Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
Add more filters

Publication year range
1.
J Neurooncol ; 168(1): 125-138, 2024 May.
Article in English | MEDLINE | ID: mdl-38563850

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) often metastasizes to the central nervous system (CNS) and has the highest propensity among breast cancer subtypes to develop leptomeningeal disease (LMD). LMD is a spread of cancer into leptomeningeal space that speeds up the disease progression and severely aggravates the prognosis. LMD has limited treatment options. We sought to test whether the common anti-helminthic drug mebendazole (MBZ) may be effective against murine TNBC LMD. METHODS: A small-molecule screen involving TNBC cell lines identified benzimidazoles as potential therapeutic agents for further study. In vitro migration assays were used to evaluate cell migration capacity and the effect of MBZ. For in vivo testing, CNS metastasis was introduced into BALB/c athymic nude mice through internal carotid artery injections of brain-tropic MDA-MB-231-BR or MCF7-BR cells. Tumor growth and spread was monitored by bioluminescence imaging and immunohistochemistry. MBZ was given orally at 50 and 100 mg/kg doses. MBZ bioavailability was assayed by mass spectrometry. RESULTS: Bioinformatic analysis and migration assays revealed higher migratory capacity of TNBC compared to other breast cancer subtypes. MBZ effectively slowed down migration of TNBC cell line MDA-MB-231 and its brain tropic derivative MDA-MB-231-BR. In animal studies, MBZ reduced leptomeningeal spread, and extended survival in brain metastasis model produced by MDA-MB-231-BR cells. MBZ did not have an effect in the non-migratory MCF7-BR model. CONCLUSIONS: We demonstrated that MBZ is a safe and effective oral agent in an animal model of TNBC CNS metastasis. Our findings are concordant with previous efforts involving MBZ and CNS pathology and support the drug's potential utility to slow down leptomeningeal spread.


Subject(s)
Cell Movement , Drug Repositioning , Mebendazole , Mice, Inbred BALB C , Mice, Nude , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Animals , Humans , Female , Mebendazole/pharmacology , Mebendazole/therapeutic use , Mice , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Cell Line, Tumor , Central Nervous System Neoplasms/secondary , Central Nervous System Neoplasms/drug therapy , Cell Proliferation/drug effects
2.
Vet Res ; 55(1): 7, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225645

ABSTRACT

Carbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g., flubendazole and mebendazole) in adults infected with the parasitic nematode Haemonchus contortus, in which the activity of a CRE is increased in drug-resistant strains. The aim of the present study was to compare the abilities of nematodes of both a drug-susceptible strain (ISE) and a drug-resistant strain (IRE) to reduce the carbonyl group of flubendazole (FLU) in different developmental stages (eggs, L1/2 larvae, L3 larvae, and adults). In addition, the effects of selected CRE inhibitors (e.g., glycyrrhetinic acid, naringenin, silybin, luteolin, glyceraldehyde, and menadione) on the reduction of FLU were evaluated in vitro and ex vivo in H. contortus adults. The results showed that FLU was reduced by H. contortus in all developmental stages, with adult IRE females being the most metabolically active. Larvae (L1/2 and L3) and adult females of the IRE strain reduced FLU more effectively than those of the ISE strain. Data from the in vitro inhibition study (performed with cytosolic-like fractions of H. contortus adult homogenate) revealed that glycyrrhetinic acid, naringenin, mebendazole and menadione are effective inhibitors of FLU reduction. Ex vivo study data showed that menadione inhibited FLU reduction and also decreased the viability of H. contortus adults to a similar extent. Naringenin and mebendazole were not toxic at the concentrations tested, but they did not inhibit the reduction of FLU in adult worms ex vivo.


Subject(s)
Anthelmintics , Glycyrrhetinic Acid , Haemonchus , Female , Animals , Mebendazole/pharmacology , Mebendazole/therapeutic use , Vitamin K 3/pharmacology , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Larva , Glycyrrhetinic Acid/pharmacology
3.
Toxicol Appl Pharmacol ; 475: 116630, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37473966

ABSTRACT

Gastric cancer (GC) is among the most-diagnosed and deadly malignancies worldwide. Deregulation in cellular bioenergetics is a hallmark of cancer. Based on the importance of metabolic reprogramming for the development and cancer progression, inhibitors of cell metabolism have been studied as potential candidates for chemotherapy in oncology. Mebendazole (MBZ), an antihelminthic approved by FDA, has shown antitumoral activity against cancer cell lines. However, its potential in the modulation of tumoral metabolism remains unclear. Results evidenced that the antitumoral and cytotoxic mechanism of MBZ in GC cells is related to the modulation of the mRNA expression of glycolic targets SLC2A1, HK1, GAPDH, and LDHA. Moreover, in silico analysis has shown that these genes are overexpressed in GC samples, and this increase in expression is related to decreased overall survival rates. Molecular docking revealed that MBZ modifies the protein structure of these targets, which may lead to changes in their protein function. In vitro studies also showed that MBZ induces alterations in glucose uptake, LDH's enzymatic activity, and ATP production. Furthermore, MBZ induced morphologic and intracellular alterations typical of the apoptotic cell death pathway. Thus, this data indicated that the cytotoxic mechanism of MBZ is related to an initial modulation of the tumoral metabolism in the GC cell line. Altogether, our results provide more evidence about the antitumoral mechanism of action of MBZ towards GC cells and reveal metabolic reprogramming as a potential area in the discovery of new pharmacological targets for GC chemotherapy.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Mebendazole/pharmacology , Mebendazole/therapeutic use , Stomach Neoplasms/drug therapy , Cell Line, Tumor , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Glucose
4.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674870

ABSTRACT

Repurposing approved non-antitumor drugs is a promising and affordable strategy in drug discovery to identify new therapeutic uses different from the original medical indication that may help increase the number of possible, effective anticancer drugs. The use of drugs in ways other than their original FDA-approved indications could offer novel avenues such as bypassing the chemoresistance and recurrence seen with conventional therapy and treatment; moreover, it can offer a safe and economic strategy for combination therapy. Recent works have demonstrated the anticancer properties of the FDA-approved drug Mebendazole. This synthetic benzimidazole proved effective against a broad spectrum of intestinal Helminthiasis. Mebendazole can penetrate the blood-brain barrier and has been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration, or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. Moreover, several preclinical models and ongoing clinical trials explore the efficacy of Mebendazole in multiple cancers, including acute myeloid leukemia, brain cancer, oropharyngeal squamous cell carcinoma, breast cancer, gastrointestinal cancer, lung carcinoma, adrenocortical carcinoma, prostate cancer, and head and neck cancer. The present review summarizes central literature regarding the anticancer effects of MBZ in cancer cell lines, animal tumor models, and clinical trials to suggest possible strategies for safe and economical combinations of anticancer therapies in brain cancer. Mebendazole might be an excellent candidate for the treatment of brain tumors because of its efficacy both when used as monotherapy and in combination as an enhancement to standard chemotherapeutics and radiotherapy, due to its effectiveness on tumor angiogenesis inhibition, cell cycle arrest, apoptosis induction, and targeting of critical pathways involved in cancer such as Hedgehog signaling. Therefore, attention to MBZ repurposing has recently increased because of its potential therapeutic versatility and significant clinical implications, such as reducing medical care costs and optimizing existing therapies. Using new treatments is essential, particularly when current therapeutics for patients with brain cancer fail.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Brain Neoplasms , Glioma , Head and Neck Neoplasms , Male , Animals , Mebendazole/pharmacology , Mebendazole/therapeutic use , Antiparasitic Agents , Cell Line, Tumor , Hedgehog Proteins , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Head and Neck Neoplasms/drug therapy , Anti-Infective Agents/therapeutic use , Glioma/drug therapy
5.
Breast Cancer Res ; 24(1): 98, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36578038

ABSTRACT

Breast cancer is the most diagnosed cancer among women. Approximately 15-20% of all breast cancers are highly invasive triple-negative breast cancer (TNBC) and lack estrogen, progesterone, and ERBB2 receptors. TNBC is challenging to treat due to its aggressive nature with far fewer targeted therapies than other breast cancer subtypes. Current treatments for patients with TNBC consist of cytotoxic chemotherapies, surgery, radiation, and in some instances PARP inhibitors and immunotherapy. To advance current therapeutics, we repurposed mebendazole (MBZ), an orally available FDA-approved anthelmintic that has shown preclinical efficacy for cancers. MBZ has low toxicity in humans and efficacy in multiple cancer models including breast cancer, glioblastoma multiforme, medulloblastoma, colon cancer, pancreatic and thyroid cancer. MBZ was well-tolerated in a phase I clinical trial of adults recently diagnosed with glioma. We determined that the half-maximal inhibitory concentration (IC50) of MBZ in four breast cancer cell lines is well within the range reported for other types of cancer. MBZ reduced TNBC cell proliferation, induced apoptosis, and caused G2/M cell cycle arrest. MBZ reduced the size of primary tumors and prevented lung and liver metastases. In addition, we uncovered a novel mechanism of action for MBZ. We found that MBZ reduces integrin ß4 (ITGß4) expression and cancer stem cell properties. ITGß4 has previously been implicated in promoting "cancer stemness," which may contribute to the efficacy of MBZ. Collectively, our results contribute to a growing body of evidence suggesting that MBZ should be considered as a therapeutic to slow tumor progression and prevent metastasis.


Subject(s)
Mebendazole , Triple Negative Breast Neoplasms , Humans , Female , Mebendazole/pharmacology , Mebendazole/therapeutic use , Integrin beta4 , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor
6.
J Chem Inf Model ; 62(15): 3604-3617, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35867562

ABSTRACT

Recent experimental evidence suggests that mebendazole, a popular antiparasitic drug, binds to heat shock protein 90 (Hsp90) and inhibits acute myeloid leukemia cell growth. In this study we use quantum mechanics (QM), molecular similarity, and molecular dynamics (MD) calculations to predict possible binding poses of mebendazole to the adenosine triphosphate (ATP) binding site of Hsp90. Extensive conformational searches and minimization of the five mebendazole tautomers using the MP2/aug-cc-pVTZ theory level resulted in 152 minima. Mebendazole-Hsp90 complex models were subsequently created using the QM optimized conformations and protein coordinates obtained from experimental crystal structures that were chosen through similarity calculations. Nine different poses were identified from a total of 600 ns of explicit solvent, all-atom MD simulations using two different force fields. All simulations support the hypothesis that mebendazole is able to bind to the ATP binding site of Hsp90.


Subject(s)
Mebendazole , Molecular Dynamics Simulation , Adenosine Triphosphate , HSP90 Heat-Shock Proteins/chemistry , Humans , Mebendazole/pharmacology , Molecular Conformation , Protein Binding , Protein Conformation
7.
J Nanobiotechnology ; 20(1): 169, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35361226

ABSTRACT

BACKGROUND: Mebendazole (MBZ) is a well-known anti-parasite drug with significant anti-cancer properties. However, MBZ exhibits low solubility, limited absorption efficacy, extensive first-pass effect, and low bioavailability. Therefore, multiple oral administration of high dose MBZ is required daily for achieving the therapeutic serum level which can cause severe side effects and patients' non-compliance. METHOD: In the present study, MBZ-loaded/folic acid-targeted chitosan nanoparticles (CS-FA-MBZ) were synthesized, characterized, and used to form cylindrical subcutaneous implants for 4T1 triple-negative breast tumor (TNBC) treatment in BALB/c mice. The therapeutic efficacy of the CS-FA-MBZ implants was investigated after subcutaneous implantation in comparison with Control, MBZ (40 mg/kg, oral administration, twice a week for 2 weeks), and CS-FA implants, according to 4T1 tumors' growth progression, metastasis, and tumor-bearing mice survival time. Also, their biocompatibility was evaluated by blood biochemical analyzes and histopathological investigation of vital organs. RESULTS: The CS-FA-MBZ implants were completely degraded 15 days after implantation and caused about 73.3%, 49.2%, 57.4% decrease in the mean tumors' volume in comparison with the Control (1050.5 ± 120.7 mm3), MBZ (552.4 ± 76.1 mm3), and CS-FA (658.3 ± 88.1 mm3) groups, respectively. Average liver metastatic colonies' number per microscope field at the CS-FA-MBZ group (2.3 ± 0.7) was significantly (P < 0.05) lower than the Control (9.6 ± 1.7), MBZ (5.0 ± 1.5), and CS-FA (5.2 ± 1) groups. In addition, the CS-FA-MBZ treated mice exhibited about 52.1%, 27.3%, and 17% more survival days after the cancer cells injection in comparison with the Control, MBZ, and CS-FA groups, respectively. Moreover, the CS-FA-MBZ implants were completely biocompatible based on histopathology and blood biochemical analyzes. CONCLUSION: Taking together, CS-FA-MBZ implants were completely biodegradable and biocompatible with high therapeutic efficacy in a murine TNBC model.


Subject(s)
Chitosan , Nanoparticles , Triple Negative Breast Neoplasms , Animals , Chitosan/chemistry , Folic Acid/chemistry , Humans , Hydrogen-Ion Concentration , Mebendazole/chemistry , Mebendazole/pharmacology , Mice , Nanoparticles/chemistry , Triple Negative Breast Neoplasms/drug therapy
8.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408808

ABSTRACT

Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians.


Subject(s)
COVID-19 Drug Treatment , Mebendazole , Animals , Antiviral Agents/pharmacology , Mammals , Mebendazole/pharmacology , Microtubules , SARS-CoV-2 , Tubulin
9.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555137

ABSTRACT

Breast cancer is the most commonly diagnosed cancer worldwide and ranks first in terms of both prevalence and cancer-related mortality in women. In this study, we aimed to evaluate the anticancer effect of mebendazole (MBZ) and radiotherapy (RT) concomitant use in triple-negative breast cancer (TNBC) cells and elucidate the underlying mechanisms of action. Breast cancer mouse models and several types of breast cancer cells, including TNBC-derived RT-resistant (RT-R) MDA-MB-231 cells, were treated with MBZ and/or RT. In mice, changes in body weight, renal and liver toxicity, tumor volume, and number of lung metastases were determined. In cells, cell viability, colony formation, scratch wound healing, Matrigel invasion, and protein expression using western blotting were determined. Our findings showed that MBZ and RT combined treatment increased the anticancer effect of RT without additional toxicity. In addition, we noted that cyclin B1, PH2AX, and natural killer (NK) cell-mediated cytotoxicity increased following MBZ + RT treatment compared to unaided RT. Our results suggest that MBZ + RT have an enhanced anticancer effect in TNBC which acquires radiation resistance through blocking cell cycle progression, initiating DNA double-strand breaks, and promoting NK cell-mediated cytotoxicity.


Subject(s)
Mebendazole , Triple Negative Breast Neoplasms , Humans , Female , Mice , Animals , Mebendazole/pharmacology , Mebendazole/therapeutic use , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/pathology , Apoptosis , Killer Cells, Natural , Cell Proliferation
10.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457043

ABSTRACT

Mebendazole (MBZ) is a synthetic benzimidazole known for its antiparasitic properties. In recent years, growing evidence showed that MBZ was also used as an anti-tumor agent. However, whether (and to what extent) this drug treatment affected the male reproductive system was not well-understood. In this study, male C57BL/6 mice were injected with 40 mg/kg/day of MBZ. The treatment was for 3 and 7 days. Our results showed that the injected mice exhibited an abnormal spermatogenic phase with a significant decrease in sperm. We further detected microtubule disruption and transient functional destruction of the blood-testes barrier (BTB) in the MBZ-injected mice testes (BTB). Our data confirmed that MBZ suppressed the expression of the BTB junction-associated proteins and disrupted the Sertoli cells' function in vivo. Moreover, MBZ-treated mice demonstrated an aberrant caspase-3 signalling pathway, which resulted in the apoptosis of the germ cells. Here, we present our data, indicating that MBZ impairs BTB by reducing the expression of the microtubules' and BTB junction-associated proteins. The last leads to activating the caspase-3 pathway, which triggers extensive germ cell apoptosis.


Subject(s)
Blood-Testis Barrier , Mebendazole , Animals , Apoptosis , Blood-Testis Barrier/metabolism , Caspase 3/metabolism , Male , Mebendazole/pharmacology , Mice , Mice, Inbred C57BL , Microtubules , Sertoli Cells/metabolism , Testis
11.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35008943

ABSTRACT

Flubendazole, belonging to benzimidazole, is a broad-spectrum insect repellent and has been repurposed as a promising anticancer drug. In recent years, many studies have shown that flubendazole plays an anti-tumor role in different types of cancers, including breast cancer, melanoma, prostate cancer, colorectal cancer, and lung cancer. Although the anti-tumor mechanism of flubendazole has been studied, it has not been fully understood. In this review, we summarized the recent studies regarding the anti-tumor effects of flubendazole in different types of cancers and analyzed the related mechanisms, in order to provide the theoretical reference for further studies in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mebendazole/analogs & derivatives , Animals , Antineoplastic Agents/chemistry , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Clinical Studies as Topic , Drug Evaluation, Preclinical , Drug Monitoring , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mebendazole/chemistry , Mebendazole/pharmacology , Mebendazole/therapeutic use , Neoplasms/drug therapy , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Organ Specificity/drug effects , Signal Transduction , Treatment Outcome , Xenograft Model Antitumor Assays
12.
Molecules ; 27(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36500220

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has one of the highest mortality rates and requires the development of highly efficacious medications that can improve the efficiency of existing treatment methods. In particular, in PDAC, resistance to conventional chemotherapy reduces the effectiveness of anticancer drugs, decreasing the therapeutic efficiency. Sphingosine 1-phosphate (S1P), produced by sphingosine kinase (SK), plays a vital role in cancer growth, metastasis, chemotherapy, and drug resistance. Focusing on the structural characteristics of mebendazole (MBZ), we studied whether MBZ would affect metastasis, invasion, and drug resistance in cancer by lowering S1P production through inhibition of SK activity. MBZ selectively inhibited SK1 more than SK2 and regulated the levels of sphingolipids. MBZ inhibited the proliferation and migration of cancer cells in other PDAC cell lines. To determine whether the effect of MBZ on cancer cell growth and migration is S1P-mediated, S1P was treated, and the growth and migration of cancer cells were observed. It was found that MBZ inhibited S1P-induced cancer cell growth, and MBZ showed a growth inhibitory effect by regulating the JAK2/STAT3/Bcl-2 pathway. The phosphorylation of focal adhesion kinase (FAK), a transcription factor that regulates migration, was inhibited by MBZ, so it was found that the effect of MBZ regulates the migration of cancer cells through the S1P/FAK/vimentin pathway. In conclusion, our study suggests that the anthelmintic MBZ can be used as a potential therapeutic agent for treating PDAC and for structural synthesis studies of its analogs.


Subject(s)
Lysophospholipids , Pancreatic Neoplasms , Humans , Lysophospholipids/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sphingosine , Mebendazole/pharmacology , Pancreatic Neoplasms/drug therapy , Cell Proliferation , Pancreatic Neoplasms
13.
Gynecol Oncol ; 160(1): 302-311, 2021 01.
Article in English | MEDLINE | ID: mdl-33131904

ABSTRACT

OBJECTIVE: Mebendazole and other anti-parasitic drugs are being used off-prescription based on social media and unofficial accounts of their anti-cancer activity. The purpose of this study was to conduct a controlled evaluation of mebendazole's therapeutic efficacy in cell culture and in vivo models of ovarian cancer. The majority of ovarian cancers harbor p53 null or missense mutations, therefore the effects of p53 mutations and a mutant p53 reactivator, PRIMA-1MET (APR246) on mebendazole activity were evaluated. METHODS: Mebendazole was evaluated in cisplatin-resistant high grade serous stage 3C ovarian cancer patient derived xenograft (PDX) models: PDX-0003 (p53 null) and PDX-0030 (p53 positive), and on ovarian cancer cell lines: MES-OV (p53 R282W), ES2 (p53 S241F), A2780 (p53 wild type), SKOV3 parental (p53 null) and isogenic sublines, SKOV3 R273H p53 and SKOV3 R248W p53. Drug synergy and mechanisms were evaluated in cell cultures using isobolograms, clonogenic assays and western blots. Prevention of tumor establishment was studied in a MES-OV orthotopic model. RESULTS: Mebendazole inhibited growth of ovarian cancer cell cultures at nanomolar concentrations and PDXs at doses up to 50 mg/kg, and reduced orthotopic tumor establishment at 50 mg/kg. The mechanism of mebendazole was associated with p53-independent induction of p21 and tubule depolymerization. PRIMA-1MET also inhibited tumor establishment and worked synergistically with mebendazole in cell culture to inhibit growth and induce intrinsic apoptosis through a p53- and tubule destabilization-independent mechanism. CONCLUSION: This work demonstrates the therapeutic potential of repurposing mebendazole and supports clinical development of mebendazole for ovarian cancer therapy and maintenance.


Subject(s)
Mebendazole/pharmacology , Ovarian Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Drug Repositioning , Drug Screening Assays, Antitumor , Drug Synergism , Female , Fenbendazole/pharmacology , Humans , Mebendazole/administration & dosage , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Quinuclidines/administration & dosage , Quinuclidines/pharmacology , Random Allocation , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
14.
Pharmacol Res ; 164: 105305, 2021 02.
Article in English | MEDLINE | ID: mdl-33197601

ABSTRACT

On account of incurable castration-resistant prostate cancer (CRPC) inevitably developing after treating with androgen deprivation therapy, it is an urgent need to find new therapeutic strategies. Flubendazole is a well-known anti-malarial drug that is recently reported to be a potential anti-tumor agent in various types of human cancer cells. However, whether flubendazole could inhibit the castration-resistant prostate cancer has not been well charified. Thus, the aim of the present study was to characterize the precise mechanism of action of flubendazole on the CRPC. In this study, we investigated the potential effect of flubendazole on cell proliferation, cell cycle and cell death in CRPC cells (PC3 and DU145). We found that flubendazole inhibited cell proliferation, caused cell cycle arrest in G2/M phase and promoted cell death in vitro, and suppressed growth of CRPC tumor in xenograft models. In addition, we reported that flubendazole induced the expression of P53, which partly accounted for the G2/M phase arrest and led to inhibition of the transcription of SLC7A11, and then downregulated the GPX4, which is a major ferroptosis-related gene. Furthermore, flubendazole exhibited synergistic effect with 5-fluorouracil (5-Fu) in chemotherapy of CRPC. This study provides biological evidence that flubendazole is a novel P53 inducer which exerts anti-proliferation and pro-apoptosis effects in CRPC through hindering the cell cycle and activating the ferroptosis, and indicates that a novel utilization of flubendazole in neoadjuvant chemotherapy of CRPC.


Subject(s)
Anthelmintics/therapeutic use , Antineoplastic Agents/therapeutic use , Ferroptosis/drug effects , Mebendazole/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Tumor Suppressor Protein p53/metabolism , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Animals , Anthelmintics/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , Cell Survival/drug effects , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Humans , Male , Mebendazole/pharmacology , Mebendazole/therapeutic use , Mice, Nude , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Tumor Suppressor Protein p53/genetics
15.
Parasitology ; 148(5): 630-635, 2021 04.
Article in English | MEDLINE | ID: mdl-33517933

ABSTRACT

The present work aimed at studying the efficacy of mebendazole (MBZ) compared to artemisinin (ART) for the treatment of trichinellosis at various phases of infection. Seventy Swiss albino mice were orally infected by 300 Trichinella spiralis (T. spiralis) larvae. Mice were divided into infected untreated control group and infected groups treated with 50 mg kg-1 MBZ and 300 mg kg-1 ART for three and five consecutive days, respectively, at the enteral phase [2-4 days post infection (PI)], invasive phase (10-12 days PI) and encapsulated phase (28-30 days PI). All mice were sacrificed 35-42 days PI. MBZ and ART revealed a significant decrease in mean larval counts and increase of larval per cent reduction (LR %) when treatment was initiated during the enteral phase compared to the other phases. MBZ showed significantly higher LR % (99.7, 83.95 and 89.65%) than ART (80.58, 67.0 and 79.2%) when administered at the three infection phases. Histopathological study showed a decrease in the number of encysted larvae, their surrounding cellular infiltrates and increased regenerative muscles in all treated mice. In conclusion, ART possesses a substantial anthelmintic activity against T. spiralis infection in mice both at the enteral and encapsulated phases, yet, significantly lower than MBZ.


Subject(s)
Anthelmintics/pharmacology , Artemisinins/pharmacology , Mebendazole/pharmacology , Trichinella spiralis/drug effects , Trichinellosis/drug therapy , Animals , Larva/drug effects , Larva/growth & development , Mice , Trichinella spiralis/growth & development , Trichinellosis/parasitology
16.
Dig Dis Sci ; 66(1): 105-113, 2021 01.
Article in English | MEDLINE | ID: mdl-32107679

ABSTRACT

BACKGROUND: The accidental ingestion of the third larval stage of Anisakis can cause acute clinical symptoms, which are relieved via extraction of the larvae. Although this is a highly effective technique, it can only be practiced when the larvae are found in accessible areas of the gastrointestinal tract, and therefore instead the condition has often been treated using various different drugs. AIMS: This study evaluates the effectiveness of gastric acid secretion inhibitors (omeprazole and ranitidine), gastric mucosal protectants (sucralfate) and anthelmintics (mebendazole and flubendazole) in treating anisakiasis in Wistar rats. METHODS: Rats were infected with Anisakis-type I larvae and administered the drugs via a gastric probe. Data were recorded regarding the number of live and dead larvae, their location both within the animal and in its feces, and the presence of gastrointestinal lesions. Additionally, gastric pH was measured and histology performed. RESULTS: While rats in all experimental groups exhibited lesions; those treated with ranitidine and mebendazole showed significantly fewer lesions (50% and 35% of rats exhibited lesions, respectively). Histological examination of the gastric lesions revealed infection-induced changes, but no significant differences were observed between the treated and untreated rats. CONCLUSIONS: Mebendazole was found to be most efficacious in preventing gastrointestinal lesions, followed by ranitidine, which was the most effective antacid of those studied. Both these drugs could thus be considered as part of the conservative management of anisakiasis.


Subject(s)
Anisakiasis/drug therapy , Anthelmintics/therapeutic use , Anti-Ulcer Agents/therapeutic use , Antinematodal Agents/therapeutic use , Disease Models, Animal , Sucralfate/therapeutic use , Acute Disease , Animals , Anisakiasis/pathology , Anthelmintics/pharmacology , Anti-Ulcer Agents/pharmacology , Antinematodal Agents/pharmacology , Drug Evaluation, Preclinical/methods , Female , Fishes/parasitology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/parasitology , Gastrointestinal Tract/pathology , Mebendazole/pharmacology , Mebendazole/therapeutic use , Omeprazole/pharmacology , Omeprazole/therapeutic use , Ranitidine/pharmacology , Ranitidine/therapeutic use , Rats , Rats, Wistar , Sucralfate/pharmacology
17.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34639011

ABSTRACT

The prognosis of elderly AML patients is still poor due to chemotherapy resistance. The Hedgehog (HH) pathway is important for leukemic transformation because of aberrant activation of GLI transcription factors. MBZ is a well-tolerated anthelmintic that exhibits strong antitumor effects. Herein, we show that MBZ induced strong, dose-dependent anti-leukemic effects on AML cells, including the sensitization of AML cells to chemotherapy with cytarabine. MBZ strongly reduced intracellular protein levels of GLI1/GLI2 transcription factors. Consequently, MBZ reduced the GLI promoter activity as observed in luciferase-based reporter assays in AML cell lines. Further analysis revealed that MBZ mediates its anti-leukemic effects by promoting the proteasomal degradation of GLI transcription factors via inhibition of HSP70/90 chaperone activity. Extensive molecular dynamics simulations were performed on the MBZ-HSP90 complex, showing a stable binding interaction at the ATP binding site. Importantly, two patients with refractory AML were treated with MBZ in an off-label setting and MBZ effectively reduced the GLI signaling activity in a modified plasma inhibitory assay, resulting in a decrease in peripheral blood blast counts in one patient. Our data prove that MBZ is an effective GLI inhibitor that should be evaluated in combination to conventional chemotherapy in the clinical setting.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Mebendazole/pharmacology , Proteasome Endopeptidase Complex/metabolism , Tubulin Modulators/pharmacology , Zinc Finger Protein GLI1/metabolism , Case-Control Studies , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Humans , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Proteolysis , Signal Transduction/drug effects , Structure-Activity Relationship , Transcription Factors/chemistry , Transcription Factors/metabolism , Zinc Finger Protein GLI1/antagonists & inhibitors , Zinc Finger Protein GLI1/chemistry
18.
Molecules ; 26(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500557

ABSTRACT

In this study, we aimed to evaluate the anticancer effect of benzimidazole derivatives on triple-negative breast cancer (TNBC) and investigate its underlying mechanism of action. Several types of cancer and normal breast cells including MDA-MB-231, radiotherapy-resistant (RT-R) MDA-MB-231, and allograft mice were treated with six benzimidazole derivatives including mebendazole (MBZ). Cells were analyzed for viability, colony formation, scratch wound healing, Matrigel invasion, cell cycle, tubulin polymerization, and protein expression by using Western blotting. In mice, liver and kidney toxicity, changes in body weight and tumor volume, and incidence of lung metastasis were analyzed. Our study showed that MBZ significantly induced DNA damage, cell cycle arrest, and downregulation of cancer stem cell markers CD44 and OCT3/4, and cancer progression-related ESM-1 protein expression in TNBC and RT-R-TNBC cells. In conclusion, MBZ has the potential to be an effective anticancer agent that can overcome treatment resistance in TNBC.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Mebendazole/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Animals , Biomarkers, Tumor/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Down-Regulation/drug effects , Female , Humans , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Lung Neoplasms/metabolism , MCF-7 Cells , Mice , Mice, Nude , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Triple Negative Breast Neoplasms/metabolism
19.
Br J Cancer ; 122(4): 517-527, 2020 02.
Article in English | MEDLINE | ID: mdl-31844184

ABSTRACT

BACKGROUND: Docetaxel chemotherapy in prostate cancer has a modest impact on survival. To date, efforts to develop combination therapies have not translated into new treatments. We sought to develop a novel therapeutic strategy to tackle chemoresistant prostate cancer by enhancing the efficacy of docetaxel. METHODS: We performed a drug-repurposing screen by using murine-derived prostate cancer cell lines driven by clinically relevant genotypes. Cells were treated with docetaxel alone, or in combination with drugs (n = 857) from repurposing libraries, with cytotoxicity quantified using High Content Imaging Analysis. RESULTS: Mebendazole (an anthelmintic drug that inhibits microtubule assembly) was selected as the lead drug and shown to potently synergise docetaxel-mediated cell killing in vitro and in vivo. Dual targeting of the microtubule structure was associated with increased G2/M mitotic block and enhanced cell death. Strikingly, following combined docetaxel and mebendazole treatment, no cells divided correctly, forming multipolar spindles that resulted in aneuploid daughter cells. Liposomes entrapping docetaxel and mebendazole suppressed in vivo prostate tumour growth and extended progression-free survival. CONCLUSIONS: Docetaxel and mebendazole target distinct aspects of the microtubule dynamics, leading to increased apoptosis and reduced tumour growth. Our data support a new concept of combined mebendazole/docetaxel treatment that warrants further clinical evaluation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Docetaxel/pharmacology , Drug Screening Assays, Antitumor/methods , Mebendazole/pharmacology , Prostatic Neoplasms , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Repositioning/methods , Drug Synergism , Humans , Male , Mice , PC-3 Cells , Xenograft Model Antitumor Assays
20.
Parasitology ; 146(10): 1256-1262, 2019 09.
Article in English | MEDLINE | ID: mdl-31057131

ABSTRACT

Recently, we introduced an epoxy group to mebendazole by a reaction with epichlorohydrin and obtained two isoforms, mebendazole C1 (M-C1) and mebendazole C2 (M-C2). The in vitro effects of mebendazole derivatives at different concentrations on Echinococcus multilocularis protoscoleces and metacestodes as well as cytotoxicity in rat hepatoma (RH) cells were examined. The results demonstrated that the solubility of the two derivatives was greatly improved compared to mebendazole. The mortality of protoscoleces in vitro reached to 70-80% after 7 days of exposure to mebendazole or M-C2, and M-C2 showed higher parasiticidal effects than mebendazole (P > 0.05). The parasiticidal effect of M-C1 was low, even at a concentration of 30 µm. The percentage of damaged metacestodes that were treated with mebendazole and M-C2 in vitro at different concentrations were similar, and M-C1 exhibited insignificant effects on metacestodes. Significant morphological changes on protoscoleces and metacestodes were observed after treatment with mebendazole and M-C2. In addition, the introduction of an epoxy group to mebendazole also reduced its cytotoxicity in RH cells. Our results demonstrate that the introduction of an epoxy group not only improved the solubility of mebendazole, but also increased its parasiticidal effects on E. multilocularis and reduced its cytotoxicity in RH cells.


Subject(s)
Antinematodal Agents/pharmacology , Echinococcus multilocularis/drug effects , Mebendazole/analogs & derivatives , Mebendazole/pharmacology , Animals , Antinematodal Agents/chemistry , Antinematodal Agents/toxicity , Cell Line , Cell Survival/drug effects , Hepatocytes/drug effects , Mebendazole/chemistry , Mebendazole/toxicity , Parasitic Sensitivity Tests , Rats , Solubility , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL