Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Publication year range
1.
Curr Microbiol ; 81(7): 198, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819647

ABSTRACT

Although usefulness of masks for protection against respiratory pathogens, accumulation of pathogens on their surface represents a source of infection spread. Here we prepared a plant extract-based disinfecting layer to be used in coating masks thus inhibiting their capacity to transmit airborne pathogens. To reach this, a polypropylene membrane base was coated with a layer of polyvinyledine difluoride polymer containing 500 µg/ml of Camellia sinensis (Black tea) methanolic extract. Direct inhibitory effects of C. sinensis were initially demonstrated against Staphylococcus aureus (respiratory bacteria), influenza A virus (enveloped virus) and adenovirus 1 (non-enveloped virus) which were directly proportional to both extract concentration and incubation time with the pathogen. This was later confirmed by the capacity of the supplemented membrane with the plant extract to block infectivity of the above mentioned pathogens, recorded % inhibition values were 61, 72 and 50 for S. aureus, influenza and adenovirus, respectively. In addition to the disinfecting capacity of the membrane its hydrophobic nature and pore size (154 nm) prevented penetration of dust particles or water droplets carrying respiratory pathogens. In summary, introducing this layer could protect users from infection and decrease infection risk upon handling contaminated masks surfaces.


Subject(s)
Camellia sinensis , Masks , Plant Extracts , Staphylococcus aureus , Camellia sinensis/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Staphylococcus aureus/drug effects , Masks/virology , Disinfectants/pharmacology , Influenza A virus/drug effects , Humans
2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34857639

ABSTRACT

There is ample evidence that masking and social distancing are effective in reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. However, due to the complexity of airborne disease transmission, it is difficult to quantify their effectiveness, especially in the case of one-to-one exposure. Here, we introduce the concept of an upper bound for one-to-one exposure to infectious human respiratory particles and apply it to SARS-CoV-2. To calculate exposure and infection risk, we use a comprehensive database on respiratory particle size distribution; exhalation flow physics; leakage from face masks of various types and fits measured on human subjects; consideration of ambient particle shrinkage due to evaporation; and rehydration, inhalability, and deposition in the susceptible airways. We find, for a typical SARS-CoV-2 viral load and infectious dose, that social distancing alone, even at 3.0 m between two speaking individuals, leads to an upper bound of 90% for risk of infection after a few minutes. If only the susceptible wears a face mask with infectious speaking at a distance of 1.5 m, the upper bound drops very significantly; that is, with a surgical mask, the upper bound reaches 90% after 30 min, and, with an FFP2 mask, it remains at about 20% even after 1 h. When both wear a surgical mask, while the infectious is speaking, the very conservative upper bound remains below 30% after 1 h, but, when both wear a well-fitting FFP2 mask, it is 0.4%. We conclude that wearing appropriate masks in the community provides excellent protection for others and oneself, and makes social distancing less important.


Subject(s)
Masks/virology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Adult , COVID-19/prevention & control , COVID-19/virology , Female , Humans , Male , SARS-CoV-2/pathogenicity
3.
Arch Toxicol ; 96(1): 105-119, 2022 01.
Article in English | MEDLINE | ID: mdl-34786588

ABSTRACT

The world is living a pandemic situation derived from the worldwide spreading of SARS-CoV-2 virus causing COVID-19. Facemasks have proven to be one of the most effective prophylactic measures to avoid the infection that has made that wearing of facemasks has become mandatory in most of the developed countries. Silver and graphene nanoparticles have proven to have antimicrobial properties and are used as coating of these facemasks to increase the effectivity of the textile fibres. In the case of silver nanoparticles, we have estimated that in a real scenario the systemic (internal) exposure derived from wearing these silver nanoparticle facemasks would be between 7.0 × 10-5 and 2.8 × 10-4 mg/kg bw/day. In addition, we estimated conservative systemic no effect levels between 0.075 and 0.01 mg/kg bw/day. Therefore, we estimate that the chronic exposure to silver nanoparticles derived form facemasks wearing is safe. In the case of graphene, we detected important gaps in the database, especially regarding toxicokinetics, which prevents the derivation of a systemic no effect level. Nevertheless, the qualitative approach suggests that the risk of dermal repeated exposure to graphene is very low, or even negligible. We estimated that for both nanomaterials, the risk of skin sensitisation and genotoxicity is also negligible.


Subject(s)
Antiviral Agents/adverse effects , COVID-19/prevention & control , Graphite/adverse effects , Masks/adverse effects , Metal Nanoparticles/adverse effects , Silver/adverse effects , Animals , COVID-19/virology , Female , Humans , Masks/virology , Mice , Mice, Inbred BALB C , Risk Assessment , SARS-CoV-2
4.
Nano Lett ; 21(1): 337-343, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33227203

ABSTRACT

Since the emergence of the COVID-19 pandemic outbreak, the increasing demand and disposal of surgical masks has resulted in significant economic costs and environmental impacts. Here, we applied a dual-channel spray-assisted nanocoating hybrid of shellac/copper nanoparticles (CuNPs) to a nonwoven surgical mask, thereby increasing the hydrophobicity of the surface and repelling aqueous droplets. The resulting surface showed outstanding photoactivity (combined photocatalytic and photothermal properties) for antimicrobial action, conferring reusability and self-sterilizing ability to the masks. Under solar illumination, the temperature of this photoactive antiviral mask (PAM) rapidly increased to >70 °C, generating a high level of free radicals that disrupted the membrane of nanosized (∼100 nm) virus-like particles and made the masks self-cleaning and reusable. This PAM design can provide significant protection against the transmission of viral aerosols in the fight against the COVID-19 pandemic.


Subject(s)
Antiviral Agents/chemistry , COVID-19/prevention & control , Copper/chemistry , Masks/virology , Metal Nanoparticles/chemistry , Sterilization/methods , Catalysis , Humans , Hydrophobic and Hydrophilic Interactions , Photochemical Processes , SARS-CoV-2/isolation & purification , Temperature
5.
Biophys J ; 120(6): 994-1000, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33582134

ABSTRACT

The seasonality of respiratory diseases has been linked, among other factors, to low outdoor absolute humidity and low indoor relative humidity, which increase evaporation of water in the mucosal lining of the respiratory tract. We demonstrate that normal breathing results in an absorption-desorption cycle inside facemasks, in which supersaturated air is absorbed by the mask fibers during expiration, followed by evaporation during inspiration of dry environmental air. For double-layered cotton masks, which have considerable heat capacity, the temperature of inspired air rises above room temperature, and the effective increase in relative humidity can exceed 100%. We propose that the recently reported, disease-attenuating effect of generic facemasks is dominated by the strong humidity increase of inspired air. This elevated humidity promotes mucociliary clearance of pathogens from the lungs, both before and after an infection of the upper respiratory tract has occurred. Effective mucociliary clearance can delay and reduce infection of the lower respiratory tract, thus mitigating disease severity. This mode of action suggests that masks can benefit the wearer even after an infection in the upper respiratory tract has occurred, complementing the traditional function of masks to limit person-to-person disease transmission. This potential therapeutical use should be studied further.


Subject(s)
COVID-19/pathology , COVID-19/prevention & control , Masks/virology , Respiratory System/virology , Severity of Illness Index , COVID-19/virology , Humans , Humidity , SARS-CoV-2/physiology
6.
Eur J Clin Microbiol Infect Dis ; 40(12): 2489-2496, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34224033

ABSTRACT

Easy access to screening for timely identification and isolation of infectious COVID-19 patients remains crucial in sustaining the international efforts to control COVID-19 spread. A major barrier limiting broad-based screening is the lack of a simple, rapid, and cost-effective COVID-19 testing method. We evaluated the feasibility and utility of facemask sampling in a cohort of 42 COVID-19-positive and 36 COVID-19-negative patients. We used a prototype of Steri-Strips™ (3 M) applied to the inner surface of looped surgical facemasks (Assure), which was worn by patients for a minimum wear time of 3 h, then removed and sent for SARS-CoV-2 PCR testing. Baseline demographics and symptomatology were also collected. Facemask sampling positivity was highest within the first 5 days of symptomatic presentation. Patients with nasopharyngeal and/or oropharyngeal swab SARS-CoV-2 PCR Ct values < 25.09 had SARS-CoV-2 detected on facemask sampling, while patients with Ct values ≥ 25.2 had no SARS-CoV-2 detected on facemask sampling. Facemask sampling can identify patients with COVID-19 during the early symptomatic phase or those with high viral loads, hence allowing timely identification and isolation of those with the highest transmission risk. Given the widespread use of facemasks, this method can potentially be easily applied to achieve broad-based, or even continuous, population screening.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/virology , Masks/virology , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing/instrumentation , Cohort Studies , Feasibility Studies , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Oropharynx/virology , Pandemics , SARS-CoV-2/classification , SARS-CoV-2/genetics , Young Adult
7.
Appl Opt ; 60(7): 1821-1826, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33690269

ABSTRACT

During the present Sars-CoV-2 pandemic, there has been an increase in the development of UVC disinfection systems. Researchers and members of the lighting community shifted their interests to this new field to help develop systems for disinfecting facemasks and other small equipment. In this paper we show that it is possible to use DIALux to simulate the irradiance distribution provided by a lamp emitting in the UVC range. We will compare the results provided by DIALux with those obtained from Zemax OpticStudio in three different scenarios. We compared the minimum, maximum, and mean irradiance at the detection plane. The differences between the two software were less than 12%, 2%, and 6%, respectively. We also compared the contour maps of isoirradiance lines. We conclude that DIALux is well suited for UVC lighting design in the UVC range. We think that this finding will contribute to increasing the design and manufacturing of new UVC disinfection systems needed to fight against the Sars-CoV-2 pandemic.


Subject(s)
COVID-19/prevention & control , Disinfection/methods , Masks/virology , SARS-CoV-2/radiation effects , Software , Ultraviolet Rays , COVID-19/transmission , COVID-19/virology , Computer Simulation , Disinfection/instrumentation , Disinfection/statistics & numerical data , Equipment Design , Humans , Models, Theoretical , Optical Devices , Optical Phenomena , Pandemics/prevention & control
8.
Int J Health Plann Manage ; 36(2): 587-589, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33000518

ABSTRACT

Locally made, washable and reusable personal protective equipment (PPE), used in combination with N95 masks that were reused safely, has proven to be a viable alternative to disposable gowns and caps for hospital staff in low- and middle-income countries. Muhimbili University Hospital's children's cancer ward in Dar es Salaam, Tanzania, developed locally made PPE and created rigorous cleaning and disinfecting protocols, when the daily use of imported, disposable materials were not an option. These items continue to protect staff, children and parents. The novel PPE approach was able to prevent staff from becoming infected during the pandemic despite the fact that several parents, and subsequently their children, became infected with Covid-19 during cancer treatment at the facility.


Subject(s)
COVID-19/prevention & control , Disinfection/methods , Masks , Personal Protective Equipment , Personnel, Hospital , Disinfection/standards , Humans , Masks/virology , Personal Protective Equipment/virology , Tanzania
9.
J Occup Environ Hyg ; 18(7): 345-360, 2021 07.
Article in English | MEDLINE | ID: mdl-34129448

ABSTRACT

First responders may have high SARS-CoV-2 infection risks due to working with potentially infected patients in enclosed spaces. The study objective was to estimate infection risks per transport for first responders and quantify how first responder use of N95 respirators and patient use of cloth masks can reduce these risks. A model was developed for two Scenarios: an ambulance transport with a patient actively emitting a virus in small aerosols that could lead to airborne transmission (Scenario 1) and a subsequent transport with the same respirator or mask use conditions, an uninfected patient; and remaining airborne SARS-CoV-2 and contaminated surfaces due to aerosol deposition from the previous transport (Scenario 2). A compartmental Monte Carlo simulation model was used to estimate the dispersion and deposition of SARS-CoV-2 and subsequent infection risks for first responders, accounting for variability and uncertainty in input parameters (i.e., transport duration, transfer efficiencies, SARS-CoV-2 emission rates from infected patients, etc.). Infection risk distributions and changes in concentration on hands and surfaces over time were estimated across sub-Scenarios of first responder respirator use and patient cloth mask use. For Scenario 1, predicted mean infection risks were reduced by 69%, 48%, and 85% from a baseline risk (no respirators or face masks used) of 2.9 × 10-2 ± 3.4 × 10-2 when simulated first responders wore respirators, the patient wore a cloth mask, and when first responders and the patient wore respirators or a cloth mask, respectively. For Scenario 2, infection risk reductions for these same Scenarios were 69%, 50%, and 85%, respectively (baseline risk of 7.2 × 10-3 ± 1.0 × 10-2). While aerosol transmission routes contributed more to viral dose in Scenario 1, our simulations demonstrate the ability of face masks worn by patients to additionally reduce surface transmission by reducing viral deposition on surfaces. Based on these simulations, we recommend the patient wear a face mask and first responders wear respirators, when possible, and disinfection should prioritize high use equipment.


Subject(s)
COVID-19/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Masks/virology , N95 Respirators/virology , SARS-CoV-2 , Aerosols , Air Microbiology , Ambulances , COVID-19/prevention & control , Computer Simulation , Emergency Responders , Equipment Contamination , Humans , Monte Carlo Method , Respiratory Protective Devices/virology , Risk Reduction Behavior , Transportation of Patients
10.
J Med Virol ; 92(10): 1971-1974, 2020 10.
Article in English | MEDLINE | ID: mdl-32320083

ABSTRACT

The coronavirus disease 2019 pandemic caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has claimed many lives worldwide. Wearing medical masks (MMs) or N95 masks ([N95Ms] namely N95 respirators) can slow the virus spread and reduce the infection risk. Reuse of these masks can minimize waste, protect the environment, and help solve the current imminent shortage of masks. Disinfection of used masks is needed for their reuse with safety, but improper decontamination can damage the blocking structure of masks. In this study, we demonstrated using the avian coronavirus of infectious bronchitis virus to mimic SARS-CoV-2 that MMs and N95Ms retained their blocking efficacy even after being steamed on boiling water for 2 hours. We also demonstrated that three brands of MMs blocked over 99% viruses in aerosols. The avian coronavirus was completely inactivated after being steamed for 5 minutes. Altogether, this study suggested that MMs are adequate for use on most social occasions and both MMs and N95Ms can be reused for a few days with steam decontamination between use.


Subject(s)
COVID-19/prevention & control , Disinfection/methods , Equipment Reuse , Masks/virology , N95 Respirators/virology , Steam , Gammacoronavirus , Humans , Pandemics , SARS-CoV-2
11.
J Gen Intern Med ; 35(10): 3063-3066, 2020 10.
Article in English | MEDLINE | ID: mdl-32737790

ABSTRACT

Although the benefit of population-level public facial masking to protect others during the COVID-19 pandemic has received a great deal of attention, we discuss for one of the first times the hypothesis that universal masking reduces the "inoculum" or dose of the virus for the mask-wearer, leading to more mild and asymptomatic infection manifestations. Masks, depending on type, filter out the majority of viral particles, but not all. We first discuss the near-century-old literature around the viral inoculum and severity of disease (conceptualized as the LD50 or lethal dose of the virus). We include examples of rising rates of asymptomatic infection with population-level masking, including in closed settings (e.g., cruise ships) with and without universal masking. Asymptomatic infections may be harmful for spread but could actually be beneficial if they lead to higher rates of exposure. Exposing society to SARS-CoV-2 without the unacceptable consequences of severe illness with public masking could lead to greater community-level immunity and slower spread as we await a vaccine. This theory of viral inoculum and mild or asymptomatic disease with SARS-CoV-2 in light of population-level masking has received little attention so this is one of the first perspectives to discuss the evidence supporting this theory.


Subject(s)
Coronavirus Infections/prevention & control , Masks/virology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Coronavirus Infections/transmission , Global Health , Humans , Pneumonia, Viral/transmission , Risk Assessment , SARS-CoV-2
12.
Epidemiol Infect ; 148: e154, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32660668

ABSTRACT

There is limited information concerning the viral load of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols deposited on environmental surfaces and the effectiveness of infection prevention and control procedures on eliminating SARS-CoV-2 contamination in hospital settings. We examined the concentration of SARS-CoV-2 in aerosol samples and on environmental surfaces in a hospital designated for treating severe COVID-19 patients. Aerosol samples were collected by a microbial air sampler, and environmental surfaces were sampled using sterile premoistened swabs at multiple sites. Ninety surface swabs and 135 aerosol samples were collected. Only two swabs, sampled from the inside of a patient's mask, were positive for SARS-CoV-2 RNA. All other swabs and aerosol samples were negative for the virus. Our study indicated that strict implementation of infection prevention and control procedures was highly effective in eliminating aerosol and environmental borne SARS-CoV-2 RNA thereby reducing the risk of cross-infection in hospitals.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cross Infection/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , RNA, Viral/isolation & purification , Viral Load , Aerosols , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/transmission , Cross Infection/transmission , Cross Infection/virology , Environment , Environmental Microbiology , Hospitals, University , Humans , Masks/virology , Pneumonia, Viral/transmission , SARS-CoV-2
13.
BMC Infect Dis ; 19(1): 491, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31159777

ABSTRACT

BACKGROUND: Medical masks are commonly used in health care settings to protect healthcare workers (HCWs) from respiratory and other infections. Airborne respiratory pathogens may settle on the surface of used masks layers, resulting in contamination. The main aim of this study was to study the presence of viruses on the surface of medical masks. METHODS: Two pilot studies in laboratory and clinical settings were carried out to determine the areas of masks likely to contain maximum viral particles. A laboratory study using a mannequin and fluorescent spray showed maximum particles concentrated on upper right, middle and left sections of the medical masks. These findings were confirmed through a small clinical study. The main study was then conducted in high-risk wards of three selected hospitals in Beijing China. Participants (n = 148) were asked to wear medical masks for a shift (6-8 h) or as long as they could tolerate. Used samples of medical masks were tested for presence of respiratory viruses in upper sections of the medical masks, in line with the pilot studies. RESULTS: Overall virus positivity rate was 10.1% (15/148). Commonly isolated viruses from masks samples were adenovirus (n = 7), bocavirus (n = 2), respiratory syncytial virus (n = 2) and influenza virus (n = 2). Virus positivity was significantly higher in masks samples worn for > 6 h (14.1%, 14/99 versus 1.2%, 1/49, OR 7.9, 95% CI 1.01-61.99) and in samples used by participants who examined > 25 patients per day (16.9%, 12/71 versus 3.9%, 3/77, OR 5.02, 95% CI 1.35-18.60). Most of the participants (83.8%, 124/148) reported at least one problem associated with mask use. Commonly reported problems were pressure on face (16.9%, 25/148), breathing difficulty (12.2%, 18/148), discomfort (9.5% 14/148), trouble communicating with the patient (7.4%, 11/148) and headache (6.1%, 9/148). CONCLUSION: Respiratory pathogens on the outer surface of the used medical masks may result in self-contamination. The risk is higher with longer duration of mask use (> 6 h) and with higher rates of clinical contact. Protocols on duration of mask use should specify a maximum time of continuous use, and should consider guidance in high contact settings. Viruses were isolated from the upper sections of around 10% samples, but other sections of masks may also be contaminated. HCWs should be aware of these risks in order to protect themselves and people around them.


Subject(s)
Infectious Disease Transmission, Patient-to-Professional/prevention & control , Masks/virology , Personnel, Hospital , Respiratory Protective Devices/virology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Viruses/isolation & purification , Adult , China/epidemiology , Female , Hospital Units/statistics & numerical data , Hospitals/statistics & numerical data , Humans , Infection Control/methods , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Male , Middle Aged , Personnel, Hospital/statistics & numerical data , Pilot Projects , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/transmission , Viruses/classification , Young Adult
14.
J Occup Environ Hyg ; 15(9): 664-675, 2018 09.
Article in English | MEDLINE | ID: mdl-30081757

ABSTRACT

Increased understanding of influenza transmission is critical for pandemic planning and selecting appropriate controls for healthcare personnel safety and health. The goals of this pilot study were to assess environmental contamination in different areas and at two time periods in the influenza season and to determine the feasibility of using surgical mask contamination to evaluate potential exposure to influenza virus. Bioaerosol samples were collected over 12 days (two 6-day sessions) at 12 locations within a student health center using portable two-stage bioaerosol samplers operating 8 hr each day. Surface samples were collected each morning and afternoon from common high-contact non-porous hard surfaces from rooms and locations where bioaerosol samplers were located. Surgical masks worn by participants while in contact with patients with influenza-like illness were collected. A questionnaire administered to each of the 12 participants at the end of each workday and another at the end of each workweek assessed influenza-like illness symptoms, estimated the number of influenza-like illness patient contacts, hand hygiene, and surgical mask usage. All samples were analyzed using qPCR. Over the 12 days of the study, three of the 127 (2.4%) bioaerosol samples, 2 of 483 (0.41%) surface samples, and 0 of 54 surgical masks were positive for influenza virus. For the duration of contact that occurred with an influenza patient on any of the 12 days, nurse practitioners and physicians reported contacts with influenza-like illness patients >60 min, medical assistants reported 15-44 min, and administrative staff reported <30 min. Given the limited number of bioaerosol and surface samples positive for influenza virus in the bioaerosol and surface samples, the absence of influenza virus on the surgical masks provides inconclusive evidence for the potential to use surgical masks to assess exposure to influenza viruses. Further studies are needed to determine feasibility of this approach in assessing healthcare personnel exposures. Information learned in this study can inform future field studies on influenza transmission.


Subject(s)
Health Personnel , Influenza, Human/transmission , Masks/virology , Aerosols , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Maryland/epidemiology , Occupational Exposure , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , Pilot Projects , RNA, Viral , Real-Time Polymerase Chain Reaction , Students , Surveys and Questionnaires , Workplace
17.
Risk Anal ; 34(8): 1423-34, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24593662

ABSTRACT

Facemasks are part of the hierarchy of interventions used to reduce the transmission of respiratory pathogens by providing a barrier. Two types of facemasks used by healthcare workers are N95 filtering facepiece respirators (FFRs) and surgical masks (SMs). These can become contaminated with respiratory pathogens during use, thus serving as potential sources for transmission. However, because of the lack of field studies, the hazard associated with pathogen-exposed facemasks is unknown. A mathematical model was used to calculate the potential influenza contamination of facemasks from aerosol sources in various exposure scenarios. The aerosol model was validated with data from previous laboratory studies using facemasks mounted on headforms in a simulated healthcare room. The model was then used to estimate facemask contamination levels in three scenarios generated with input parameters from the literature. A second model estimated facemask contamination from a cough. It was determined that contamination levels from a single cough (≈19 viruses) were much less than likely levels from aerosols (4,473 viruses on FFRs and 3,476 viruses on SMs). For aerosol contamination, a range of input values from the literature resulted in wide variation in estimated facemask contamination levels (13-202,549 viruses), depending on the values selected. Overall, these models and estimates for facemask contamination levels can be used to inform infection control practice and research related to the development of better facemasks, to characterize airborne contamination levels, and to assist in assessment of risk from reaerosolization and fomite transfer because of handling and reuse of contaminated facemasks.


Subject(s)
Infection Control/instrumentation , Influenza, Human/prevention & control , Masks/virology , Aerosols , Cough/virology , Health Personnel , Humans , Infection Control/statistics & numerical data , Influenza, Human/transmission , Masks/adverse effects , Models, Biological , Respiratory Protective Devices/adverse effects , Respiratory Protective Devices/virology , Risk Assessment
18.
Sci Rep ; 14(1): 20211, 2024 08 30.
Article in English | MEDLINE | ID: mdl-39215108

ABSTRACT

The risk of virus transmission via the touching of contaminated masks has long been assumed by infection control teams. Yet, robust evidence to support this belief has been lacking. This risk was investigated in a laboratory setting by measuring the amount of viable influenza virus successfully transferred from artificially contaminated medical (surgical) mask surfaces to a human finger used to swipe their outer surface under various experimental conditions. Despite being exposed to high levels of virus contamination on the masks, very little or no viable virus was successfully transferred from the mask to the finger in these experiments.


Subject(s)
Influenza, Human , Masks , Humans , Masks/virology , Influenza, Human/transmission , Influenza, Human/prevention & control , Influenza, Human/virology , Touch , Equipment Contamination , Orthomyxoviridae
19.
ACS Appl Bio Mater ; 7(8): 5171-5187, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39008660

ABSTRACT

In response to the ongoing threat posed by respiratory diseases, ensuring effective transmission protection is crucial for public health. To address the drawbacks of single-use face masks/respirators, which can be a potential source of contact-based transmission, we have designed an antimicrobial face mask and mask covering utilizing a stack of salt-coated spunbond (SB) fabric. This fabric acts as an outer layer for the face mask and as a covering over a conventional mask, respectively. We evaluated the universal antimicrobial performance of the salt-coated three-stacked SB fabric against enveloped/nonenveloped viruses and spore-forming/nonspore-forming bacteria. The distinctive pathogen inactivation efficiency was confirmed, including resistant pathogens such as human rhinovirus and Clostridium difficile. In addition, we tested other filter attributes, such as filtration efficiency and breathability, to determine the optimal layer for salt coating and its effects on performance. Our findings revealed that the outer layer of a conventional face mask plays a crucial role in contact transmission through contaminated face masks and respirators. Through contact transmission experiments using droplets involving three types of contaminants (fluorescent dyes, bacteria, and viruses), the salt-coated stacked SB fabric demonstrated a superior effect in preventing contact transmission compared to SB or meltblown polypropylene fabrics─an issue challenging to existing masks. Our results demonstrate that the use of salt-coated stacked SB fabrics as (i) the outer layer of a mask and (ii) a mask cover over a mask enhances overall filter performance against infectious droplets, achieving high pathogen inactivation and low contact-based transmission while maintaining breathability.


Subject(s)
Masks , Materials Testing , Polypropylenes , Textiles , Polypropylenes/chemistry , Masks/virology , Humans , Particle Size , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Clostridioides difficile/drug effects
20.
J Infect Public Health ; 17(8): 102454, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936235

ABSTRACT

BACKGROUND: The risk of SARS-CoV-2 transmission to health care workers in intensive care units (ICU) and the contribution of airborne and fomites to SARS-CoV-2 transmission remain unclear. To assess the rate of air and surface contamination and identify risk factors associated with this contamination in patients admitted to the ICU for acute respiratory failure due to SARS-CoV-2 pneumonia. METHODS: Prospective multicentric non-interventional study conducted from June 2020 to November 2020 in 3 French ICUs. For each enrolled patient, 3 predefined surfaces were swabbed, 2 air samples at 1 m and 3 m from the patient's mouth and face masks of 3 health care workers (HCW) were collected within the first 48 h of SARS-CoV-2 positive PCR in a respiratory sample. Droplet digital PCR and quantitative PCR were performed on different samples, respectively. RESULTS: Among 150 included patients, 5 (3.6%, 95%CI: 1.2% to 8.2%) had positive ddPCR on air samples at 1 m or 3 m. Seventy-one patients (53.3%, CI95%: 44.5% to 62.0%) had at least one surface positive. Face masks worn by HCW were positive in 6 patients (4.4%, CI: 1.6% to 9.4%). The threshold of RT-qPCR of the respiratory sample performed at inclusion (odds ratio, OR= 0.88, 95%CI: 0.83 to 0.93, p < 0.0001) and the presence of diarrhea (OR= 3.28, 95%CI: 1.09 to 9.88, p = 0.037) were significantly associated with the number of contaminated surfaces. CONCLUSION: In this study, including patients admitted to the ICU for acute respiratory failure " contact route " of transmission, i.e. through fomites, seems dominant. While presence of SARS-CoV-2 in the air is rare in this specific population, the presence of diarrhea is associated to surface contamination around Covid patients.


Subject(s)
COVID-19 , Intensive Care Units , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/epidemiology , Prospective Studies , Male , Female , Middle Aged , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Aged , France/epidemiology , Health Personnel/statistics & numerical data , Risk Factors , Fomites/virology , Adult , Masks/virology , Air Microbiology , Infectious Disease Transmission, Patient-to-Professional/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL