Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Neuroimage ; 299: 120802, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39173694

ABSTRACT

Electroencephalography (EEG) or Magnetoencephalography (MEG) source imaging aims to estimate the underlying activated brain sources to explain the observed EEG/MEG recordings. Solving the inverse problem of EEG/MEG Source Imaging (ESI) is challenging due to its ill-posed nature. To achieve a unique solution, it is essential to apply sophisticated regularization constraints to restrict the solution space. Traditionally, the design of regularization terms is based on assumptions about the spatiotemporal structure of the underlying source dynamics. In this paper, we propose a novel paradigm for ESI via an Explainable Deep Learning framework, termed as XDL-ESI, which connects the iterative optimization algorithm with deep learning architecture by unfolding the iterative updates with neural network modules. The proposed framework has the advantages of (1) establishing a data-driven approach to model the source solution structure instead of using hand-crafted regularization terms; (2) improving the robustness of source solutions by introducing a topological loss that leverages the geometric spatial information applying varying penalties on distinct localization errors; (3) improving the reconstruction efficiency and interpretability as it inherits the advantages from both the iterative optimization algorithms (interpretability) and deep learning approaches (function approximation). The proposed XDL-ESI framework provides an efficient, accurate, and interpretable paradigm to solve the ESI inverse problem with satisfactory performance in both simulated data and real clinical data. Specially, this approach is further validated using simultaneous EEG and intracranial EEG (iEEG).


Subject(s)
Deep Learning , Electroencephalography , Magnetoencephalography , Humans , Electroencephalography/methods , Magnetoencephalography/methods , Magnetoencephalography/standards , Brain/physiology , Brain/diagnostic imaging , Electrocorticography/methods , Electrocorticography/standards , Algorithms
2.
Hum Brain Mapp ; 45(10): e26782, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38989630

ABSTRACT

This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer's disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the 'quality' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of 'reliability' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.


Subject(s)
Alzheimer Disease , Magnetoencephalography , Humans , Magnetoencephalography/methods , Magnetoencephalography/standards , Reproducibility of Results , Alzheimer Disease/physiopathology , Male , Female , Aged , Models, Neurological , Bayes Theorem
3.
J Neurophysiol ; 127(2): 559-570, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35044809

ABSTRACT

The Rolandic beta rhythm, at ∼20 Hz, is generated in the somatosensory and motor cortices and is modulated by motor activity and sensory stimuli, causing a short lasting suppression that is followed by a rebound of the beta rhythm. The rebound reflects inhibitory changes in the primary sensorimotor (SMI) cortex, and thus it has been used as a biomarker to follow the recovery of patients with acute stroke. The longitudinal stability of beta rhythm modulation is a prerequisite for its use in long-term follow-ups. We quantified the reproducibility of beta rhythm modulation in healthy subjects in a 1-year-longitudinal study both for MEG and EEG at T0, 1 month (T1-month, n = 8) and 1 year (T1-year, n = 19). The beta rhythm (13-25 Hz) was modulated by fixed tactile and proprioceptive stimulations of the index fingers. The relative peak strengths of beta suppression and rebound did not differ significantly between the sessions, and intersession reproducibility was good or excellent according to intraclass correlation-coefficient values (0.70-0.96) both in MEG and EEG. Our results indicate that the beta rhythm modulation to tactile and proprioceptive stimulation is well reproducible within 1 year. These results support the use of beta modulation as a biomarker in long-term follow-up studies, e.g., to quantify the functional state of the SMI cortex during rehabilitation and drug interventions in various neurological impairments.NEW & NOTEWORTHY The present study demonstrates that beta rhythm modulation is highly reproducible in a group of healthy subjects within a year. Hence, it can be reliably used as a biomarker in longitudinal follow-up studies in different neurological patient groups to reflect changes in the functional state of the sensorimotor cortex.


Subject(s)
Beta Rhythm/physiology , Electroencephalography Phase Synchronization/physiology , Electroencephalography , Evoked Potentials/physiology , Magnetoencephalography , Motor Cortex/physiology , Proprioception/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Adult , Electroencephalography/standards , Female , Humans , Longitudinal Studies , Magnetoencephalography/standards , Male , Reproducibility of Results , Young Adult
4.
Hum Brain Mapp ; 43(4): 1342-1357, 2022 03.
Article in English | MEDLINE | ID: mdl-35019189

ABSTRACT

Prior studies have used graph analysis of resting-state magnetoencephalography (MEG) to characterize abnormal brain networks in neurological disorders. However, a present challenge for researchers is the lack of guidance on which network construction strategies to employ. The reproducibility of graph measures is important for their use as clinical biomarkers. Furthermore, global graph measures should ideally not depend on whether the analysis was performed in the sensor or source space. Therefore, MEG data of the 89 healthy subjects of the Human Connectome Project were used to investigate test-retest reliability and sensor versus source association of global graph measures. Atlas-based beamforming was used for source reconstruction, and functional connectivity (FC) was estimated for both sensor and source signals in six frequency bands using the debiased weighted phase lag index (dwPLI), amplitude envelope correlation (AEC), and leakage-corrected AEC. Reliability was examined over multiple network density levels achieved with proportional weight and orthogonal minimum spanning tree thresholding. At a 100% density, graph measures for most FC metrics and frequency bands had fair to excellent reliability and significant sensor versus source association. The greatest reliability and sensor versus source association was obtained when using amplitude metrics. Reliability was similar between sensor and source spaces when using amplitude metrics but greater for the source than the sensor space in higher frequency bands when using the dwPLI. These results suggest that graph measures are useful biomarkers, particularly for investigating functional networks based on amplitude synchrony.


Subject(s)
Connectome/standards , Magnetoencephalography/standards , Nerve Net/diagnostic imaging , Nerve Net/physiology , Signal Processing, Computer-Assisted , Humans , Models, Theoretical , Reproducibility of Results
5.
Neuroimage ; 245: 118747, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34852277

ABSTRACT

In this paper, we analyze spatial sampling of electro- (EEG) and magnetoencephalography (MEG), where the electric or magnetic field is typically sampled on a curved surface such as the scalp. By simulating fields originating from a representative adult-male head, we study the spatial-frequency content in EEG as well as in on- and off-scalp MEG. This analysis suggests that on-scalp MEG, off-scalp MEG and EEG can benefit from up to 280, 90 and 110 spatial samples, respectively. In addition, we suggest a new approach to obtain sensor locations that are optimal with respect to prior assumptions. The approach also allows to control, e.g., the uniformity of the sensor locations. Based on our simulations, we argue that for a low number of spatial samples, model-informed non-uniform sampling can be beneficial. For a large number of samples, uniform sampling grids yield nearly the same total information as the model-informed grids.


Subject(s)
Electroencephalography/standards , Magnetoencephalography/standards , Adult , Humans , Male , Models, Neurological , Scalp , Signal Processing, Computer-Assisted
6.
Neuroimage ; 237: 118192, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34048899

ABSTRACT

Typically, time-frequency analysis (TFA) of electrophysiological data is aimed at isolating narrowband signals (oscillatory activity) from broadband non-oscillatory (1/f) activity, so that changes in oscillatory activity resulting from experimental manipulations can be assessed. A widely used method to do this is to convert the data to the decibel (dB) scale through baseline division and log transformation. This procedure assumes that, for each frequency, sources of power (i.e., oscillations and 1/f activity) scale by the same factor relative to the baseline (multiplicative model). This assumption may be incorrect when signal and noise are independent contributors to the power spectrum (additive model). Using resting-state EEG data from 80 participants, we found that the level of 1/f activity and alpha power are not positively correlated within participants, in line with the additive but not the multiplicative model. Then, to assess the effects of dB conversion on data that violate the multiplicativity assumption, we simulated a mixed design study with one between-subject (noise level, i.e., level of 1/f activity) and one within-subject (signal amplitude, i.e., amplitude of oscillatory activity added onto the background 1/f activity) factor. The effect size of the noise level × signal amplitude interaction was examined as a function of noise difference between groups, following dB conversion. Findings revealed that dB conversion led to the over- or under-estimation of the true interaction effect when groups differing in 1/f levels were compared, and it also led to the emergence of illusory interactions when none were present. This is because signal amplitude was systematically underestimated in the noisier compared to the less noisy group. Hence, we recommend testing whether the level of 1/f activity differs across groups or conditions and using multiple baseline correction strategies to validate results if it does. Such a situation may be particularly common in aging, developmental, or clinical studies.


Subject(s)
Cerebral Cortex/physiology , Electroencephalography/methods , Functional Neuroimaging/methods , Magnetoencephalography/methods , Adolescent , Adult , Aged , Aged, 80 and over , Brain Waves/physiology , Electroencephalography/standards , Female , Functional Neuroimaging/standards , Humans , Magnetoencephalography/standards , Male , Young Adult
7.
Neuroimage ; 241: 118402, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34274419

ABSTRACT

Magnetoencephalography (MEG) is a functional neuroimaging tool that records the magnetic fields induced by neuronal activity; however, signal from non-neuronal sources can corrupt the data. Eye-blinks, saccades, and cardiac activity are three of the most common sources of non-neuronal artifacts. They can be measured by affixing eye proximal electrodes, as in electrooculography (EOG), and chest electrodes, as in electrocardiography (ECG), however this complicates imaging setup, decreases patient comfort, and can induce further artifacts from movement. This work proposes an EOG- and ECG-free approach to identify eye-blinks, saccades, and cardiac activity signals for automated artifact suppression. The contribution of this work is three-fold. First, using a data driven, multivariate decomposition approach based on Independent Component Analysis (ICA), a highly accurate artifact classifier is constructed as an amalgam of deep 1-D and 2-D Convolutional Neural Networks (CNNs) to automate the identification and removal of ubiquitous whole brain artifacts including eye-blink, saccade, and cardiac artifacts. The specific architecture of this network is optimized through an unbiased, computer-based hyperparameter random search. Second, visualization methods are applied to the learned abstraction to reveal what features the model uses and to bolster user confidence in the model's training and potential for generalization. Finally, the model is trained and tested on both resting-state and task MEG data from 217 subjects, and achieves a new state-of-the-art in artifact detection accuracy of 98.95% including 96.74% sensitivity and 99.34% specificity on the held out test-set. This work automates MEG processing for both clinical and research use, adapts to the acquired acquisition time, and can obviate the need for EOG or ECG electrodes for artifact detection.


Subject(s)
Artifacts , Brain/physiology , Magnetoencephalography/methods , Neural Networks, Computer , Signal Processing, Computer-Assisted , Adolescent , Adult , Aged , Blinking/physiology , Child , Female , Humans , Magnetoencephalography/standards , Male , Middle Aged , Young Adult
8.
Neuroimage ; 230: 117793, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33497769

ABSTRACT

The linearly constrained minimum variance beamformer is frequently used to reconstruct sources underpinning neuromagnetic recordings. When reconstructions must be compared across conditions, it is considered good practice to use a single, "common" beamformer estimated from all the data at once. This is to ensure that differences between conditions are not ascribable to differences in beamformer weights. Here, we investigate the localization accuracy of such a common beamformer. Based on theoretical derivations, we first show that the common beamformer leads to localization errors in source reconstruction. We then turn to simulations in which we attempt to reconstruct a (genuine) source in a first condition, while considering a second condition in which there is an (interfering) source elsewhere in the brain. We estimate maps of mislocalization and assess statistically the difference between "standard" and "common" beamformers. We complement our findings with an application to experimental MEG data. The results show that the common beamformer may yield significant mislocalization. Specifically, the common beamformer may force the genuine source to be reconstructed closer to the interfering source than it really is. As the same applies to the reconstruction of the interfering source, both sources are pulled closer together than they are. This observation was further illustrated in experimental data. Thus, although the common beamformer allows for the comparison of conditions, in some circumstances it introduces localization inaccuracies. We recommend alternative approaches to the general problem of comparing conditions.


Subject(s)
Brain Mapping/standards , Brain/diagnostic imaging , Brain/physiology , Electroencephalography/standards , Image Processing, Computer-Assisted/standards , Magnetoencephalography/standards , Adult , Brain Mapping/methods , Electroencephalography/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetoencephalography/methods , Male , Young Adult
9.
Neuroimage ; 240: 118331, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34237444

ABSTRACT

Individual characterization of subjects based on their functional connectome (FC), termed "FC fingerprinting", has become a highly sought-after goal in contemporary neuroscience research. Recent functional magnetic resonance imaging (fMRI) studies have demonstrated unique characterization and accurate identification of individuals as an accomplished task. However, FC fingerprinting in magnetoencephalography (MEG) data is still widely unexplored. Here, we study resting-state MEG data from the Human Connectome Project to assess the MEG FC fingerprinting and its relationship with several factors including amplitude- and phase-coupling functional connectivity measures, spatial leakage correction, frequency bands, and behavioral significance. To this end, we first employ two identification scoring methods, differential identifiability and success rate, to provide quantitative fingerprint scores for each FC measurement. Secondly, we explore the edgewise and nodal MEG fingerprinting patterns across the different frequency bands (delta, theta, alpha, beta, and gamma). Finally, we investigate the cross-modality fingerprinting patterns obtained from MEG and fMRI recordings from the same subjects. We assess the behavioral significance of FC across connectivity measures and imaging modalities using partial least square correlation analyses. Our results suggest that fingerprinting performance is heavily dependent on the functional connectivity measure, frequency band, identification scoring method, and spatial leakage correction. We report higher MEG fingerprinting performances in phase-coupling methods, central frequency bands (alpha and beta), and in the visual, frontoparietal, dorsal-attention, and default-mode networks. Furthermore, cross-modality comparisons reveal a certain degree of spatial concordance in fingerprinting patterns between the MEG and fMRI data, especially in the visual system. Finally, the multivariate correlation analyses show that MEG connectomes have strong behavioral significance, which however depends on the considered connectivity measure and temporal scale. This comprehensive, albeit preliminary investigation of MEG connectome test-retest identifiability offers a first characterization of MEG fingerprinting in relation to different methodological and electrophysiological factors and contributes to the understanding of fingerprinting cross-modal relationships. We hope that this first investigation will contribute to setting the grounds for MEG connectome identification.


Subject(s)
Brain/physiology , Connectome/standards , Magnetic Resonance Imaging/standards , Magnetoencephalography/standards , Nerve Net/physiology , Adult , Brain/diagnostic imaging , Connectome/methods , Female , Humans , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Male , Nerve Net/diagnostic imaging
10.
Hum Brain Mapp ; 42(14): 4685-4707, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34219311

ABSTRACT

Noninvasive functional neuroimaging of the human brain can give crucial insight into the mechanisms that underpin healthy cognition and neurological disorders. Magnetoencephalography (MEG) measures extracranial magnetic fields originating from neuronal activity with high temporal resolution, but requires source reconstruction to make neuroanatomical inferences from these signals. Many source reconstruction algorithms are available, and have been widely evaluated in the context of localizing task-evoked activities. However, no consensus yet exists on the optimum algorithm for resting-state data. Here, we evaluated the performance of six commonly-used source reconstruction algorithms based on minimum-norm and beamforming estimates. Using human resting-state MEG, we compared the algorithms using quantitative metrics, including resolution properties of inverse solutions and explained variance in sensor-level data. Next, we proposed a data-driven approach to reduce the atlas from the Human Connectome Project's multi-modal parcellation of the human cortex based on metrics such as MEG signal-to-noise-ratio and resting-state functional connectivity gradients. This procedure produced a reduced cortical atlas with 230 regions, optimized to match the spatial resolution and the rank of MEG data from the current generation of MEG scanners. Our results show that there is no "one size fits all" algorithm, and make recommendations on the appropriate algorithms depending on the data and aimed analyses. Our comprehensive comparisons and recommendations can serve as a guide for choosing appropriate methodologies in future studies of resting-state MEG.


Subject(s)
Algorithms , Cerebral Cortex/physiology , Connectome/standards , Magnetoencephalography/standards , Adult , Atlases as Topic , Connectome/methods , Humans , Magnetoencephalography/methods , Signal Processing, Computer-Assisted
11.
Hum Brain Mapp ; 42(15): 4869-4879, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34245061

ABSTRACT

Optically pumped magnetometers (OPMs) are quickly widening the scopes of noninvasive neurophysiological imaging. The possibility of placing these magnetic field sensors on the scalp allows not only to acquire signals from people in movement, but also to reduce the distance between the sensors and the brain, with a consequent gain in the signal-to-noise ratio. These advantages make the technique particularly attractive to characterise sources of brain activity in demanding populations, such as children and patients with epilepsy. However, the technology is currently in an early stage, presenting new design challenges around the optimal sensor arrangement and their complementarity with other techniques as electroencephalography (EEG). In this article, we present an optimal array design strategy focussed on minimising the brain source localisation error. The methodology is based on the Cramér-Rao bound, which provides lower error bounds on the estimation of source parameters regardless of the algorithm used. We utilise this framework to compare whole head OPM arrays with commercially available electro/magnetoencephalography (E/MEG) systems for localising brain signal generators. In addition, we study the complementarity between EEG and OPM-based MEG, and design optimal whole head systems based on OPMs only and a combination of OPMs and EEG electrodes for characterising deep and superficial sources alike. Finally, we show the usefulness of the approach to find the nearly optimal sensor positions minimising the estimation error bound in a given cortical region when a limited number of OPMs are available. This is of special interest for maximising the performance of small scale systems to ad hoc neurophysiological experiments, a common situation arising in most OPM labs.


Subject(s)
Brain Mapping/instrumentation , Brain/physiology , Electroencephalography/instrumentation , Magnetoencephalography/instrumentation , Magnetometry/instrumentation , Adult , Brain Mapping/methods , Brain Mapping/standards , Electroencephalography/methods , Electroencephalography/standards , Humans , Magnetoencephalography/methods , Magnetoencephalography/standards , Magnetometry/methods , Magnetometry/standards
12.
Hum Brain Mapp ; 42(7): 1987-2004, 2021 05.
Article in English | MEDLINE | ID: mdl-33449442

ABSTRACT

Combat-related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active-duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep-learning neural network method, 3D-MEGNET, and applied it to resting-state magnetoencephalography (rs-MEG) source-magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat-deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All-frequency model, which combined delta-theta (1-7 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D-MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver-operator-characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta-theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta-theta and gamma-band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta-band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source-imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all-frequency model offered more discriminative power than each frequency-band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/physiopathology , Combat Disorders/diagnostic imaging , Combat Disorders/physiopathology , Connectome/standards , Deep Learning , Magnetoencephalography/standards , Adult , Connectome/methods , Humans , Magnetoencephalography/methods , Male , Sensitivity and Specificity , Young Adult
13.
Hum Brain Mapp ; 42(4): 978-992, 2021 03.
Article in English | MEDLINE | ID: mdl-33156569

ABSTRACT

Signal-to-noise ratio (SNR) maps are a good way to visualize electroencephalography (EEG) and magnetoencephalography (MEG) sensitivity. SNR maps extend the knowledge about the modulation of EEG and MEG signals by source locations and orientations and can therefore help to better understand and interpret measured signals as well as source reconstruction results thereof. Our work has two main objectives. First, we investigated the accuracy and reliability of EEG and MEG finite element method (FEM)-based sensitivity maps for three different head models, namely an isotropic three and four-compartment and an anisotropic six-compartment head model. As a result, we found that ignoring the cerebrospinal fluid leads to an overestimation of EEG SNR values. Second, we examined and compared EEG and MEG SNR mappings for both cortical and subcortical sources and their modulation by source location and orientation. Our results for cortical sources show that EEG sensitivity is higher for radial and deep sources and MEG for tangential ones, which are the majority of sources. As to the subcortical sources, we found that deep sources with sufficient tangential source orientation are recordable by the MEG. Our work, which represents the first comprehensive study where cortical and subcortical sources are considered in highly detailed FEM-based EEG and MEG SNR mappings, sheds a new light on the sensitivity of EEG and MEG and might influence the decision of brain researchers or clinicians in their choice of the best modality for their experiment or diagnostics, respectively.


Subject(s)
Amygdala/physiology , Cerebellum/physiology , Cerebral Cortex/physiology , Corpus Striatum/physiology , Electroencephalography/standards , Evoked Potentials, Somatosensory/physiology , Magnetoencephalography/standards , Thalamus/physiology , Adult , Electroencephalography/methods , Hippocampus/physiology , Humans , Magnetic Resonance Imaging , Magnetoencephalography/methods , Reproducibility of Results , Signal-To-Noise Ratio
14.
Neuroimage ; 211: 116599, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32035185

ABSTRACT

Cross-frequency coupling (CFC) between neuronal oscillations reflects an integration of spatially and spectrally distributed information in the brain. Here, we propose a novel framework for detecting such interactions in Magneto- and Electroencephalography (MEG/EEG), which we refer to as Nonlinear Interaction Decomposition (NID). In contrast to all previous methods for separation of cross-frequency (CF) sources in the brain, we propose that the extraction of nonlinearly interacting oscillations can be based on the statistical properties of their linear mixtures. The main idea of NID is that nonlinearly coupled brain oscillations can be mixed in such a way that the resulting linear mixture has a non-Gaussian distribution. We evaluate this argument analytically for amplitude-modulated narrow-band oscillations which are either phase-phase or amplitude-amplitude CF coupled. We validated NID extensively with simulated EEG obtained with realistic head modelling. The method extracted nonlinearly interacting components reliably even at SNRs as small as -15 dB. Additionally, we applied NID to the resting-state EEG of 81 subjects to characterize CF phase-phase coupling between alpha and beta oscillations. The extracted sources were located in temporal, parietal and frontal areas, demonstrating the existence of diverse local and distant nonlinear interactions in resting-state EEG data. All codes are available publicly via GitHub.


Subject(s)
Brain Waves/physiology , Cerebral Cortex/physiology , Connectome/methods , Electroencephalography/methods , Magnetoencephalography/methods , Models, Theoretical , Computer Simulation , Connectome/standards , Electroencephalography/standards , Humans , Magnetoencephalography/standards
15.
Neuroimage ; 216: 116862, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32305564

ABSTRACT

Determining the anatomical source of brain activity non-invasively measured from EEG or MEG sensors is challenging. In order to simplify the source localization problem, many techniques introduce the assumption that current sources lie on the cortical surface. Another common assumption is that this current flow is orthogonal to the cortical surface, thereby approximating the orientation of cortical columns. However, it is not clear which cortical surface to use to define the current source locations, and normal vectors computed from a single cortical surface may not be the best approximation to the orientation of cortical columns. We compared three different surface location priors and five different approaches for estimating dipole vector orientation, both in simulations and visual and motor evoked MEG responses. We show that models with source locations on the white matter surface and using methods based on establishing correspondences between white matter and pial cortical surfaces dramatically outperform models with source locations on the pial or combined pial/white surfaces and which use methods based on the geometry of a single cortical surface in fitting evoked visual and motor responses. These methods can be easily implemented and adopted in most M/EEG analysis pipelines, with the potential to significantly improve source localization of evoked responses.


Subject(s)
Cerebral Cortex/physiology , Evoked Potentials, Motor/physiology , Evoked Potentials, Visual/physiology , Functional Neuroimaging/methods , Magnetoencephalography/methods , White Matter/physiology , Adult , Computer Simulation , Female , Functional Neuroimaging/standards , Humans , Magnetoencephalography/standards , Male , Pia Mater/physiology , Young Adult
16.
Neuroimage ; 216: 116797, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32278091

ABSTRACT

Beamformers are applied for estimating spatiotemporal characteristics of neuronal sources underlying measured MEG/EEG signals. Several MEG analysis toolboxes include an implementation of a linearly constrained minimum-variance (LCMV) beamformer. However, differences in implementations and in their results complicate the selection and application of beamformers and may hinder their wider adoption in research and clinical use. Additionally, combinations of different MEG sensor types (such as magnetometers and planar gradiometers) and application of preprocessing methods for interference suppression, such as signal space separation (SSS), can affect the results in different ways for different implementations. So far, a systematic evaluation of the different implementations has not been performed. Here, we compared the localization performance of the LCMV beamformer pipelines in four widely used open-source toolboxes (MNE-Python, FieldTrip, DAiSS (SPM12), and Brainstorm) using datasets both with and without SSS interference suppression. We analyzed MEG data that were i) simulated, ii) recorded from a static and moving phantom, and iii) recorded from a healthy volunteer receiving auditory, visual, and somatosensory stimulation. We also investigated the effects of SSS and the combination of the magnetometer and gradiometer signals. We quantified how localization error and point-spread volume vary with the signal-to-noise ratio (SNR) in all four toolboxes. When applied carefully to MEG data with a typical SNR (3-15 â€‹dB), all four toolboxes localized the sources reliably; however, they differed in their sensitivity to preprocessing parameters. As expected, localizations were highly unreliable at very low SNR, but we found high localization error also at very high SNRs for the first three toolboxes while Brainstorm showed greater robustness but with lower spatial resolution. We also found that the SNR improvement offered by SSS led to more accurate localization.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/physiology , Electroencephalography/methods , Magnetoencephalography/methods , Adult , Brain Mapping/standards , Computer Simulation , Electroencephalography/standards , Humans , Magnetoencephalography/standards , Phantoms, Imaging , Physical Stimulation , Reproducibility of Results , Signal Processing, Computer-Assisted
17.
Neuroimage ; 215: 116817, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32278092

ABSTRACT

The cerebellum plays a key role in the regulation of motor learning, coordination and timing, and has been implicated in sensory and cognitive processes as well. However, our current knowledge of its electrophysiological mechanisms comes primarily from direct recordings in animals, as investigations into cerebellar function in humans have instead predominantly relied on lesion, haemodynamic and metabolic imaging studies. While the latter provide fundamental insights into the contribution of the cerebellum to various cerebellar-cortical pathways mediating behaviour, they remain limited in terms of temporal and spectral resolution. In principle, this shortcoming could be overcome by monitoring the cerebellum's electrophysiological signals. Non-invasive assessment of cerebellar electrophysiology in humans, however, is hampered by the limited spatial resolution of electroencephalography (EEG) and magnetoencephalography (MEG) in subcortical structures, i.e., deep sources. Furthermore, it has been argued that the anatomical configuration of the cerebellum leads to signal cancellation in MEG and EEG. Yet, claims that MEG and EEG are unable to detect cerebellar activity have been challenged by an increasing number of studies over the last decade. Here we address this controversy and survey reports in which electrophysiological signals were successfully recorded from the human cerebellum. We argue that the detection of cerebellum activity non-invasively with MEG and EEG is indeed possible and can be enhanced with appropriate methods, in particular using connectivity analysis in source space. We provide illustrative examples of cerebellar activity detected with MEG and EEG. Furthermore, we propose practical guidelines to optimize the detection of cerebellar activity with MEG and EEG. Finally, we discuss MEG and EEG signal contamination that may lead to localizing spurious sources in the cerebellum and suggest ways of handling such artefacts. This review is to be read as a perspective review that highlights that it is indeed possible to measure cerebellum with MEG and EEG and encourages MEG and EEG researchers to do so. Its added value beyond highlighting and encouraging is that it offers useful advice for researchers aspiring to investigate the cerebellum with MEG and EEG.


Subject(s)
Auditory Perception/physiology , Cerebellum/physiology , Electroencephalography/methods , Magnetoencephalography/methods , Psychomotor Performance/physiology , Visual Perception/physiology , Electroencephalography/standards , Humans , Magnetoencephalography/standards , Patient Positioning/methods
18.
Neuroimage ; 208: 116386, 2020 03.
Article in English | MEDLINE | ID: mdl-31786165

ABSTRACT

Functional brain connectivity is increasingly being seen as critical for cognition, perception and motor control. Magnetoencephalography and electroencephalography are modalities that offer noninvasive mapping of electrophysiological interactions among brain regions, yet suffer from signal leakage and signal cancellation when estimating brain activity. This leads to biased connectivity values which complicate interpretation. In this study, we test the hypothesis that a Multiple Constrained Minimum Variance beamformer (MCMV) outperforms the more traditional Linearly Constrained Minimum Variance beamformer (LCMV) for estimation of electrophysiological connectivity. To this end, MCMV and LCMV performance is compared in task related analyses with both simulated data and human MEG recordings of visual steady state signals, and in resting state analyses with simulated data and human MEG data of 89 subjects. In task related scenarios connectivity was estimated using coherence and phase locking values, whereas envelope correlations were used for the resting state data. We also introduce a novel Augmented Pairwise MCMV (APW-MCMV) approach for signal leakage suppression in resting state analyses and assess its performance against LCMV and more conventional MCMV approaches. We demonstrate that with MCMV effects of signal mixing and coherent source cancellation are greatly reduced in both task related and resting state conditions, while in contrast to other approaches 0- and short time lag interactions are preserved. In addition, we demonstrate that in resting state analyses, APW-MCMV strongly reduces spurious connections while better controlling for false negatives compared to more conservative measures such as symmetrical orthogonalization.


Subject(s)
Cerebral Cortex/physiology , Connectome/methods , Electroencephalography/methods , Magnetoencephalography/methods , Models, Theoretical , Adult , Connectome/standards , Electroencephalography/standards , Humans , Magnetoencephalography/standards
19.
Neuroimage ; 211: 116528, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31945510

ABSTRACT

Characterizing the neural dynamics underlying sensory processing is one of the central areas of investigation in systems and cognitive neuroscience. Neuroimaging techniques such as magnetoencephalography (MEG) and Electroencephalography (EEG) have provided significant insights into the neural processing of continuous stimuli, such as speech, thanks to their high temporal resolution. Existing work in the context of auditory processing suggests that certain features of speech, such as the acoustic envelope, can be used as reliable linear predictors of the neural response manifested in M/EEG. The corresponding linear filters are referred to as temporal response functions (TRFs). While the functional roles of specific components of the TRF are well-studied and linked to behavioral attributes such as attention, the cortical origins of the underlying neural processes are not as well understood. In this work, we address this issue by estimating a linear filter representation of cortical sources directly from neuroimaging data in the context of continuous speech processing. To this end, we introduce Neuro-Current Response Functions (NCRFs), a set of linear filters, spatially distributed throughout the cortex, that predict the cortical currents giving rise to the observed ongoing MEG (or EEG) data in response to continuous speech. NCRF estimation is cast within a Bayesian framework, which allows unification of the TRF and source estimation problems, and also facilitates the incorporation of prior information on the structural properties of the NCRFs. To generalize this analysis to M/EEG recordings which lack individual structural magnetic resonance (MR) scans, NCRFs are extended to free-orientation dipoles and a novel regularizing scheme is put forward to lessen reliance on fine-tuned coordinate co-registration. We present a fast estimation algorithm, which we refer to as the Champ-Lasso algorithm, by leveraging recent advances in optimization, and demonstrate its utility through application to simulated and experimentally recorded MEG data under auditory experiments. Our simulation studies reveal significant improvements over existing methods that typically operate in a two-stage fashion, in terms of spatial resolution, response function reconstruction, and recovering dipole orientations. The analysis of experimentally-recorded MEG data without MR scans corroborates existing findings, but also delineates the distinct cortical distribution of the underlying neural processes at high spatiotemporal resolution. In summary, we provide a principled modeling and estimation paradigm for MEG source analysis tailored to extracting the cortical origin of electrophysiological responses to continuous stimuli.


Subject(s)
Cerebral Cortex/physiology , Electroencephalography/methods , Functional Neuroimaging/methods , Magnetoencephalography/methods , Speech Perception/physiology , Adult , Algorithms , Bayes Theorem , Electroencephalography/standards , Female , Functional Neuroimaging/standards , Humans , Magnetoencephalography/standards , Male , Young Adult
20.
Neuroimage ; 221: 117157, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32659354

ABSTRACT

Magnetoencephalography (MEG) has a unique capacity to resolve the spatio-temporal development of brain activity from non-invasive measurements. Conventional MEG, however, relies on sensors that sample from a distance (20-40 â€‹mm) to the head due to thermal insulation requirements (the MEG sensors function at 4 â€‹K in a helmet). A gain in signal strength and spatial resolution may be achieved if sensors are moved closer to the head. Here, we report a study comparing measurements from a seven-channel on-scalp SQUID MEG system to those from a conventional (in-helmet) SQUID MEG system. We compared the spatio-temporal resolution between on-scalp and conventional MEG by comparing the discrimination accuracy for neural activity patterns resulting from stimulating five different phalanges of the right hand. Because of proximity and sensor density differences between on-scalp and conventional MEG, we hypothesized that on-scalp MEG would allow for a more high-resolved assessment of these activity patterns, and therefore also a better classification performance in discriminating between neural activations from the different phalanges. We observed that on-scalp MEG provided better classification performance during an early post-stimulus period (10-20 â€‹ms). This corresponded to the electroencephalographic (EEG) component P16/N16 and was an unexpected observation as this component is usually not observed in conventional MEG. This finding shows that on-scalp MEG enables a richer registration of the cortical signal, indicating a sensitivity to what are potentially sources in the thalamo-cortical radiation. We had originally expected that on-scalp MEG would provide better classification accuracy based on activity in proximity to the P60m component compared to conventional MEG. This component indeed allowed for the best classification performance for both MEG systems (60-75%, chance 50%). However, we did not find that on-scalp MEG allowed for better classification than conventional MEG at this latency. We suggest that this absence of differences is due to the limited sensor coverage in the recording, in combination with our strategy for positioning the on-scalp MEG sensors. We show how the current sensor coverage may have limited our chances to register the necessary between-phalange source field dissimilarities for fair hypothesis testing, an approach we otherwise believe to be useful for future benchmarking measurements.


Subject(s)
Cerebral Cortex/physiology , Electroencephalography/methods , Evoked Potentials, Somatosensory/physiology , Fingers/physiology , Magnetoencephalography/methods , Magnetoencephalography/standards , Touch Perception/physiology , Adult , Humans , Male , Middle Aged , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL