PD model and treated with loganin. Locomotor activity was assessed by a pole test, then mice were euthanized at 1 and 3 days after the last treatment, and brain tissue was prepared for subsequent assays. Loganin rescued decrease of dopamine levels and tyrosine hydroxylase (TH) expression in the striatum, and shortened total locomotor activity (TLA) time of mice. Furthermore, loganin alleviated microglia and astrocyte activation, and suppressed TNF-α and caspase-3 expression through a c-Abl-p38-NFκB pathway. Loganin also downregulated LC3-II and Drp1 expression, and decreased the level of acidic vesicular organelles (AVOs). Loganin exerts neuroprotective effects on MPTP-induced PD mice by decreasing inflammation, autophagy, and apoptosis, suggesting that loganin could serve as a therapeutic drug to ameliorate PD. J. Cell. Biochem. 118: 3495-3510, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Astrocytes/metabolism , Corpus Striatum/metabolism , Iridoids/pharmacology , MPTP Poisoning/prevention & control , Microglia/metabolism , Parkinson Disease, Secondary/prevention & control , Animals , Astrocytes/pathology , Corpus Striatum/pathology , Dopamine/metabolism , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Male , Mice , Microglia/pathology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/metabolism , Parkinson Disease, Secondary/pathology , Tyrosine 3-Monooxygenase/metabolism
17.
J Cell Biochem ; 118(3): 615-628, 2017 03.
Article in English | MEDLINE | ID: mdl-27662601

ABSTRACT

1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP), which induces the pathological characteristics of Parkinson's disease in rodents, also specifically targets dopaminergic neurons in zebrafish embryos and larvae. Loganin, a traditional Chinese drug, was reported to regulate immune function and possess anti-inflammatory and anti-shock effects. Here, we investigate the role of loganin in MPTP-induced Parkinson-like abnormalities in zebrafish. MPTP treatment-induced abnormal development, in larvae, such as pericardium edema, increased yolk color, yolk sac edema, and retarded yolk sac resorption, as well as defects in brain development. Loganin could block MPTP-induced defects, with little toxicity to the eggs. Results of whole mount in situ hybridization showed loganin prevented the loss of both dopaminergic neurons and locomotor activity, exhibited by larvae treated with MPTP. In addition, loganin significantly rescued MPTP-induced neurotoxicity on PC12 cells, possibly through the suppression of PI3K/Akt/mTOR axis and JNK signaling pathways. In conclusion, loganin blocks MPTP-induced neurotoxicity and abnormal development in zebrafish. J. Cell. Biochem. 118: 615-628, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Iridoids/pharmacology , MPTP Poisoning/prevention & control , Neuroprotective Agents/pharmacology , Zebrafish/embryology , Animals , MAP Kinase Kinase 4/metabolism , MPTP Poisoning/embryology , PC12 Cells , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , TOR Serine-Threonine Kinases/metabolism , Zebrafish Proteins/metabolism
18.
J Pharmacol Exp Ther ; 363(2): 284-292, 2017 11.
Article in English | MEDLINE | ID: mdl-28912345

ABSTRACT

The novel bibenzyl compound 2-[4-hydroxy-3-(4- hydroxyphenyl) benzyl]-4-(4- hydroxyphenyl) phenol (20C) plays a neuroprotective role in vitro, but its effects in vivo have not yet been elucidated. In this study, we estimated the efficacy of 20C in vivo using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) mouse model from behavior, dopamine, and neuron and then the possible mechanisms for these effects were further investigated. The experimental results showed that 20C improved behavioral deficits, attenuated dopamine depletion, reduced dopaminergic neuron loss, protected the blood-brain barrier (BBB) structure, ameliorated α-synuclein dysfunction, suppressed glial activation, and regulated both nuclear factor-κB (NF-κB) signaling and the NOD-like receptor protein (NLRP) 3 inflammasome pathway. Our results indicated that 20C may prevent neurodegeneration in the MPTP/p mouse model by targeting α-synuclein and regulating α-synuclein-related inflammatory responses, including BBB damage, glial activation, NF-κB signaling, and the NLRP3 inflammasome pathway.


Subject(s)
Benzhydryl Compounds/pharmacology , Bibenzyls/pharmacology , MPTP Poisoning/prevention & control , Neuroprotective Agents/pharmacology , Phenols/pharmacology , Probenecid/toxicity , Animals , Astrocytes/drug effects , Behavior, Animal/drug effects , Body Weight/drug effects , Dopamine/metabolism , Inflammation/metabolism , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Synaptic Transmission/drug effects
19.
Ann Neurol ; 79(1): 59-75, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26456231

ABSTRACT

OBJECTIVE: To examine whether near-infrared light (NIr) treatment reduces clinical signs and/or offers neuroprotection in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson disease. METHODS: We implanted an optical fiber device that delivered NIr (670 nm) to the midbrain of macaque monkeys, close to the substantia nigra of both sides. MPTP injections (1.5-2.1mg/kg) were made over a 5- to 7-day period, during which time the NIr device was turned on. This was then followed by a 3-week survival period. Monkeys were evaluated clinically (eg, posture, bradykinesia) and behaviorally (open field test), and their brains were processed for immunohistochemistry and stereology. RESULTS: All monkeys in the MPTP group developed severe clinical and behavioral impairment (mean clinical scores = 21-34; n = 11). By contrast, the MPTP-NIr group developed much less clinical and behavioral impairment (n = 9); some monkeys developed moderate clinical signs (mean scores = 11-15; n = 3), whereas the majority--quite remarkably--developed few clinical signs (mean scores = 1-6; n = 6). The monkeys that developed moderate clinical signs had hematic fluid in their optical fibers at postmortem, presumably limiting NIr exposure and overall clinical improvement. NIr was not toxic to brain tissue and offered neuroprotection to dopaminergic cells and their terminations against MPTP insult, particularly in animals that developed few clinical signs. INTERPRETATION: Our findings indicate NIr to be an effective therapeutic agent in a primate model of the disease and create the template for translation into clinical trials.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Behavior, Animal/radiation effects , Infrared Rays/therapeutic use , MPTP Poisoning/prevention & control , Mesencephalon/radiation effects , Neurotoxins/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Low-Level Light Therapy , MPTP Poisoning/physiopathology , Macaca fascicularis , Male , Mesencephalon/drug effects , Neurotoxins/administration & dosage , Optical Fibers
20.
Toxicol Appl Pharmacol ; 319: 80-90, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28185818

ABSTRACT

Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP+)-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AF enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP+ in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1ß and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP+-induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation.


Subject(s)
Biflavonoids/therapeutic use , Dopaminergic Neurons/metabolism , MAP Kinase Signaling System/physiology , MPTP Poisoning/metabolism , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Animals , Biflavonoids/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dose-Response Relationship, Drug , Humans , MAP Kinase Signaling System/drug effects , MPTP Poisoning/pathology , MPTP Poisoning/prevention & control , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL